微波技术与天线(重点)

微波技术与天线(重点)
微波技术与天线(重点)

微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz(波长1m)至3000GHz(波长0.1m).

微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性.

与低频区别:趋肤效应,辐射效应,长线效应,分布参数。

微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。

集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。

这类电路所涉及电路元件的电磁过程都集中在元件内部进行。用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。

分布参数:

电路是指电路中同一瞬间相邻两点的电位和电流都不相同。这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。

分布参数电路的实际尺寸能和电路的工作波长相比拟。

对于分布参数电路由传输线理论对其进行分析。

均匀传输线方程(电报方程):

t

t z

i

L

t z

Ri

z

t z

u

?

?

+

=

?

?),

(

),

(

),

(,

t

t z

u

C

t z

Gi

z

t z

i

?

?

+

=

?

?),

(

),

(

),

(

传输线瞬时电压电流:

)

cos(

)

cos(

),

(

2

1

z

t

e

A

z

t

e

A

t z

u z

ω

β

ωα

α-

+

+

=-

+

)]

cos(

)

cos(

[

1

),

(

2

1

z

t

e

A

z

t

e

A

Z

t z

i z

ω

β

ωα

α-

+

+

=-

+

特性阻抗:

C

j

G

L

j

R

Z

ω

ω

+

+

=

(无耗传输线R=G=0.)

平行双导线(直径为d,间距为

D):

d

D

Z

r

2

ln

120

=

同轴线(内外导体半径a,b):

a

b

Z

r

ln

60

=

相移常数:

λ

π

ω

β

2

=

=LC

输入阻抗:

)

tan(

)

tan(

1

1

0z

Z

Z

z

Z

Z

Z

Z

inβ

β

+

+

=

反射系数:z j

z

j e

e

Z

Z

Z

Z

β-

=

+

-

=

Γ

1

1

1

)

(

终端反射系数:1

|

|

1

1

1

1

φj

e

Z

Z

Z

Z

Γ

=

+

-

=

Γ

输入阻抗与反射系数关系:)

(1)

(10z z Z Z in Γ-Γ+= 驻波比:||1||111Γ-Γ+=ρ;1

1

||1+-=Γρρ 1. 行波状态

沿线电压电流振幅不变,驻波比为1,终端反射系数0,

传输线上各点阻抗等于传输线特性阻抗。 2. 驻波状态

终端反射系数绝对值等于1

z=[2n 4/λ,(2n+1)4/λ]等效为纯电感, z=[(2n-1)4/λ,2n 4/λ]等效为纯电容, 理想的开路线是在终端开口处接上4/λ短路线

3. 行驻波状态 第一波节/腹点位置

m in z (波节)=4/λ,m ax z (波腹)4/λ,负载

为纯电阻

m ax z (波腹)<4/λ,负载为感性

m in z (波节)<4/λ,负载为容性

波腹点位置:

2

41max λ

φπλn z +=

(n=0,1,2,…) ρ0max Z R =

波节点位置:

2

)12(41min

λφπλ±+=n z (n=0,1,2,…) ρ0max Z R =

2/λ重复性:

输入阻抗和反射系数每隔任意2/λ处相同。

4/λ阻抗变换性:任意距离为4/λ的两点处

输入阻抗的乘积等于特性阻抗的平方。 阻抗匹配:负载阻抗匹配,源阻抗匹配,共轭阻抗匹配

1. 4/λ阻抗变换器法

1

2

01

10101101)4/tan()4/tan(R Z R Z Z R Z Z in =

++=βλβλ 若是复阻抗,需在负载与变换器之间加一

段传输线l1,使变换器的终端变成纯电阻Rx 。

2.串联支节调配器

1||11

00

11φj e Z Z Z Z Γ=+-=

Γ ||1||111Γ-Γ+=ρ; 11max 4φπ

λ

=l 一组解:

ρ

πλ1arctan 2'1=

l ρ

ρπλ1

arctan 22-=

l 1max '11l l l +=

另一组解:

)1

arctan(2'1ρ

πλ-=

l 1

arctan

242-+=ρρπλ

λ

l 1max '11l l l +=

2.并联调配器

1||11

00

11φj e Z Z Z Z Γ=+-=

Γ ||1||111Γ-Γ+=

ρ; 4

411min λ

φπλ±=l 一组解:

