电磁学发展简史

电磁学发展简史
电磁学发展简史

电磁学发展简史

班级:XXXXXX

姓名:XXX

学号:XXXXXX

一.早期的电磁学研究

早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,

给出了欧姆定律的理论推导。欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。研究成果被忽视,经济极其困难,使欧姆精神抑郁。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。

二.安培和法拉第奠定了电动力学基础

1820年间,奥斯特在给学生讲课时,意外地发现了电流的小磁针偏转的现象。当导线通电流时,小磁针产生了偏转。这个消息传到巴黎后,启发了法国物理学家安培。他思考,既然磁与磁之间、电流与磁之间都有作用力,那么电流与电流之间是否也存在作用力呢?他重复了奥斯特的实验,几天后向巴黎科学院提交了第一篇论文,提出了磁针转动方向与电流方向的关系,就是大家在高中学习过的右手定则。再一周后,他向科学院提交了第二篇论文,在该文中,他讨论了平行载流导线之间的相互作用问题。同时,他还发现如果给两个螺线管通电流,它们就会象两个条形磁铁一样相互吸引或者排斥。1822年,安培在实验的基础上,以严密数学形式表述了电流产生磁力的基本定律,即安培定律。该定律表明,两个电流元的作用力与它们之间距离的平方成反比,与库仑定律很类似,但是它们作用力的方向却要由右手定则来判断。安培通过研究电流和磁铁的磁力情况,他认为磁铁的磁力在本质上和电流的磁力是一样的,提出了著名的安培分子电流假说。该假说认为在物体内部的每个微粒都有一个环形电流,它们实际上就相当于一个小磁针,当这些小磁针的磁性排列一致时,就体现出宏观磁性。这一假说在当时不被人们看重,一直到了70年后人们才真的发现了这种带电粒子,证明了安培假说的正确性。

既然电流有磁效应,那么磁是否也会有电流效应呢?根据物理的相互作用原理,这个结果应该是显然的,因此不少人为此做了很多实验,试图发现磁的电流效应。但是这个现象直到奥斯特发现电流磁效应的10多年后,才被英国物理学家法拉第和美国物理学家亨利发现。法拉第,1791年9月22日生在一个手工工人家庭,家里人没有特别的文化,而且颇为贫穷。

法拉第的父亲是一个铁匠。法拉第小时候受到的学校教育是很差的。十三岁时,他就到一家装订和出售书籍兼营文具生意的铺子里当了学徒。但与众不同的是他除了装订书籍外,还经常阅读它们。他的老板也鼓励他,有一位顾客还送给了他一些听伦敦皇家学院讲演的听讲证。1812年冬季一天,正当拿破仑的军队在俄罗斯平原上遭到溃败的时候,一位二十一岁的青年人来到了伦敦皇家学院,他要求和著名的院长戴维见面谈话。作为自荐书,他带来了一本簿子,里面是他听戴维讲演时记下的笔记。这本簿子装订得整齐美观,这位青年给戴维留下了很好的印象。戴维正好缺少一位助手,不久他就雇用了这位申请者,从此,法拉第开始步入科学的殿堂

法拉第是一个伟大的实验物理学家,他在电磁学方面的主要贡献就是现在称之为法拉第电磁感应定律,并且提出了力线和场的概念。前面提到的安培和奥斯特等人的工作说明了电和磁之间存在着必然的联系,法拉第发现的电磁感应定律

比他们前进了一大步。他用实验证明了电不仅可以转化为磁,磁也同样可以转变为电。运动中的电能感应出磁,同样运动中的磁也能感应出电。法拉第的发现为大规模利用电力提供了基础,后来人们利用法拉第电磁感应定律制造了感应发电机,从此蒸气机时代进入了电气化时代。1831年,法拉第用铁粉做实验,形象地证明了磁力线的存在。他指出,这种力线不是几何的,而是一种具有物理性质的客观存在。从这个实验说明,电荷或者磁极周围空间并不是以前那样认为是一无所有的、空虚的,而是充满了向各个方向散发的这种力线。他把这种力线存在的空间称之为场,各种力就是通过这种场进行传递的。

