量子计算机

量子计算机
量子计算机

量子计算机

时间:2019-02-25 09:48:56 | 作者:陶奕恺

21世纪计算机已进入了我们的生活与工作中,它是大家不可缺少的好帮手。分为台式、笔记本两种类别的计算机。台式适合家用,笔记本适合办公。这些都是大家日常普通用的计算机,而物理学家发明的计算机,有谁知道呢!你们肯定没见过——它叫量子计算机。

这台量子计算机的绝对优势就在于它的核心CPU。它的运算速度快的让人不敢相信。比如一道数学题,天河二号(史上运算速度最快的超级计算机)要算上3天,而量子计算机只需3秒就能完成,讲到这,有人惊讶的说:“不会吧”!哈哈,即然你不信,那我们就来看看它的工作原理吧!

量子计算机的运算原理关系到了量子力学,以著名物理学家薛定谔的定律来讲:将一只活的猫,放进一个盒子里,上面挂一瓶半衰性物质,半衰性物质相当一颗不稳定的原子随时都会放射毒素,如果毒素放射,猫就会死掉,但如果毒素没有放射,猫就不会死。所以得出结论,可以说这猫50%是死的,50%是活的,量子也是一样的。只要满足经典量子的要求,量子就变成一个开关,50%是关的,50%是开的。这样只要把量子开关装入芯片中就可以完成了。经物理学家计算,量子计算机一秒可运算6亿亿亿亿次,而天河二号一秒只运算5。5亿亿次,一对比就知道差距有多大了。当然还有许多的量子计算机工作原理,我就不依依列举了。如果,这门技术是我发明的,我会将它献给航天,使我国卫星成为全球运算速度最快,最现进的卫星!量子计算机有一个缺点,就是太大了,不适合家用和办公,等我长大以后我要将它缩小30000倍,变得和现在的电脑一样大,让人们走进一个全新的计算机时代。

量子计算机是未来科技的前沿,也是物理学家们又一次伟大的创举!

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

量子计算机发展简史

量子计算机发展简史 原著:Simon Bone & Matias Castro 翻译:bianca 2003年3月26日 内容摘要 听起来好像有点奇怪,计算机的未来可以被建筑在一杯咖啡周围。那些咖啡因分子恰巧是构建“量子计算机”--一种能够保证提供可在几秒钟内破解密码的思想回应功能的新型计算机的可能组成部件。 内容目录 1.介绍 1.1量子计算机的基本要素 1.2量子计算机的缺点--(电子)脱散性 1.3取得结果 2.通用计算的理论 2.1加热流失的信息 2.2通用量子计算机 2.3人工智能 3.建立一台量子计算机 3.1量子点 3.2计算流体 4.量子计算机的应用 4.1Shor算法--Shor的算法--一个范例 4.2Grover算法 4.3量子机械系统的模拟 5.量子通讯 5.1量子通讯是如何工作的 5.2量子比特的任务 6.当今进展及未来展望 7.结论

8.术语表 9.参照表 9.1书籍 9.2人物 9.3杂志文章 9.4网页 1.介绍 经常会有能使计算机的性能大大改善的新技术出现。从晶体管技术的引进,到超大规模集成电路的持续性发展,科技进步的速度总是如此无情。近日来,现代处理器中晶体管体积的减小成为计算机性能改进的关键所在。然而,这种不断的减小并不能够持续很长的时间。如果晶体管变得太小,那种对量子机械的未知影响将会限制它的性能。因此,看起来这些影响会限制我们的计算机技术,它们真的会吗?在1982年,诺贝尔奖获得者--物理学家Richard Feynman想出了“量子计算机” 的概念,那是一种利用量子机械的影响作为优势的计算机。有一段时间,“量子计算机”的想法主要仅仅停留在理论兴趣阶段,但最近的发展令这个想法引起了每一个人的注意。其中一个进步就是一种在量子计算机上计算大量数据的算法的发明,由Peter Shor(贝尔实验室)设计。通过使用这种算法,一台量子计算机破解密码可以比任何普通(典型)计算机都要快。事实上,一台能够实现Shor算法的量子计算机能够在大约几秒内破解当今任何密码技术。在这种算法的推动下,量子计算机的话题开始集中在动力上,全世界的研究人员都争当第一个制造出实用量子计算机的人。 1.1量子计算机的基本要素 在计算机的经典模型中,最基础的构建要素--比特,只能存在于两种截然不同的状态之一:0或是1。在量子计算机中,规则改变了。一个原子比特--经常被简称为“量比”(quantum bit) --不仅仅存在于传统的0和1状态中,还可以是一种两者连续或重叠状态。当一个量比处于这种状态时,它可以被认为存在于两种领域中:一种为0,而另外一种为1。一个基于这种量比的操作能够同时有效地影响两个值。因此,极为重要的一点是:当我们在量比上实行单一操作时,我们是在针对两种不同的值进行的。类似的,一个双量比系统能对4个值进行操作,而一个三量比系统就是8个值。因此,增加量比的数目能够以指数方式增加我们从系统获得的“量子并行效应”(量子并行效应)。在拥有正确算法类型的情况下,它能通过这种并行效应以远低于传统计算机所花费的时间内解决特定的问题。 1.2量子计算机的缺点--(电子)脱散性