ρ

πλ1arctan 2'1=

l ρ

ρ

πλλ

--

=

1arctan 24

2l 1min '11l l l +=

另一组解:

ρ

πλ1

arctan 2'1-

=l ρ

ρ

πλλ

-+

=

1arctan 24

2l 1min '11l l l +=

第二章

波数:μεω=k 工作波长:k πλ2=

λβ,,k :

222)

(11

1122c c k k k λλλπβ

π

-=-=

相速度:βων=p 群速:βωνd d g = 截止波数:22)()(b

n a m k cmn ππ+= 截止波长:

c cmn cTM cTE b n a m k mn

mn

λπλλ=+==

=22)

()(22 波阻抗:

221k k Z c TM -=

ε

μ

2211

k k Z c

TE -=

εμ TE10模场的分布:

)2cos()sin(10π

βωππωμ--=

z t x a H a E y )2

cos()sin(10πβωππβ+-=z t x a H a H x

)cos()cos(10z t x a

H H z βωπ

-=

0===y z x H E E

第三章 微波集成传输线

1.带状线又称三板线,它由两块相距为b 的接地板与中间宽度为w 厚度为t 的矩形截面导体组成。

导带厚度为0时的特性阻抗:

Ω+=

b b

Z e

r 441.0300ωεπ

相速度:r p c εν= 波导波长:

r g ελν0

=

2.微带线 特性阻抗:C

Z p υ1

0=

相速度:LC

p 1=υ

波导波长:r g ελν0=

第三章 微波网络基础

1.单口网络

反射系数:1

)2(1||)(z j e z βφ-Γ=Γ

电压:)](1[)(1z A z U Γ+=

电流:)](1[)(1

z Z A z I e

Γ-=

输入阻抗:)

(1)

(1)(z z Z z Z e in Γ-Γ+= 归一化电流电压:

Y I Z I i Y U Z U u /;/====

2.双口网络

阻抗矩阵[Z]:[U]=[Z][I]

互易网络:2112Z Z =;对称网络:2211Z Z = 导纳矩阵[Y]:[I]=[Y][U]

互易网络:2112Y Y =;对称网络: 2211Y Y = [Z]矩阵和[Y]矩阵关系:1][][-=Z Y

转移矩阵[A]:]][[][2

2

11I U D C B A I U -=

互易网络:AD-BC=1;对称网络:A=D [A]矩阵级联:[A]=]]...[][][[321n A A A A 输入阻抗:D

CZ B

AZ Z in ++=11

反射系数:)

()()

()(111111e e e e in DZ B Z CZ A DZ B Z CZ A +++-+-=

Γ

散射矩阵[S]: ]][[

][2

1

21211211

21a a S S S S b b = 互易网络:2112S S =;对称网络: 2211S S = S11:表示端口2匹配时,端口1的反射系数;

S22:表示端口1匹配时,端口2的反射系数;

S12:表示端口1匹配时,端口2到1的反向

传输系数;

S21:表示端口2匹配时,端口1到2的正向

传输系数; [S]与[z]关系:

1

1])

[]])([[]([][])[]])([[]([][---+=+-=S I S I z I z I z S

[S]与[y]关系:

1

1])

[]])([[]([][])[]])([[]([][--+-=+-=S I S I z y I y I S 传输矩阵[T]: ]][[

][2

2

212112111

1a b T T T T b a

= [T]矩阵的级联:[T]=]]...[][][[321n T T T T [S]参数的测量: 令终端短路,开路,接匹配负载时输入端发射系数分别是m o s ΓΓΓ,,

s

o s

m o s

o m o s m m S S S Γ-ΓΓ+Γ-Γ=

Γ-ΓΓ-ΓΓ-Γ=Γ=2)

)((2;221211

3.多口网络散射矩阵[b]=[S][a]

j i ij a b S /=

名称 电路图 [A]矩阵 [S]矩阵 [T] 矩阵 备注

串联阻抗

]1

1[

Z

]222222[z z z z z z ++++ ]2

12221[z z z z +--

Z Z

z =

并联导纳

]1

01[Y ]222222[y

y y y

y y +-+++- ]2

1222

1[y

y y y +-

- 0

Y Y

y =

理想变压器

]10

0[n

n ]11121211[2222

22n n n n n n

n n +-+++- ]21212121[2

2

22n

n n n n n n n +--+

截线

]

cos

sin

sin

cos

[

θ

θ

θ

θ

Z

j

jZ

]