法拉第将他的一生所做的实验进行了总结,写出了《电学实验研究》。由于法拉第基本上不懂数学,在这部著作中人们几乎找不到一个数学公式,以至于有人认为它只是一本关于电磁学的实验报告。但是,正是因为他不懂数学,他才不得不想尽方法用简单易懂的语言来表达高深的物理规律,才有力线和场这样简明而优美的概念。法拉第同时还是一个出色的科普演讲家。他的这个不懂数学的缺陷恰好被他的后来者麦克斯韦所弥补,建立了完美的电磁学理论。同时,法拉第具有深刻的哲学思想和几何学和空间上的洞察力。他的善于持久思考的能力,正好补偿了他数学上的不足。在他留下来的笔记中,有下面一段话:“我一直冥思苦索什么是使哲学家获得成功的条件。是勤奋和坚韧精神加上良好的感觉能力和机智吗?……但是,我长期以来为我们实验室寻找天才却从未找到过。不过我看到了许多人,如果他们真能严格要求自己,我想他们已成为有成就的实验哲学家了。”

开尔文勋爵对法拉第非常了解,他在纪念法拉第的文章中说:“他的敏捷和活跃的品质,难以用言语形容。他的天才光辉四射,使他的出现呈现出智慧之光,他的神态有一种独特之美,这有幸在他家里或者皇家学院见过他的任何人都会感觉到的,从思想最深刻的哲学家到最质朴的儿童。

三. 麦克斯韦的电动力学

麦克斯韦出生于苏格兰爱丁堡的一个名门望族。他从小便显露出出色的数学才能。他在14岁就在英国《爱丁堡皇家学会学报》上发表数学论文,获得了爱丁堡学院的数学奖。后来,麦克斯韦给英国皇家学会送去了两篇论文,但是皇家学会以“不适宜一个穿夹克的小孩登上这里的讲台”为理由让别人代为宣读论文。1850年,麦克斯韦考入了剑桥大学三一学院,主攻数学和物理。1854年以优异的成绩毕业。1871年回到了母校担任实验物理教授。法拉第精于实验研究,麦克斯韦擅长于理论分析概括,他们相辅相成,导致了科学上的重大突破。1855年,24岁的麦克斯韦发表了他的论文《论法拉第的力线》,对法拉第的力线概念进行了数学分析。1862年,他继续发表了《论物理的力线》。在这篇论文中,他不但解释了法拉第的实验研究结果,而且还发展了法拉第的场的思想,提出了涡旋电场和位移电流的概念,初步提出了完整的电磁学理论。

1873年,麦克斯韦完成了电磁理论的经典著作《电磁学通论》,建立了著名的麦克斯韦方程组,以非常优美简洁的数学语言概括了全部电磁现象。这一方

程组有积分形式和微分形式。其积分形式有四个等式组成。,就是说通过任意闭合曲面的电通量等于它包围住的自由电荷的代数和,说明在任何电场中电场强度沿着任意闭合曲线的积分等于通过此闭合曲线包围面积的磁通量随时间变化律的负值。,即在任何磁场中,通过任意封闭曲面的磁通量等于零。,说明任何磁场中磁场强度沿着任意闭合曲线的积分等于通过此闭合曲线所包围面积内的全电流。麦克斯韦方程组把电荷、电流、磁场和电场的变化用数学公式全部统一起来了。从该方程组可以知道,变化的磁场能够产生电场,变化的电场能产生磁场,它们将以波动的形式在空间传播,因此麦克斯韦预言了电磁波的存在,并且推导出电磁波传播速度就是光速,因此他也同时说明了光波就是一种特殊的电磁波。这样,麦克斯韦方程组的建立就标志着完整的电磁学理论体系的建立,《电磁学通论》的科学价值可以与牛顿的《自然哲学的数学原理》相媲美。

通过麦克斯韦的科学经历,我们可以看到数学在物理学科中的重要作用。麦克斯韦精通数学,他用精确的数学语言把实验结果升华为理论,用数学完美的形式使得法拉第的实验结果更加和谐美丽,显示了数学的巨大威力。

由于没有实验的验证,麦克斯韦理论当时得不到大多数科学家的理解。物理学家劳厄说:“象赫尔姆赫兹和玻尔兹曼这样有异常才能的人为了理解它也需要花几年的力气。”因此,支持他理论的科学家就更加少了。1883年,赫兹注意到一个有关的新研究,有人提出,如果电磁波存在,那么莱顿瓶在振荡放电的时候,应该产生电磁波。1886年,赫兹在进行放电实验时,发现近傍一个没有闭和的线圈也出现了火花,他得到启发,很快制出了可以检测电磁波的电波环。电波环的结构非常简单,在一根弯成环状的粗铜线两端,安上两个金属球,小球间的距离可以进行调整。赫兹经历了无数次失败,不断改变实验设计和装置,反复调整实验仪器。终于观察到,调节电波环的两个金属球之间的间隙,当感应圈两极的金属球之间有火花跳过时,可以使在电波环的间隙处也有火花跳过,这样,他就终于检测到了电磁波。