量子化学习题及答案

量子化学习题及答案

1.1998及2013年度诺贝尔化学奖分别授予了量子化学以及分子模拟领域的杰出贡献者,谈谈你的了解及认识。 答:1998年诺贝尔化学奖得主:瓦尔特·科恩和约翰·波普尔。1964-1965年瓦尔特·科恩提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。沃尔特·库恩的密度泛函理论对化学作出了巨大的贡献。约翰·波普尔发展了化学中的计算方法,这些方法是基于对薛定谔方程中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。 2013年诺贝尔化学奖得主:马丁·卡普拉斯、迈克尔·莱维特、阿里耶·瓦谢勒。他们为复杂化学系统创立了多尺度模型。为研发了解和预测化学过程的强有力的计算机程序奠定了基础。对于今天的化学家来说,计算机就像试管一样重要。模拟过程是如此的真实以至于传统实验的结果也能被计算机预测出来。多尺度复杂化学系统模型的出现无疑翻开了化学史的“新篇章”。化学反应发生的速度堪比光速。刹那间,电子就从一个原子核跳到另一个原子核,以前,对化学反应的每个步骤进行追踪几乎是不可能完成的任务。而在由这三位科学家研发出的多尺度模型的辅助下,化学家们让计算机做“做帮手”来揭示化学过程。20世纪70年代,这三位科学家设计出这种多尺度模型,让传统的化学实验走上了信息化的快车道。 2.谈谈你对量子化学中两种流派(VBT,MOT)的认识。 答:1926年,奥地利物理学家薛定谔(Schrodinger)建立了描述电子运动规律的波动方程。1927年,海尔特(Heilter)和伦敦(London)在处理氢分子结构时首次采用两个氢原子基态电子波函数的乘积表示电子对键,通过共振结构波函数的线性组合获得薛定谔方程的解,标志着价键理论的诞生。1931年,鲍林(Pauling)建立了较为完善的电子对键与杂化轨道理论模型,随后以电子配对形成定域化学键为核心思想的价键理论,凭借其既直观又能定量计算的优势,得以在化学领域迅速推广应用。他也因此获得了1954年的诺贝尔化学奖。但是VB理论做出的某些预言不正确。比如简单的VB模型错误地预言了环丁二烯(以及其它含四元环的)有较大的共振能。事实上是简单的休克尔MO(HMO)理论过分地强调了4n与(4n+2)环之间的区别。正确的共振能结果是MO和VB预言的中间值。此外,由于选用非正交的原子轨道为基函数,计算量大,曾一度停滞不前,但随着计算机的发展这种理论进入复兴期。 1932年美国化学家莫立肯(Mullikeen)和德国化学家洪特(Hund)从不同于价键理论的角度提出了分子轨道(MO)理论。并获得1966年诺贝尔化学奖。罗汤(Roothaan)和美国化学家哈尔(Hall)各自独立地为自洽场(SCF)计算方法学完成了原子轨道线型组合型(LCAO)数学框架。从此分子轨道的数学计算得以实现并得到了广泛的应用。此后,20世纪50年代日本化学家福井谦一的前线轨道理论和美国化学家杜瓦(Dewer)的微扰分子轨道理论(PMO)以及60年代中期美国化学家伍德沃德·霍夫曼(Woodward·Hoffman)的分子轨道对称守恒原理的提出,使该理论可以定性地对化学反应的结果做出预言。福井谦一和霍夫曼双双获得1981年诺贝尔化学奖。 在处理具体分子中,这两种理论所用的原始基函数——原子轨道是同样的,并且都是用变分法来处理。所不同的仅在于MOT先经过了一次基函数的组合,把它变为非定域的基函数;而VBT则直接使用原始基函数。严格计算,其结果是一样的。两种理论的结果差别完全是由于实际计算中引入了不同的近似所造成的。对一般分子的定性解释,两种理论的结果往往是一样的。 3.试了解中国量子化学发展状况。 答:解放前,在旧中国科学研究不受重视,因而量子化学这个领域几乎是个空白点。1949-1959:所研究的问题比较集中在分子的内旋转、杂化轨道理论、分子间作用力、小分子的分子轨道计算、多电子键函数等问题。六十年代中期:对配位场理论方法开展研究,获得了重要成果。1966年以后,“四人帮”的干扰,量子化学的研究被迫停止了一个时期。七十年代:课题主要集中在分自1978年科学大会以来,有了更大的发展。特别是结合电子计算机的应用,量子化学应用研究从无到有,由小到大,有了更为明显的发展。子轨道理论方面。在轨道对称守恒原理、分子轨道图形理论、几何剖析法课题