[

θ

θ

j

j

e

e

-

-

]

[

θ

θ

j

j

e

e

-

g

l

λ

π

θ

2

=

第五章微波元器件

终端负载元件:

短路活塞,劈形吸收片(波导),锥形/梯形吸收体(同轴线),半圆形电阻(微带线)微波连接元件:

法兰盘(波导),衰减元件,相移元件。

阻抗匹配元件:螺钉调配器,多阶梯阻抗变换器

功率分配元器件:定向耦合器,功率分配器,波导分支器

第六章天线辐射与接收基本理论

天线:将来自发射机的导波能量转变为无线电波,或者将无线电波转换为导波能量,用来辐射和接收无线电波的装置。

天线的功能要求:

1.天线应能将导波能量尽可能多的转变为电磁波能量。

2.天线应使电磁波尽可能集中在确定的方向上,或者对确定方向的来波最大限度的接收,即具有方向性。

3.天线应能发射或接收规定极化的电磁波,即天线有适当的极化。

4.天线应有足够的工作频带。

电基本振子:一段长度远小于工作波长,电流I振幅均匀分布,相位相同的直线电流元。

天线的电参数

方向图,主瓣宽度,旁瓣电平,方向系数,天线效率,极化特性,频带宽度,输入阻抗。

按极化形式分类:线极化天线,圆极化天线,椭圆极化天线(圆极化和椭圆极化可以分为左旋和右旋)。

接收天线的方向性要求:

1.主瓣宽度尽可能窄,以抑制干扰

2.旁瓣电平尽可能低。

3.天线方向图最好能有一个或多个可控制的零点,以便将零点对准干扰方向。

第七章地磁波传播概论

视距传播:发射天线和接收天线处于相互

能看的见得视线距离内的传播方式,用于超短波和微波波段。

天波传播:自发射天线发出的电磁波在高空被电离层反射后到达接收点的传播方式,主要用于中波和短波波段。

地面波传播:无线电波沿地球表面传播的方式,用于长波,中波,短波的低频段。散射传播(不均匀媒质传播):电磁波在低空对流层或高空电离层下缘遇到不均匀的介质团时就会发生散射,散射波得一部分到达接收天线。

衰落现象

吸收性衰落:由于传输媒质中电参数的变化,使得信号在媒质中的衰减发生相应的变化而引起的衰落。如冰霜雨雾。

干涉型衰落:由多径干涉现象引起的衰落。传输失真

色散效应:由于不同频率的电磁波在媒质中传播的速度有差别而引起的信号失真。多径传输:无线电波在传播时回通过两个以上不同长度的路径到达接收点,从而引起信号畸变。第七章线天线

对称振子天线的辐射场

θ

β

θ

β

θ

sin

cos

)

cos

cos(

)

(

h

h

F

-

=

λ

π

β/

2

=,令上式等于2

1

求的的两个解之间的夹角即为主瓣宽度。对称振子的辐射电阻

θ

θ

β

θ

β

π

d

h

h

R?-

=

2

sin

]

cos

)

cos

[cos(

60

微波天线论文..

通信工程专业系统实验 RZ9905型 《微波与天线综合实验系统》 论文 学院:信息工程学院 专业:通信工程 组长:00 组员:0 00 通信工程教研室

摘要 在3G通信时代,微波通信系统建设成本低、建设速度快、部署灵活的优点将在3G网络建设中得以充分发挥,从而扩大微波天线在我国的应用范围,形成快速增长的国内市场需求。与此同时,随着无线通信技术PDH,SDH系统与wireless通讯的迅速发展,微波通信天线目前已经在电力、交通、铁路等行业的专用通信网中开始大量使用,微波天线应用范围愈加广泛。在这样的条件下,研究微波通信是非常重要。本次实验《微波与天线实验系统》就是研究微波发送、接收系统的工作原理。实验中对微波系统的每个组件进行测试,最后,完成了微波电视信号单向传输系统的调试。 关键字:微波通信微波天线组件系统