这也就是电磁学在19世纪的发展简史。电磁学后来的发展在前人的基础上可谓突飞猛进,到今天,生活中很多地方都运用到了它。作为一名电信的学生,电磁学在我们的专业中占有极其重要的地位,我要好好学习,将电磁学更好地运用到实际中,为人们造福。

电磁学发展简史

电磁学发展简史 07 电联毛华超 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。研究成果被忽视,经济极其困难,使欧姆精神抑郁。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。 二.安培和法拉第奠定了电动力学基础 1820年间,奥斯特在给学生讲课时,意外地发现了电流的小磁针偏转的现象。当导线通电流时,小磁针产生了偏转。这个消息传到巴黎后,启发了法国物理学家安培。他思考,既然磁与磁之间、电流与磁之间都有作用力,那么电流与电流之间是否也存在作用力呢?他重复了奥斯特的实验,几天后向巴黎科学院提交了第一篇论文,提出了磁针转动方向与电流

电磁学发展史简述

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。

电磁学的发展及生活生产中的应用

电磁学的发展及生活生产中的应用摘要:电磁学核心及发展,电磁学应用(磁悬浮列车、电磁炮) 关键字:电磁学、磁悬浮、电磁炮 引言: 随着电话,电视等电子产品的广泛应用,电磁学也日益受到人们的重视。内容: 简单的说来,电磁学核心只有四个部份:库伦定律、安培定律、法拉第定律与麦克斯威方程式。并且顺序也一定如此。这可以说与电磁学的历史发展平行。其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不容易说清楚。不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。因此,要了解电磁学的应用就必须先了解它的发展。 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。电磁学的进一步发展促进了电磁在生活技术当中的应用。 (一)民用--磁悬浮列车 1911年,俄国托木斯克工艺学院的一位教授曾根据电磁作用原理,设计并制成一个磁垫列车模型。该模型行驶时不与铁轨直接接触,而是利用电磁排斥力使车辆悬浮而与铁轨脱离,并用电动机驱动车辆快速前进。 1960年美国科学家詹姆斯?鲍威尔和高登?丹提出磁悬浮列车的设计,利用

强大的磁场将列车提升至离轨几十毫米,以时速300公里行驶而不与轨道发生摩擦。遗憾的是,他们的设计没有被美国所重视,而是被日本和德国捷足先登。德国的磁悬浮列车采用磁力吸引的原理,克劳斯?马菲公司和MBB公司于1971年研制成常导电磁铁吸引式磁浮模型试验车。 随着超导和高温超导热的出现,推动了超导磁悬浮列车的研制。1987年3月,日本完成了超导体磁悬浮列车的原型车,其外形呈流线形,车重17吨,可载44人,最高时速为420公里。车上装备的超导体电磁铁所产生的电磁力与地面槽形导轨上的线圈所产生的电磁力互相排斥,从而使车体上浮。槽形导轨两侧的线圈与车上电磁铁之间相互作用,从而产生牵引力使车体一边悬浮一边前进。由于是悬空行驶,因而基本上不作用车轮。但在起动时,还需有车轮做辅助支撑,这和飞机起降时需要轮子相似。这列超导磁悬浮列车由于试验线路太短,未能充分展示出空的卓越性能。 (二)军用—电磁炮 早在1845年,查尔斯?惠斯通就制作出了世界第一台磁阻直流电动机,并用它把金属棒抛射到20米远。此后,德国数学家柯比又提出了用电磁推进方法制造“电气炮”的设想。而第一个正式提出电磁发射(电磁炮)概念并进行试验的是挪威奥斯陆大学物理学教授伯克兰。他在1901年获得了“电火炮”专利。1920年,法国的福琼?维莱普勒发表了《电气火炮》文章。德国的汉斯莱曾将10克弹丸用电磁炮加速到1.2公里,秒的初速。1946年,美国的威斯汀豪斯电气公司建成了一个全尺寸的电磁飞机弹射器,取名“电拖”。 到20世纪70年代,随着脉冲功率技术的兴起和相关科学技术的发展,电磁发射技术取得了长足的进步。澳大利亚国立大学的查里德?马歇尔博士运用新技术,把3克弹丸加速到了5.9公里,秒。这一成就从实验上证明了用电磁力把物体推进到超高速度是可行的。他的成就1978年公布后,使世界相关领域的科学家振奋不