量子计算机的发展现状与趋势_王建锋

高教论坛 量子计算机的发展现状与趋势 王建锋 (郑州大学体育学院体育教育系,河南郑州450000) 量子信息科学引入后,重新对计算、信息编码与处理进行了诠释。作为一门高效处理信息的学科,量子信息体现了科技的进步。该 学科融入了多个学科,包括信息科学、 物理学,以及材料学。因此,与传统的计算相比,也具有更强大的生命力。可以看出,自从应用量子 信息科学后,使计算机的更加安全,并且提高了通信的质量。 尽管量子计算机尚在初步发展阶段,但是该学科具有很大的发展潜力。因此,对量子计算机的发展现状与趋势进行探讨非常有必要。 1量子计算机的发展现状1.1研究概况(1)拓扑量子计算。 拓扑量子计算方案由一位数学物理学家提出。根据拓扑量子不受扰动的特点,完成量子计算机的构造。在此基础上,进行容错量子的计算。当前,该计算已经引起了国内外的重视。世界上很多大学已经开始了理论与实验方面的研究。在进行拓扑量子计算时,每个子都有几下几个特点。第一,有很多准例子,分为不同的类型,其作用是进行信息的初始化。第二,当每个子进行交换时,只要满足辫群规 则,就能实现拓扑量子门。 然后,完成信息的处理。第三,在拓扑量子计算中,不用考虑环境影响的因素。所以,保证了处理的准确性。当前,美国已经根据相关研究,成功建立了基本的量子位。 (2)单向量子计算。 单向量子是一种新的途径。该计算采用了量子的纠缠态、经典通信,以及局域操作,来传递非局域作用,继而实现等价的非局域哈密顿量功能。所以,成功建立了一种高度纠缠的状态。该状态被称为图态。利用相邻的量子比特进行LOCC过程,可以完成出发端量子比特的逻辑门操作。根据以上原理,有助于完成电路的设计。可以看出,如何高效的转换量子比特数目图态是其模型计算的难点。 (3)绝热量子计算。 绝热量子计算的核心思想是:依靠绝热演化的性能,来等效实现量子玄正的变换。当表现为绝对零度时,系统则处于初始状态。此时,如果不存在能级交叉的现象,那么在理论上来将,系统就会保持基态。但是,在系统演化前后,基态就存在玄正变换的关系。在这种情况下,则可以根据绝热的过程,来实现量子计算。以上方案既有优点,也有缺陷。其优点在于保证系统处于基态。其缺陷为能隙缩小,延长了绝热演化的时间。针对以上问题,采用量子仿真技术就可以解决。该技术的应用,促进了科技的快速发展。 1.2实验进展(1)量子点体系。 量子点体系是在微加工方法的基础上,利用半导体二维电子气,然后成功研制出单电子晶体管。该体系符合量子力学规律,代表了未来量子计算机发展的方向。近年来,国际上多个单位通过研究,在这方面取得了很大进展。研究表明,当半导体量子点具备一定条件后,就可以作为量子芯片。尽管如此,量子芯片在应用的过程中,还存在很大的问题,比如受到周边环境影响较大。鉴于此,在未来的研究中,必须加大力度。 (2)超导量子电路。 该量子计算的核心是Josephson。根据不同的表征量子比特,将其分为三个类型,分贝是电荷、相位,以及磁通。研究表明,该量子电路的特点包括以下两个方面。一方面,利用量子电路结构,能够完成 电路的设计、制定。同时,也可以完成对磁通信号的调整、控制。另一 方面,根据当前的微电子制造工艺,提高了该量子电路的拓展性。 (3)离子阱体系。离子阱体系诞生后,首先实现了量子计算。当前,经过不断的研究,该体系已经在实验方面,取得了很大的进展,其水平非常高。近年来,主要的研究方向为:提高量子操控的单元技术、体系的拓展 等。 调查显示,美国已经启动了相关的计划,预计能够取得更大的研究成果。 2量子计算机的发展趋势近年来,美国实施了研究量子芯片的计划。该计划是时候,不仅推动了量子计算机的研究,而且加大了竞争。随着半导体芯片的快速发展,其晶体管的尺寸也不断减少。目前,与单位流感病毒的大小差不多。其次,晶体管的数目也逐渐减少,量子效应不断增强。在传统模式下,能够达到控制电子的物理极限。当单位晶体管只能容纳一个电子时,也必然满足量子学的规律。可以看出,芯片在发展的过程中,很大程度上依赖于新一代的量子力学计算芯片。随着半导体 微电子技术被突破后,就出现了量子芯片。 美国竞争力计划推行后,代表了量子芯片的实际应用。由于量子芯片与国家安全、产业安全息息相关,美国相关负责人已经将芯片科技提到重要战略位置。受美国的影响,日本、欧共体等也启动了相关的计划,引发了新的计算机技术竞争。目前,在新的发展形势下,给我国电子个工业也带来了机遇和挑战。因此,我们必须抓住机遇,稳步推行量子调控计划。只有这样,才能在未来不受制于人,实现信息技术的革新。调查显示,近年来,通过不懈的努力,我国已经加快了量子信息技术的发展,并取得了很大成绩。表现为:在多光子纠缠、量子密码技术方面,取得了很大的进展和突破。但是,与西方国家相比,我国的研究基础还很薄弱,缺乏原创性的成果,总体水平还不高。特别是在量子计算机学科主流方向上,与西方国家存在很大的差距。鉴于此,我国需要迫切开展更富有挑战性的量子计算机计划,同时不断壮大科研队伍,保证技术方面的支撑。只有加强基础建设,才能实现新一轮的突破,在国际竞争中抢占制高点。 随着社会、经济的快速发展,量子计算机以强大的计算能力,得到了广泛的应用。可以看出,在未来的发展中,量子计算机必然在世界领域内,占有一席之地。尽管如此,该体系在运作的过程中,依然存在很多问题。因此,世界各国需要加大研究的力度,不断创新技术,完善体系,以此来获得更大的研究成果。 参考文献 [1]邹奕成,毛杰.量子计算机的发展[J].科教导刊:电子版,2016(24):131-131.[2]刘超,梁丽,徐亮.计算机的发展趋势分析[J].产业与科技论坛,2013,12(2):91-92.[3]潘斌辉,孔外平.量子计算机的发展现状与趋势[J].中国科学院院刊,2010,25(5):4-8.[4]马宏源,李伟.量子计算机的研究与发展[J].北京电力高等专科学校学报:社会科学版,2010,27. 作者简介:王建锋(1974-),男,汉族,籍贯:河南省登封市大金店镇金东村,学士学位,讲师,研究方向:计算机。 摘要:与传统的计算工具相比,量子计算机更加先进。应用该工具后,在处理数据上发挥了更强大的功能,解决了以往比较困难的 数学问题。基于此, 引起了世界各国的重视。本文结合实际的工作经验,对量子计算机的发展现状进行了分析。然后,提出了在未来的时代中,量子计算机的发展趋势。 关键词:量子计算机;发展;现状;趋势;分析57··