目录 第一部分绪论-------------------------------------------------------------------------------------------------3 (一)背景介绍-----------------------------------------------------------------------------------3 (二)系统特点-------------------------------------------------------------------------------------3 (三)实验目的-------------------------------------------------------------------------------------3 (四)实验内容-------------------------------------------------------------------------------------3 (五)准备知识七管收音机组合电路原理----------------------------------------------------4 第二部分实验准备---------------------------------------------------------------------------------------------5 (一)微波测量仪器介绍---------------------------------------------------------------------------5 (二)系统所含组件原理---------------------------------------------------------------------------5 1 140MHZ 中频振荡器---------------------------------------------------------------------------6 2 微波锁相信号源---------------------------------------------------------------------------------6 3 变频器---------------------------------------------------------------------------------------------6 4 振荡器---------------------------------------------------------------------------------------------7 5 放大器---------------------------------------------------------------------------------------------8 6 滤波器---------------------------------------------------------------------------------------------8 7图像/数据中频调制器---------------------------------------------------------------------------9 第三部分微波系统测试----------------------------------------------------------------------------------------9 (一)微波发送系统-----------------------------------------------------------------------------------9 1原理图----------------------------------------------------------------------------------------------9 2原理简单介绍-------------------------------------------------------------------------------------9 3实验结果-------------------------------------------------------------------------------------------9 4实验分析------------------------------------------------------------------------------------------10 (二)微波接收系统-----------------------------------------------------------------------------------11 1原理图---------------------------------------------------------------------------------------------11 2原理简单介绍------------------------------------------------------------------------------------11 3实验结果------------------------------------------------------------------------------------------11 4实验分析------------------------------------------------------------------------------------------12 (三)微波电视信号单向传输系统-----------------------------------------------------------------12 1原理图---------------------------------------------------------------------------------------------12 2实验结果比较与分析---------------------------------------------------------------------------13 3有线电视与无线电视的主要区别-----------------------------------------------------------13 第四部分微波与天线的应用----------------------------------------------------------------------------------14 1 微波技术的应用与发展-----------------------------------------------------------------------15 2 天线技术的应用与发展-----------------------------------------------------------------------15 第五部分结束语-------------------------------------------------------------------------------------------------16

微波技术与天线课后题答案

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线 1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===?<< 此传输线为短线 1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略 的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其 为分布参数。用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。 1-4 解: 特性阻抗 050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cm B 1=ω C 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ ()()220 1 j z j z i r I z U e U e Z ββ''-'= - 将 22233 20,2,42 i r U V U V z πβλπλ'===?= 代入 3 32 2 3 4 20220218j j z U e e j j j V ππλ-'==+=-+=- ()34 1 2020.11200 z I j j j A λ'== --=- ()()()34 ,18cos 2j t e z u z t R U z e t V ωλπω'=??''??==- ????? ()()()34,0.11cos 2j t e z i z t R I z e t A ωλπω'=??''??==- ????? 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''== ()()()2123 2 1 100j j z z U z e U z e πβ' ' -''== ()() ()() 6 1 1100,100cos 6j U z e V u z t t V ππω'=? ?=+ ?? ?

微波技术与天线考试复习重点(含答案)

微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ 到3000GHZ , 波长从0.1mm 到1m ;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。 2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有 哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线; 以长线为基础的物理现象:传输线的反射和衰落; 主要描述的物理量有:输入阻抗、反射系数、传输系数和驻波系数。 3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解? 6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z 0,传输常数错误!未找到引用源。,相速及波长。 1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值, 其表达式为0Z =它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数j γαβ=+是描述传输线上导行波的衰减和相移的参数,其中,α和β分别称为 衰减常数和相移常数,其一般的表达式为γ=传输线上电压、电 流入射波(或反射波)的等相位面沿传播方向传播的速度称为相速,即 p v ωβ= ;4)传输线上电磁波的波长λ与自由空间波长0λ 的关系2π λβ==。