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

电磁学发展史简述

电磁学发展史简述

————————————————————————————————作者:————————————————————————————————日期: 2

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。 3

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。 4

电磁学的历史

电磁学发展简史 一. 早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学(图1)的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。 1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤,如图2所示。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律。

在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。 欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。

电磁场理论发展史(DOC 6页)

电磁场理论发展史(DOC 6页)

电磁场理论发展史 引言 载法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家——麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示“不能接受即时传播的思想”,在法拉弟的物理思想影响下,他决心“为法拉弟的场概念提供数学方法的基础”. 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:“借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了“建立力学模型——引出基本公式——进行数学引伸推导”的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:“我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来”“力线的切线方向就是电场力的方向,

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,.泊松、.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电

物理学史3.1 电学历史概述

3.1历史概述 静磁现象和静电现象很早就受到人类注意。公元前6、7世纪发现了磁石吸铁、磁石指南以及摩擦生电等现象。系统地对这些现象进行研究则始于16世纪。1600年英国医生吉尔伯特(WilliamGilbert,1544—1603)发表了《论磁、磁体和地球作为一个巨大的磁体》(De magnete,magneticisque corporibus et de magnomag-nete tellure)。他总结了前人对磁的研究,周密地讨论了地磁的性质,记载了大量实验,使磁学从经验转变为科学。书中他也记载了电学方面的研究。 静电现象的研究要困难得多,因为一直没有找到恰当的方式来产生稳定的静电和对静电进行测量。只有等到发明了摩擦起电机,才有可能对电现象进行系统的研究,这时人类才开始对电有初步认识。 1750年米切尔(John Michell,1724[?]—1793)提出磁极之间的作用力服从平方反比定律,1785年库仑(Charles AugustinCoulomb,1736—1806)公布了用扭秤实验得到电力的平方反比定律,使电学和磁学进入了定量研究的阶段。 1780年,伽伐尼(Aloisio Galvani,1737—1798)发现动物电,1800年伏打(Alessandro Volta,1745—1827)发明电堆,使稳恒电流的产生有了可能,电学由静电走向动电,导致1820年奥斯特(Hans Christian Oersted,1777—1851)发现电流的磁效应。于是,电学与磁学彼此隔绝的情况有了突破,开始了电磁学的新阶段。 在这以后,电磁学的发展势如破竹。19世纪二、三十年代成了电磁学大发展的时期。 首先对电磁作用力进行研究的是法国科学家安培(AndréMarie Amperè,1775—1836),他在得知奥斯特发现之后,重复了奥斯特的实验,提出了右手定则,并用电流绕地球内部流动解释地磁的起因。接着他研究了载流导线之间的相互作用,建立了电流元之间的相互作用规律——安培定律。与此同时,比奥-沙伐定律也得到发现。 英国物理学家法拉第对电磁学的贡献尤为突出。1831年发现电磁感应现象,进一步证实了电现象与磁现象的统一性。法拉第坚信电磁的近距作用,认为物质之间的电力和磁力都需要由媒介传递,媒介就是电场和磁场。 电流磁效应的发现,使电流的测量成为可能。1826年欧姆(Georg Simon Ohm,1784—1854)因而确定了电路的基本规律——欧姆定律。

电磁学发展简史

电磁学发展简史 班级:XXXXXX 姓名:XXX 学号:XXXXXX 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,

电磁场理论发展史

电磁场理论 在法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家--麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论的思路与方法大致如下. 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示"不能接受即时传播的思想",在法拉弟的物理思想影响下,他决心"为法拉弟的场概念提供数学方法的基础". 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:"借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念"他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了"建立力学模型--引出基本公式--进行数学引伸推导"的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:"我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来""力线的切线方向就是电场力的方向,力线的密度表示电场力的大小".他企图阐明电力线和电力线所在空间之间的几何关系.他还试图通过类比凭借已知的力学公式推导出电磁学公式,寻求这两种不同的现象在数学形式上的类似. 第二步,引出基本公式 早在1842年,W·汤姆逊就曾把拉普拉斯的势函数的二阶微分方程,普遍用于热、电和磁的运动,建立了这三种相似现象的数学联系.1847年,他又在不可压缩流体的流线连续性基础上,论述了电磁现象和流体力学现象的共同性.麦克斯韦正是吸收了W·汤姆逊这种类比方法,把它发展成为研究各种力线的重要工具.例如麦克斯韦把电学中的势等效于流