量子计算的发展讲解学习

量子计算的发展

量子计算的发展 摘要:量子计算是量子力学的新进展,它是一种和传统的计算方式迥然不同的新型计算.其概念是全新的,它将使计算技术进入一种前所未有的新境界。对于某些问题,量子计算机可以达到常规计算机不能达到的解题速度.量子计算机可以解决常规计算机不能解决的某些问题量子计算由于其强大的并行计算能力和可以有效的模拟量子行为的能力而日益受到人们的关注。本文介绍了量子计算的含义及其基本原理,以及对于未来量子计算的发展前景。 关键词:量子计算;量子计算机;量子位

目录 引言 (4) 1基本概念 (4) 1.1量子计算 (4) 1.2量子计算机 (4) 1.3量子位 (5) 2.量子计算的原理 (6) 2.1量子叠加性 (6) 2.2量子纠缠 (7) 3.量子计算的发展 (7) 3.1中期发展 (7) 3.2发展前景 (8)

量子计算的发展 引言 自MaxPlanck在1900年提出量子假说以来,量子力学给人类生活带来翻天覆地的变化,改变了经典物理学对世界的认知方式。量子计算和量子计算机概念起源于著名物理学家Feynman,是他在1982年研究用经典计算机模拟量子力学系统时提出的。1985年Deutsch提出第一个量子计算模型即图灵机,量子计算才开始具备了数学的基本型式。由此,量子计算迅速吸引了全世界研究者的注意并成为一门具有巨大潜力的新学科。 1. 基本概念 1.1量子计算 量子计算是应用量子力学原理来进行有效计算的新颖计算模式,它利用量子叠加性、纠缠性和量子的相干性实现量子的并行计算。量子计算从本质上改变了传统的计算理念。 1.2.量子计算机

量子计算和量子信息(量子计算部分,Nielsen等着)6

6.1 当x=0时有(2|0><0|-I )|x>=|0> 当x>0时有(2|0><0|-I )|x>=-|x> 所以2|0><0|-I I 即为相移算子 6.2 |φ><φ|=1/N Σ i =0 N?1Σ j =0 N?1|i><φ|-I )Σ k =0N?1 a k |k>=2/N Σi =0 N?1Σ j =0 N?1|i>-Σk =0 N?1a k |k> 而|i>,|j>,|k>都经过标准归一化,所以当|j>=|k>时,有|j>!=|k> 时,有|j>-Σ k =0 N?1a k |k>=Σ k =0 N?1[-a k +]|k> 其中=Σ k =0 N?1a k N 6.3 (此处为验证Grover 迭代能写成以下矩阵形式) |φ>=cos(θ/2)|α>+sin(θ/2)|β>写成向量形式为[cos(θ/2) sin(θ/2)]T 所以G|φ>= cos θ?sin θsin θ cos θ cos(θ/2)sin(θ/2) = cos(3θ/2) sin(3θ/2) =cos(3θ/2)|α>+sin(3θ/2)|β> 所以Grover 迭代能写成G= cos θ ?sin θsin θ cos θ 6.4 按照书上只有一解的过程,对于多解只能测量出所有解的和 6.5 6.6 (⊙为张量积符号 X 为PauliX 门, Z 为PauliZ 门) 框中的门可以表示为 (X ⊙X)(I ⊙H )(|0><0|⊙I+|1><1|⊙X )(I ⊙H)(X ⊙X) =X|0><0|X ⊙XHHX+X|1><1|X ⊙XHXHX(HXH=Z) =|1><1|⊙I +|0><0|⊙(-Z) =(I -|0><0|)⊙I +|0><0|⊙(I-2|0><0|)