7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析 三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Z in 定义为该点的电压和电流之比,与导波系统的状态特性无关,10001tan ()tan in Z jZ z Z z Z Z jZ z ββ+=+ 反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为2(2)10110 ()||j z j z Z Z z e Z Z βφβ---Γ==Γ+ 驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。 反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当10Z Z =时,1Γ=0,此时传输线上任一点的反射系数都等于0,称之为负载匹配。 驻波比与反射系数的关系:111||1|| ρ+Γ=-Γ,驻波比的取值范围是1ρ≤<∞;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。 8. 均匀传输线输入阻抗的特性,与哪些参数有关? 9. 均匀传输线反射系数的特性 10. 简述传输线的行波状态,驻波状态和行驻波状态。 11. 什么是行波状态,行波状态的特点 12. 什么是驻波状态,驻波状态的特性 13. 分析无耗传输线呈纯驻波状态时终端可接哪几种负载,各自对应的电压电流分 布 14. 介绍传输功率、回波损耗、插入损耗 15. 阻抗匹配的意义,阻抗匹配有哪三者类型,并说明这三种匹配如何实现?

微波技术与天线傅文斌习题答案第4章

第4章 无源微波器件 4.1微波网络参量有哪几种?线性网络、对称网络、互易网络的概念在其中有何应用? 答 微波网络参量主要有转移参量、散射参量、阻抗参量和导纳参量。线性网络的概念使网络参量可用线性关系定义;对二口网络,对称网络的概念使转移参量的d a =,散射参量的2211S S =,阻抗参量的2211Z Z =,导纳参量的2211Y Y =。互易网络的概念使转移参量的1=-bc ad ,散射参量的2112S S =,阻抗参量的2112Z Z =,导纳参量的2112Y Y =。 4.2推导Z 参量与A 参量的关系式(4-1-13)。 解 定义A 参量的线性关系为 () () ?? ?-+=-+=221221I d cU I I b aU U 定义Z 参量的线性关系为 ?? ?+=+=2221212 2 121111I Z I Z U I Z I Z U ?? ?? ??????-=??????=c d c c bc ad c a Z Z Z Z 1 2221 1211 Z 4.3从I S S =* T 出发,写出对称互易无耗三口网络的4个独立方程。 解 由对称性,332211S S S ==;由互易性,2112S S =,3113S S =,3223S S =。三口网络的散射矩阵简化为 ???? ? ?????=1123 13 231112 131211S S S S S S S S S S 由无耗性,I S S =* T ,即 ?????? ????=????????? ???????????100010001*11*23 *13*23 *11* 12 * 13 * 12* 11 1123 13 2311121312 11 S S S S S S S S S S S S S S S S S S 得

微波原理与技术论文

摘要:微波技术的理论基础是经典的电磁场理论,其目标是解决微波应用工程中的实际问题。微波是一门理论与实践密切结合的一门知识,微波技术理论的出发点是麦克斯维方程组,通过解决微波在传输、处理过程中的遵循的原理,逐渐使微波技术发展成为一门很完整的学科,并在工程上有日新月异的应用。在加热技术上形成一种全新的观念,在通信方面给信息领域带来一场空前的革命。关键词:微波技术;微波加热;通信;电磁波;天线 Abstract The theoretical basis of microwave technique is the classical electromagnetic theory, the goal is to solve the practical problems in microwave engineering. Microwave is a knowledge of a close combination of theory and practice, the theoretical starting point of microwave technology is the Max equations, solved by microwave in transmission, processing process follow the principle, the development of microwave technology has become a very complete discipline, and change rapidly used in engineering. The formation of a new idea in the heating technology in communication, to the information industry brought an unprecedented revolution. 1.引言 随着科学技术的迅速发展和生产工艺的不断改进,微波技术已在许多工业生产领域得到应用。在国内,微波技术已应用于玻璃纤维、化工产品、保温材料、木材等的干燥,食品、医疗的灭菌、干燥和焙烤。并在医疗、环保、农业等领域也有所应用。微波技术的应用,提高了生产效率和产品质量,降低了能耗和环境污染,减轻了人的劳动强度,提高了生产效益。在国际上,许多工业发达国家都对微波的工业应用非常重视,把微波技术作为改进生产工艺和提高产品质量的重要手段。 2.微波的特性 一是似光性。微波波长非常小,当微波照射到某些物体上时,将产生显著的反射和折射,就和光线的反、折射一样。同时微波传播的特性也和几何光学相似,能像光线一样地直线传播和容易集中,即具有似光性。这样利用微波就可以获得方向性好、体积小的天线设备,用于接收地面上或宇宙空间中各种物体反射回来的微弱信号,从而确定该物体的方位和距离,这就是雷达导航技术的基础。 二是穿透性。微波照射于介质物体时,能深入该物体内部的特性称为穿透性。例如微波是射频波谱中惟一能穿透电离层的电磁波(光波除外)。因而成为人类外层空间的“宇宙窗口”;微波能穿透生物体,成为医学透热疗法的重要手段;