电磁场与电磁波的历史与发展

电磁场与电磁波的历史与发展 一、历史的前奏 静磁现象和静电现象: 公元前6、7世纪发现了磁石吸铁、磁石指南以及摩擦生电等现象。1600年英国医生吉尔伯特发表了《论磁、磁体和地球作为一个巨大的磁体》的论文。使磁学从经验转变为科学。书中他也记载了电学方面的研究。 静电现象的研究要困难得多,因为一直没有找到恰当的方式来产生稳定的静电和对静电进行测量。只有等到发明了摩擦起电机,才有可能对电现象进行系统的研究,这时人类才开始对电有初步认识。 1785年库仑公布了用扭秤实验得到电力的平方反比定律,使电学和磁学进入了定量研究的阶段。 1780年,伽伐尼发现动物电,1800年伏打发明电堆,使稳恒电流的产生有了可能,电学由静电走向动电,导致1820年奥斯特发现电流的磁效应。于是,电学与磁学彼此隔绝的情况有了突破,开始了电磁学的新阶段。 19世纪二、三十年代成了电磁学大发展的时期。 首先对电磁作用力进行研究的是法国科学家安培,他在得知奥斯特发现之后,重复了奥斯特的实验,提出了右手定则,并用电流绕地球内部流动解释地磁的起因。接着他研究了载流导线之间的相互作用,建立了电流元之间的相互作用规律——安培定律。与此同时,比奥 沙伐定律也得到发现。 英国物理学家法拉第对电磁学的贡献尤为突出。1831年发现电磁感应现象,进一步证实了电现象与磁现象的统一性。法拉第坚信电磁的近距作用,认为物质之间的电力和磁力都需要由媒介传递,媒介就是电场和磁场。 电流磁效应的发现,使电流的测量成为可能。1826年欧姆(Georg Simon Ohm,1784—1854)因而确定了电路的基本规律——欧姆定律。 及至1865年,麦克斯韦把法拉第的电磁近距作用思想和安培开创的电动力学规律结合在一起,用一套方程组概括电磁规律,建立了电磁场理论,预测了光的电磁性质,终于实现了物理学史上第二次理论大综合。 爱因斯坦在纪念麦克斯韦100周年的文集中写道: “自从牛顿奠定理论物理学的基础以来,物理学的公理基础的最伟大的变革,是由法拉第和麦克斯韦在电磁现象方面的工作

电磁学发展史简述

电磁学发展史简述 早期,由于磁现象曾被认为就就是与电现象独立无关得,同时也由于磁学本身得发展与应用,如近代磁性材料与磁学技术得发展新得磁效应与磁现象得发现与应用等等,使得磁学得内容不断扩大,所以磁学在实际上也就作为一门与电学相平行得学科来硏究了。 电磁学从原来互相独立得两门科学(电学、磁学)发展成为物理学中一个完整得分支学科注要就就是基于两个重要得实验发现,即电流得磁效应与变化得磁场得电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场得假设,奠走了电磁学得整个理论体系,发展了对现代文明起重大影响得电工与电子技术。 麦克斯韦电磁理论得重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界得思想。

电子得发现,使电磁学与原子与物质结构得理论结合了起来,洛伦兹得电子论把物质得宏观电磁14质归结为原子中电子得效应,统一地解释了电、磁、光现象。 与电磁学密切相关得就就是经典电动力学,两者在内容上并没有原则得区别。一般说来,电磁学偏重于电磁现象得实验硏究,从广泛得电磁现象研究中归纳出电磁学得基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组与洛伦兹力为基础,硏究电磁场分布「电磁波得激发、辐射与传播, 以及带电粒子与电磁场得相互作用等电磁问题,也可以说,广义得电磁学包含了经典电动力学。 2电学发展简史 “电“ 一词在西方就就是从希腊文琥珀一词转意而来得, 在中国则就就是从雷闪现象中引出来得。自从18世纪中叶以来,对电得硏究逐渐蓬勃开展。它得每项重大发现都引起广泛得实用硏究,从而促进科学技术得飞速发展。 现今,无论人类生活、科学技术活动以及物质生产歸都已离不开电。随着科学技术得发展,某些带有专门知识得硏究内容逐渐独立,形成专门得学科,如电子学、电工学等。电学又可称为电磁学,就就是物理学中颇具重要意义得基础学科。 有关电得记载可追溯到公元前6世纪。早在公元前5 8 5 年,希腊哲学家泰勒斯已记载了用木块摩擦过得琥珀能够吸引碎草