量子化学计算

物理化学专业博士研究生课程 教学大纲 课程名称:量子化学计算(Computational Quantum Chemistry) 课程编号:B07030411 学分:3 总学时数:72 开课学期:第2学期 考核方式:学习论文 课程说明:(课程性质、地位及要求的描述)。 《量子化学计算》是在学习了《结构化学》、《量子化学》之后,为物理化学专业博士研究生开设的一门方向课,在每学年第二学期讲授。 如果说《结构化学》、《量子化学》还有更多的抽象,那么《量子化学计算》则直接对各研究体系进行可与实验对比的计算机模拟。近二十年来,随着计算机硬件和软件水平的迅速发展,计算化学已成为理论化学的重要分支,主要通过量子化学方法、分子力学方法以及分子动力学模拟来解决与化学相关的问题。目前,计算化学已广泛应用于化学及相关交叉学科的各个领域,迅速成为定量预测分子的结构、性质以及反应性能的有力工具。 本课程计划安排72个学时。采用授课与上机演习相结合的教学方法,使学生在较短时间内掌握当今国际流行的常用计算软件的原理、使用方法及技巧,着重培养同学们解决化学实际问题的能力。要求同学们通过本课程的学习,能对计算化学的原理和方法有一个初步的了解,并能够在化学合成、反应机理、生物、材料等各个领域中得到应用。 教学内容、要求及学时分配: 第一章绪论 内容: 1.1量子力学历史背景 1.221世纪的理论化学计算机模拟

要求:了解量子化学的背景知识、国际国内发展现状及其未来方向学时:4 第二章从头计算法的基本原理和概念 内容: 2.1量子力学基本假设2.2定态近似 2.3从头计算法的“头” 2.4自洽场方法2.5变分法和LCAO-MO近似 2.6量子化学中的一些基本原理和 概念 2.7量子化学中的基本近似 要求:了解从头计算法的基础知识、计算化学中的一些基本原理、概念和近似。 学时:12 第三章布居分析和基组专题 内容: 3.1布居分析 3.2基组专题 要求:理解基组概念及选择的原则,掌握布居分析的计算方法和基组的计数,了解Mulliken布居分析的优缺点及改进的思路。 学时:6 第四章计算方法简介 内容: 4.1半经验方法 4.2HF方法 4.3Post-HF方法 4.4DFT方法 4.5SCF-X 方法 4.6精确模型化学理论方法——Gn 和CBS 4.7赝势价轨道从头计算法 4.8激发态的计算——CIS和CAS 4.9溶剂效应 4.10分子力学和分子动力学基础 要求:了解一些常用计算方法的基本原理及优缺点,重点掌握AM1、INDO、MNDO/PM3、HF、MP、CI、CC、DFT、CAS、溶剂效应等方法的原理,掌握选择计算方法的思路和原则。

量子化学理论与软件介绍

量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理与量子化学的标准之一。 主要分为:①分子轨道法(简称MO法,见分子轨道理论);②价键法(简称VB法,见价键理论);③密度泛函理论。以下只介绍分子轨道法。 ①分子轨道法:分子体系中的电子用单电子波函数满足Pauli不相容原理的直积(如Slater 行列式)来描述,其中每个单电子波函数通常由原子轨道线性组合得到(类似于原子体系中的原子轨道),被称作分子轨道,分子轨道理论是目前应用最为广泛的量子化学理论方法。 o HF方法:它是原子轨道对分子的推广,即在物理模型中,假定分子中的每个电子在所有原子核和电子所产生的平均势场中运动,即每个电子可由一个单电子函数(电子的坐标的函数)来表示它的运动状态,并称这个单电子函数为分子轨道,而整个分子的运动状态则由分子所有的电子的分子轨道组成(乘积的线性组合),这就是分子轨道法名称的由来。分子轨道法的核心是哈特里-福克-罗特汉方程,简称HFR方程,它是以三个在分子轨道法发展过程中做出卓著贡献的人的姓命名的方程。1928年D.R. 哈特里提出了n个将电子体系中的每一个电子都看成是在由其余的n-1个电子所提 供的平均势场中运动的假设。这样对于体系中的每一个电子都得到了一个单电子方程(表示这个电子运动状态的量子力学方程),称为哈特里方程。使用自洽场迭代方式求解这个方程(见自洽场分子轨道法),就可得到体系的电子结构和性质。哈特里方程未考虑由于电子自旋而需要遵守的泡利原理。1930年,B.A.福克和J.C.斯莱特分别提出了考虑泡利原理的自洽场迭代方程,称为哈特里-福克方程。它将单电子轨函数(即分子轨道)取为自旋轨函数(即电子的空间函数与自旋函数的乘积)。泡利原理要求,体系的总电子波函数要满足反对称化要求,即对于体系的任何两个粒子的坐标的交换都使总电子波函数改变正负号,而斯莱特行列式波函数正是满足反对称化要求的波函数。将哈特里-福克方程用于计算多原子分子,会遇到计算上的困难。C.C.J.罗 特汉提出将分子轨道向组成分子的原子轨道(简称AO)展开,这样的分子轨道称为原子轨道的线性组合(简称LCAO)。使用LCAO-MO,原来积分微分形式的哈特里-福克方程就变为易于求解的代数方程,称为哈特里-福克-罗特汉方程,简称HFR 方程。 o CI方法:组态相互作用(Configuration Interaction)方法。用HF自洽场方法计算获得的波函数和各级激发的波函数为基展开体系波函数。完全的组态相互作用(Full-CI)是指定基组下最精确的方法,但其计算量约以基函数的阶乘规模增加,目前仅限于对小分子作为Benchmark以检测其他方法的可靠性,在实际应用中常采用截断CI方法,如