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点 绪论 微波的定义: 微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。 微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~ 0.1mm 微波的特点(要结合实际应用): 似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析) 第一章均匀传输线理论 均匀无耗传输线的输入阻抗(2个特性) 定义: 传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注: 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。 两个特性: 1、λ/2重复性: 无耗传输线上任意相距λ/2处的阻抗相同Z in(z)=Z in(z+λ/2)

2、λ/4变换性:Zin(z)-Z in(z+λ/4)=Z 02 证明题: (作业题) 均匀无耗传输线的三种传输状态(要会判断)参数 |Γ|ρZ 1行波01 匹配驻波1∞ 短路、开路、纯 电抗行驻波 0<|Γ|<1 1<ρ<∞ 任意负载 能量电磁能量全部 被负载吸收电磁能量在原 地震荡 1.行波状态: 无反射的传输状态 匹配负载:

负载阻抗等于传输线的特性阻抗 沿线电压和电流振幅不变 电压和电流在任意点上同相 2.纯驻波状态: 全反射状态 负载阻抗分为短路、开路、纯电抗状态 3.行驻波状态: 传输线上任意点输入阻抗为复数 传输线的三类匹配状态(知道概念) 负载阻抗匹配: 是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。源阻抗匹配: 电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。此时,信号源端无反射。 共轭阻抗匹配: 对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。 共轭匹配的目的就是使负载得到最大功率。 传输线的阻抗匹配(λ/4阻抗变换)(P15和P17) 阻抗圆图的应用(*与实验结合)

微波技术与天线复习大纲

微波技术与天线复习大纲 绪论 一、基本概念 1、什么是微波,微波的波段如何划分? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率围从300MHz到30 00GHz,波长从0.1mm到1m。 通常,微波波段分为米波、厘米波毫米和亚毫米波四个波段。 2、微波有何特点及特性? 答:似光性;穿透性;宽频带特性;热效应性;散射性;抗低频干扰性;视距传播性;分布参数的不确定性;电磁兼容和电磁环境污染。 第一章均匀传输线理论 一、基本概念 1、什么是微波传输线(或导波系统)? 答:微波传输线(或导波系统)是用以传输信息和能量的各种形式的传输系统的总称。它的作用是引导电磁波沿一定的方向传输,因此又称为导波系统,它所引导的电磁波称为导行波。 2、什么是均匀传输线,它是如何分类的? 答:截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统成为规则导波系统或均匀传输线。 可大致分为三种类型: (1)双导体传输线(或TEM波传输线);由两根或两根以上的平行导体构成,主要包括平行双线、同轴线、带状线和微带线等。由于其上传输的电磁波是TEM波或准TEM波,所以又称为TEM波传输线。 (2)波导:均匀填充介质的金属波导管,主要包括矩形波导,圆波导、脊形波导和椭圆波导等。 (3)介质传输线:因电磁波沿此类传输线表面传播,故又称为表面波波导,主要包括介质波导,镜像线和单根表面波传输线等。 二、计算题(一般是课后练习题) 1.1 设一特性阻抗为50Ω的均匀传输线终端接负载R1=100Ω,求负载反射系数。在负载0.2,0.25及0.5处的输入阻抗及反射系数分别为多少?