电磁场的发展过程

电磁学的发展 历史概述 静磁现象和静电现象: 公元前6、7世纪发现了磁石吸铁、磁石指南以及摩擦生电等现象。1600年英国医生吉尔伯特发表了《论磁、磁体和地球作为一个巨大的磁体》的论文。使磁学从经验转变为科学。书中他也记载了电学方面的研究。 静电现象的研究要困难得多,因为一直没有找到恰当的方式来产生稳定的静电和对静电进行测量。只有等到发明了摩擦起电机,才有可能对电现象进行系统的研究,这时人类才开始对电有初步认识。 1785年库仑公布了用扭秤实验得到电力的平方反比定律,使电学和磁学进入了定量研究的阶段。 1780年,伽伐尼发现动物电,1800年伏打发明电堆,使稳恒电流的产生有了可能,电学由静电走向动电,导致1820年奥斯特发现电流的磁效应。于是,电学与磁学彼此隔绝的情况有了突破,开始了电磁学的新阶段。 19世纪二、三十年代成了电磁学大发展的时期。 首先对电磁作用力进行研究的是法国科学家安培,他在得知奥斯特发现之后,重复了奥斯特的实验,提出了右手定则,并用电流绕地球内部流动解释地磁的起因。接着他研究了载流导线之间的相互作用,建立了电流元之间的相互作用规律——安培定律。与此同时,比奥 沙伐定律也得到发现。 英国物理学家法拉第对电磁学的贡献尤为突出。1831年发现电磁感应现象,进一步证实了电现象与磁现象的统一性。法拉第坚信电磁的近距作用,认为物质之间的电力和磁力都需要由媒介传递,媒介就是电场和磁场。 电流磁效应的发现,使电流的测量成为可能。1826年欧姆(Georg Simon Ohm,1784—1854)因而确定了电路的基本规律——欧姆定律。 及至1865年,麦克斯韦把法拉第的电磁近距作用思想和安培开创的电动力学规律结合在一起,用一套方程组概括电磁规律,建立了电磁场理论,预测了光的电磁性质,终于实现了物理学史上第二次理论大综合。 爱因斯坦在纪念麦克斯韦100周年的文集中写道: “自从牛顿奠定理论物理学的基础以来,物理学的公理基础的最伟大的变革,是由法拉第和麦克斯韦在电磁现象方面的工作所引起的”。“这样一次伟大

电磁场理论的发展史.doc

电磁场理论发展史 引言 载法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家——麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示“不能接受即时传播的思想”,在法拉弟的物理思想影响下,他决心“为法拉弟的场概念提供数学方法的基础”. 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:“借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了“建立力学模型——引出基本公式——进行数学引伸推导”的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:“我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来”“力线的切线方向就是电场力的方向,力线的密度表示电场力的大小”.他企图阐明电力线和电力线所在空间之间的几何关系.他还试图通过类比凭借已知的力学公式推导出电磁学公式,寻求这两种不同的现象在数学形式上的类似.