未来计算机的发展趋势

未来计算机的发展趋势 目前,中间件技术已经发展成为企业应用的主流技术,如交易中间件、消息中间件、专有系统中间件、面向对象中间件、数据存取中间件、远程调用中间件等。 随着计算机应用的广泛和深入,又向计算机术本身提出了更高的要求。要起提高计算机的工作速度和存储量,关键是实现更高的集成度。传统的计算机的芯片是用半导体材料制成的,这在当时是最佳的选择。但随着集成的提高,它的弱点也日益显现出来。专家们认识到,尽管随着工艺的改进,集成电路的规模越来越大,但在单位面积上容纳的元件有限的,在1毫米见的硅片上最多不能超过25万个,并且它的散热、防漏电等因素制约着集成电路的规模,现在的半导体芯片发展即将达到理论上的极限。因此,有人预测现行的计算机系统将在2010年遇到无法逾越的障碍。为此,世界各国研究人员正在加紧研究开发新一代计算机,从体系结构的变革到器件与技术革命都要产生一次量的乃至质的飞跃。计算机的发展趋势表现为4种,即巨型化、微型化、网络化和智能化。未来新一代的计算机可分为模糊、量子、超导、光子和DNA5种类型。 1计算要的发展趋势 1)巨型化 巨型化是指计算机速度更快、存储容量更大、功能更强、可靠性更高的计算机。其运算能力一般在每秒百亿次以上,存容量在几百G字节以上。巨型计算机主要用于尖端科学技术和军事国防系统的研究开发。巨型计算机的发展集中体现了计算机科学技术的发展水平。

2)微型化 微型化是指发展体积更小、功能更强、可靠性更高、携带更便、价格更便宜、适用围更广的计算机系统。因为微型机可渗透到诸如仪表、家用电器、导弹弹头等中、小型机无法进入的领域,所以20世纪80年代以来发展异常迅速。预计微型机性在一起,今后将逐步发展到对存储器、通道处理机、高速运算部件、图形卡、声卡的集成,进一步将系统的软件固化,达到整个微型机系统的集成。 3)网络化 网络化是指利用通信技术,把分布在不同地点的计算机互联起来,按照网络协议相互通信,以达到所有用户都可共软件、硬件和数据资源的目的。目前计算机联网已经非常普遍,但是计算机网络化仍然有多工作要做。如网络上资源虽多,利用却并不便;联网的计算机虽多,计算机特别是服务器的利用率并不高;网络虽然便,但是却不安全,等等。计算机网络化在提供便、及时、可靠、安全、高效的信息服务面还有很多的工作要做。 目前各国在开发三网合一的系统工程,即将计算机网、电信网和有线电视网合为一体。将来通过网络能更好地传送数据、文体资料、声音、图形和图像,用户可随时随地在全世界围拨打可视和收看任意的电视和电影。 4)智能化 5)智能化是指让计算机具有模拟人的感觉和思维过程的能力。智能计算机具有解决问题和逻辑推理的功能,以及知识处理和知识库管理的功能等。 人与计算机的联系是通过智能接口,用文字、声音、图像等与计算机自然对话。智能化的研究领域很多,其中最有代表性的领域是专家系统和

浅谈未来计算机的发展趋势

龙源期刊网 https://www.360docs.net/doc/8015718664.html, 浅谈未来计算机的发展趋势 作者:陈作帆章珺 来源:《财讯》2016年第16期 自从进入21世纪之后,我国的经济水平不断发展,各项科学技术也日益完善,作为一门全新的科学技术,计算机软件通过多年的发展,如今已经取得了十分辉煌的成就。计算机是由硬件和软件两个部分组成而成的。在逻辑功能上,计算机软件本身提供逻辑语言,这对于计算机工作的控制以及应用都更为快捷高效。因为这个原因,计算机的软件技术开发对于计算机的未来发展可以说是至关重要的。 计算机将具备更多的智能成分,它将具有多种感知能力、一定的思考与判断能力及一定的自然语言能力。除了提供自然的输入手段(如语音输入、手写输入)外,让人能产生身临其境感觉的各种交互设备已经出现,虚拟现实技术是这一领域发展的集中体现。 传统的磁存储、光盘存储容量继续攀升,新的海量存储技术趋于成熟,新型的存储器每立方厘米存储容量可达10TB(以一本书30万字计,它可存储约1500万本书)。信息的永久存储也将成为现实,千年存储器正在研制中,这样的存储器可以抗干扰、抗高温、防震、防水、防腐蚀。 未来计算机发展前景 新型计算机系统不断涌现 硅芯片技术的高速发展同时也意味着硅技术越来越近其物理极限,为此,世界各国的探究职员正在加紧探究开发新型计算机,计算机从体系结构的变革到器件和技术革命都要产生一次量的乃至质的奔腾。新型的量子计算机、光子计算机、生物计算机、纳米计算机等将会在21 世纪走进我们的生活,遍布各个领域。 (1)量子计算机 量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开和关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算。 量子计算机中数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此一个量子位可以存储2个数据,同样数目的存储位,量子计算机的存储量比通常计算机大很多。同时量子计算性能够实行量子并行计算,其运算速度可能比目前个人计算机的PentiumⅢ晶片快10亿倍。目前正在开发中的量子计算机有3种类型:核磁共振(NMR)量子计算机、硅基半导体量子计算机、离子阱量子计算机。预计2030年将普及量子计算机。

量子计算发展现状报告

量子计算发展现状报告 量子计算是基于量子力学的新型计算方式,利用量子叠加和纠缠等物理特性,以微观粒子构成的量子比特为基本单元,通过量子态的受控演化实现计算处理,理论上具有经典计算无法比拟的巨大信息携带和超强并行处理能力。 量子计算研究始于上世纪80年代,目前已进入工程实验验证和原理样机攻关阶段。量子计算包含量子处理器、量子编码、量子算法、量子软件等关键技术。量子处理器的物理实现是当前阶段的核心瓶颈,包含超导、离子阱、硅量子点、中性原子、光量子、金刚石色心和拓扑等多种技术路线,近期均取得一定进展。目前,量子计算物理平台中的超导和离子阱路线相对领先,但尚无任何一种路线能够完全满足量子计算技术实用化条件实现技术收敛。为充分利用每种技术的优势,未来的量子计算机也可能是多种路线并存的混合体系。 量子优越性(QuantumSupremacy)的概念由教授首先提出,指量子计算在某一个计算问题上,相比经典计算机可实现指数量级运算能力的加速,从而真正体现量子计算技术的原理性优势。实现量子优越性的研究成果基于53位量子比特的超导处理器,在解决随机量子线路采样特定计算问题时,具有远超过现有超级计算机的处理能力。此项研究成果是证明量子计算原理优势和技术潜力的首个实际案例,具有重要的里程碑意义,这一热点事件所引发的震动和关注,将进一步推动全球各国在量子计算领域的研发投入、工程实践和应用探索,为加快量子计算机的研制和实用化注入新动力。 现阶段量子计算的发展水平距离实用化仍有较大距离。量子计算系统非常脆弱,极易受到材料杂质、环境温度和噪声等外界因素的影响而引发退相干效应,使计算准确性受到影响,甚至计算能力遭到破坏。同时,可编程通用量子计算机需要大量满足容错阈值的物理量子比特进行纠错处理,降低退相干效应影响,获得可用的逻辑量子比特。现有研究报道中的物理量子比特数量和容错能力与实际需求尚有很大差距,逻辑量子比特仍未实现。通用量子计算机的实用化,业界普遍预计将需十年以上时间。 在量子计算领域,各国近年来持续大力投入,已形成政府、科研机构、产业和投资力量多方协同的良好局面,并建立了在技术研究、样机研制和应用探索等方面的全面领先优势。领先国家之间通过联合攻关和成果共享,形成并不断强化联盟优势。 初创企业是量子计算技术产业发展的另一主要推动力量。初创企业大多脱胎于科研机构或科技公司,近年来,来自政府、产业巨头和投资机构的创业资本大幅增加,初创企业快速发展。目前,全球有百余家初创企业,涵盖软硬件、基础配套及上层应用各环节。 尽管量子计算目前仍处于产业发展的初期阶段,但军工、气象、金融、石油化工、材料科学、生物医学、航空航天、汽车交通、图像识别和咨询等众多行业已注意到其巨大的发展潜力,开始与科技公司合作探索潜在用途,生态链不断壮大。多

量子计算机技术发展对信息安全技术带来的影响研究汇报

量子计算机技术发展对信息安全技术带来的影响研究汇报 1、量子计算机技术的发展将会给信息安全技术带来颠覆性的影响。 a 、量子计算机运算速度比经典计算机快,而且相差的是指数级别。 量子计算机与经典计算机的不同之处在于:经典计算机每输入一个数据位(比特),都是确切的二进制0或者二进制1。而量子计算机每输入一个数据位(量子比特),却是二进制0和1的叠加态,记为a|0>+b|1>。这相当于可以这样理解,在只有一个数据位的情况下,每进行一次操作,经典计算机只进行了一次运算,而量子计算机进行了两次运算;以此类推,在有两个数据位的情况下,每进行一次操作,经典计算机只进行了2次运算,而量子计算机进行了次运算;而在在有三个数据位的情况下,每进行一次操作,经典计算机只进行了3次运算,而量子计算机进行了次运算。由此可见,在同样的操作次数和相同的数据位数情况下,量子计算机的运算次数等同于经典计算机的指数倍。 b 、目前计算机通信的安全体系主要依赖的加密解密算法在理论上可 以被量子计算机所破解。 计算机通信在技术层面的安全体系主要依赖于加密解密算法,典型的加密解密算法有RSA ,AES 等等。它们的原理是基于大数分解质因数比较困难这一事实为基础。就是说,在经典计算机的条件下,要把大数分解为质因数,花费时间较长,即使分解出来了,也没有了时效性,因此等同于不能分解。而量子计算机的运算速度等同于经典计算机的指数倍,用量子计算机来分解大数的质因2232

数在很短的时间内就可以实现。 2、量子计算机实现后的计算机通信安全体系重构的预测。 量子计算机采用特定的算法(shor算法)虽然能够破解当前所有的加密解密算法,但是,基于量子力学的量子通信技术所依赖的物理学原理,却可以抵御住量子计算机的破解。正所谓以己之矛攻己之盾。 举个典型的例子说明,基于量子纠缠的量子密钥分发,能实现一次一密的完全随机的密钥分发。而在密码学基本原理中,一次一密的完全随机的密钥分发是是任何算法都不能破解的。因此,基于量子纠缠的量子密钥分发,即使在真正通用的量子计算机出来后,也是可以抵御它的破解的。 并且,基于量子力学的通信技术,例如E91协议,BB84协议,量子隐形传态等通信技术,可以让窃听者无法窃听信息(根据量子力学物理学原理,一旦有人窃听信息,接收方就会收到乱码,从而识别出有人在窃听信息)。从而保证通信的安全。