电磁学的发展简史

电磁学的发展简史 物理2009-12-02 20:43:20 阅读172 评论0 字号:大中小 我国古代和古希腊,人类从生产实践和日常生活中便了解到电和磁的一些现象和知识。:春秋时代(公元前六百多年)十三世纪前后。欧洲学术复兴。通过实验研究自然规律蔚然成风。当时得到磁学实验,发现了磁石有两极,并命名为N极和S极,并通过实验证实了异性磁极相吸,同性磁极相斥。一根磁针断为两半时。每一半又各自成为一根独立的小磁针。但这股实验风气,立即遭到教廷中那些僧侣的反对,被压了下去。电和磁的研究又进入了停顿期。 十六世纪。英国:吉尔伯特:发现了电和磁有一些不同的性质。制作了第一只实验用的验电器 1660年,德国工程师盖利克,发明了第一台较大的摩擦起电机,使较大量电荷的获得成为可能。 1729年,英国:格雷:发现了导体和绝缘体具有不同的导电特性,这为电荷的输运奠定了基础。 1733年,法国:杜费:发现了两种性质完全不同的电荷。 1745年:荷兰:物理学家穆欣布罗克:发明了莱顿瓶,为电荷的储存提供了有效的手段,也为电的进一步研究提供了条件。 1747年:美国:富兰克林:在杜费的基础上,引入了正电和负电的规定,为定量研究电现象提供了一个基础,具有重大的意义。他还认为。摩擦的作用是使电从一个物体转移到另一物体,而不是创造电荷;任何一与外界绝缘的体系中,电的总量使不变的。这就是通常所说的电荷守恒原理。 电荷的获得、储存和传递为定量研究电现象提供了充分的条件。在认识了电荷分为正负两种,同性相斥异性相吸后,人们很快便转向研究电荷之间相互作用利的定量规律。 1750年,德国:埃皮诺斯:发现了两电荷之间的相互作用力随其距离的减小而增大的现象,但他没有深入的研究下去给出定量的规律。 1766年:德国:普里斯特利:通过一系列实验证明,带电的空心金属容器内表面上没有电荷,而且对内部空间没有任何电力作用,他做了猜测,认为电荷之间的作用力与万有引力相似,即与他们之间距离的平方成反比。但他仅仅停留在猜测阶段。 1769年:英国:罗宾逊:他通过实验测出两个同种电荷之间的排斥力与距离的2.06次方成反比,他进一步猜想正确的应当使平方反比关系。 但他和普里斯特利的工作都没有受到当时科学界的足够重视。 1785年,法国:库仑:设计了精巧的扭秤实验,才直接测定了两个静止的同种点电荷之间的斥力与他们之间距离的平方成反比,与他们的电量乘积成正比。经过不断的探索,他又用电扭摆实验对吸引力测出了相同的结果。至此,库仑定律得到了世界公认,从而开辟了近代电磁理论研究的新纪元。 (值得一提的是:在此之前1773年,英国科学家卡文迪许用数学方法得出了类似关系,但他得成果未公开发表,一直到1879年,才由英国物理学家麦克斯韦整理。注释出版了这些手稿) 1800年,意大利:伏打:制成了伏打电堆,这便是电池得原型。有了稳定得电源,就为人类从研究静电现象过渡到研究动电现象提供了坚实得技术基础。 电磁学发展史中的典型事例 1755年,德国著名哲学家康德出版了《宇宙发展史概论》,书中提出了著名的星云假说。康德的星云假说能较好解释太阳系的某些现象。他认为,太阳系以及一切恒星都是由原始星云在引力和斥力的作用下逐渐聚集而成的。宇宙中的万事万物有生有死,而发展是永无止境的。恩格斯1875年为《自然辩证法》写的一篇导言中,给予康德的星云假说极高的评价。说它“包含着一切继续前进的起点。”因为既然地球是随着太阳系的形成而逐渐形成和发展起来的,那么,地球上的万物山川、动物和植物,自然也有它逐渐形成和发展的历史。“如果立即沿着这个方向坚决地继续研究下去,那么,自然科学现在就会进步得多。”康德的星云假说有力冲击了形而上学的机械自然观,是继哥白尼天文学革命后的又一次科学革命。 18世纪60年代,英国开始了工业革命,这也是近代以来的第一次技术革命。不过,在第一次工业革命期间,许多技术发明大都来源于工匠的实践经验,科学和技术尚未真正结合。总之,在18世纪中叶以前,自然科学研究主要是运用观察、实验、分析、归纳等经验方法达到记录、分类,积累现象知识的目的。在18世纪中叶以后,由于启蒙运动的发展,“自然科学便走进了理论的领域而在这里经验的方法就不中用了,在这里只有理性思维才能有所帮助。”理性思维就是对感性材料进行抽象和概括,建立概念,并运用概念进行判断和推理,提出科学假说,进而建立理论或理论体系。19世纪道尔顿的原子论,阿佛加德罗的分子学说,门捷列夫的元素周期律以及康德的星云假说开始都是以假说形式出现的。不过,康德的星云假说一开始没有得到人们的重视,直到19世纪,由于自然科学不断揭示出自然过程的辨证性质,才最终在哲学领域敲响了形而上学的丧钟。

相关文档
最新文档