2019年计算机发展历史的四个阶段

2019年计算机发展历史的四个阶段 篇一:计算机发展的四个阶段 计算机技术发展的四个阶段 第一代电子计算机 第一台电子管计算机于1946年在美国制成,取名埃尼阿克(ENIAC)。在美国宾夕法尼亚大学诞生的。世界上第一台电子计算机是个庞然大物:重30吨,占地150平方米,肚子里装有18800只电子管。 1.第一代计算机:电子管数字计算机(1946-1958年) 硬件方面,逻辑元件采用电子管,主存储器采用汞延迟线、磁鼓、磁芯;外存储器采用磁带。软件方面采用机器语言、汇编语言。应用领域以军事和科学计算为主。特点是体积大、功耗高、可靠性差、速度慢(一般为每秒数千次至数万次)、价格昂贵,但为以后的计算机发展奠定了基础。 2.第二代计算机:晶体管数字计算机(1958-1964年)

硬件方面,逻辑元件采用晶体管,主存储器采用磁芯,外存储器采用磁盘。软件方面出现了以批处理为主的操作系统、高级语言及其编译程序。应用领域以科学计算和事务处理为主。并开始进入工业控制领域。特点是体积缩小、能耗降低、可靠性提高、运算速度提高(一般为每秒数十万次,可高达300万次)、性能比第一代计算机有很大的提高。 3.第三代计算机:中、小规模集成电路数字计算机(1964-1970年) 硬件方面,逻辑元件采用中、小规模集成电路,主存储器仍采用磁芯。软件方面出现了分时操作系统以及结构化、规模化程序设计方法。特点是速度更快(一般为每秒数百万 至数千万次)。而且可靠性有了显著提高,价格进一步下降,产品走向通用话、系列化和标准化。应用领域开始进入文字处理和图形图像处理领域。 4.第四代计算机:大规模集成电路计算机(1970年至今)硬件方面,逻辑元件采用大规模和超大规模集成电路,软件方面出现了数据库管理系统、网络管理系统和面向对象语言等。特点是1971年世界

量子化学复习提纲

量子化学复习提纲 1 量子力学QM与分子力学MM 研究化合物的结构和性能,可以从两个层次:宏观层次和微观层次。宏观层次就是我们熟悉的实验观测;微观则是计算分子结构。计算分子结构基本上可以分为两种方法:量子力学(Quantum Mechanics)和分子力学(Molecular Mechanics) 量子力学是计算电子波函数的,计算电子波函数就要解薛定谔方程,简称S方程。通过核和电子的相互作用原理和规律等,运用量子力学原理,经过近似处理直接求解S方程得到电子波函数,从而求得电子总能和分子结构,我们称为第一性原理(First Principle),狭义的第一性原理计算就是从头算(ab initio),它不采用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。所以说量子力学是纯净无污染的(自己种的苹果)。 分子力学则从另一个方面,其直接计算原子和分子,不计算电子波函数,又叫力场方法(force field method)。它应用的原理是能量最小值方法。即原子间相互作用势下,改变原子(分子)的几何分布,以能量最小为判据,求得体系最佳构型。分子立场方法来源不清,假象的(超市卖的苹果)。 2 薛定谔方程 薛定谔方程HΨ=EΨ。薛定谔方程可以由驻波方程去推导。因为电子本身既是粒子又是波,而驻波的方程恰好可以反应粒子的性质。将驻波方程求二阶微导并与波粒二象性公式联系即可得到S方程。S方程不含自旋,而一个完整的电子波函数应该包括空间波函数和自旋波函数。S方程得到的波函数Ψ是不含自旋的空间波函数。既包括空间波函数也包括自旋波函数的方程是狄拉克方程D方程。 3 能量E 能量包括两部分:动能和势能。S方程中H代表哈密顿算符。H与E对应,所以H应该包括两个算符动能算符+势能算符。动能算符就是拉布拉斯算符(倒三角)作用于(-h2/8π2m) 一个完整的哈密顿算符在具体的电子计算中包括五个部分:电子动能(-)+核动能(-)+电子核吸引势能(-)+电子之间排斥能(+)+核之间排斥能(+),括号内代表值的正负 实际计算中我们都采用B-O近似,也就是玻恩奥本海默近似(绝热近似)。与电子相比,核质量大,基本不动,所以我们把核动能+核之间排斥势视为常数,所以B-O近似下的哈密顿算符就只包括三项。这样就把薛定谔方程分为了两部分乘积:核S方程X 电子S方程。

量子信息与量子计算

关于量子信息与量子计算 量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。 量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。 到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。以目前的技术来看,这其中以离子阱与核磁共振最具可行性。事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。 到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。量子位是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。 一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态( eigenstate ) ( 即基本的量子态)构成基本态空间可用Hilbert 空间( 线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算, Dirac提出用符号x〉来表示量子态, x〉是一个列向量,称为ket ;它的共轭转置( conjugate transpose) 用〈x 表示,〈x 是一个行向量, 称为bra.一个量子位的叠加态可用二维Hilbert 空间( 即二维复向量空间)的单位向量〉来描述 无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相

相关文档
最新文档