解:, ,, 由于,,故当分别为0.2,0.25及0.5时有: , 将上述所算得的反射系数带入求输入阻抗的公式则有 (化简略) 1.4 有一特性阻抗=50Ω的无耗均匀传输线,导体间的媒质参数= 2.25,=1,终接=1Ω的负载。当=100MHz时,其线长度为。试求: (1)传输线的实际长度。(2)负载终端反射系数。(3)输入端反射系数。(4)输入端阻抗。 解:先求波长,欲求波长应知道波的传播速度(一下简称为波速)。 波速 其中,分别是自由空间中电介质常数和磁导率常数,分别是相对电介质常数和相对磁导率常数,为光速。 ,,于是, (1)传输线的实际长度 (2)负载终端反射系数 (3)输入端反射系数 (4)输入端阻抗 1.11 设特性阻抗为=50Ω的无耗均匀传输线,终端接有负载阻抗Ω为复阻抗时,可以用一下方法实现阻抗变换器匹配:即在终端或在阻抗变换器前并接一段终端短路线,试分别求这两种情况下阻抗变换器的特性阻抗及短路线长度。 解:图(a)中的短路线的输入导纳为,, 由,可得到短路线的长度,此时终端等效为纯电阻,即。因此阻抗变换器的特性阻抗为。

微波技术与天线论文

题目:简论微波谐振器件 姓名:陆昌佳学号20091120242 专业:通信工程 目录: 一、…………………………摘要 二、…………………………关键词 三、…………………………正文 1、微波元器件的简单介绍 2、微波元器件常见种类 3、矩形和圆柱形谐振腔基本参数的计算 4、参考书目

一、摘要:微波谐振器件是根据微波频率的特点从LC回路演变而来的,通过对微波谐振器件的研究,我们可以通过谐振器件各个参数更进一步的了解和认识其特点,从而更好的使用微波谐振器件、最大程度的发挥它在通信系统中的作用。以下我将对矩形谐振腔做简要计算分析,得到其谐振频率和品质因素f。和Q。,并将其和圆柱微波谐振腔的基本参数作比较,从而更进一步为通信事业服务. 二、关键词:谐振频率品质因素 三、微波元器件简单介绍:在低频电路中, 谐振回路是一种基本元 件, 它是由电感和电容串联或并联而成, 在振荡器中作为振荡回路,用以控制振荡器的频率; 在放大器中用作谐振回路; 在带通或带阻滤波器中作为选频元件等。在微波频率上, 也有上述功能的器件, 这就是微波谐振器件, 它的结构是根据微波频率的特点从LC回路演变而成的。微波谐振器一般有传输线型谐振器和非传输线谐振器两大类, 传输线型谐振器是一段由两端短路或开路的微波导行系统构成的, 如金属空腔谐振器、同轴线谐振器和微带谐振器等 四、常见谐振腔:

五、正文:谐振在通信系统中起着举足轻重的作用,以最简单的收音机为例,我们都知道收音机在接收电磁波信号时,只有谐收音机频率和空中的电磁波频率相等才能接收到音频信号即谐振。而谐振的直接决定因素在于谐振器件,对谐振器件的研究可从其基本参数谐振频率和品质因素入手。

《微波技术与天线》实验指导书

微波技术与天线实验指导书 南京工业大学信息科学与工程学院 通信工程系

目录 实验一微波测量系统的熟悉和调整.................. - 2 -实验二电压驻波比的测量......................... - 9 -实验三微波阻抗的测量与匹配 .................... - 12 -实验四二端口微波网络阻抗参数的测量 ............. - 17 -

实验一 微波测量系统的熟悉和调整 一、实验目的 1. 熟悉波导测量线的使用方法; 2. 掌握校准晶体检波特性的方法; 3. 观测矩形波导终端的三种状态(短路、接任意负载、匹配)时,TE 10波的电场分量沿轴向方向上的分布。 二、实验原理 1. 传输线的三种状态 对于波导系统,电场基本解为ift rm ift r e E e a b r V E --== ) /ln(0 (1) 当终端接短路负载时,导行波在终端全部被反射――纯驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( 00π π -=- 在x=a/2处 z E e e E E y ift ift y y βsin 2)(00-=+=+- 其模值为:z E E y y βsin 20= 最大值和最小值为: 2min 0max ==r r r E E E (2) 终端接任意负载时,导行波在终端部分被反射――行驻波状态。 ift y ift y y e x a E e x a E E )sin( )sin( ' 00π π +=- 在x=a/2处 z E e E E e E e E e E e E e E e E E y ift y y fit y fit y fit y ift y fit y fit y y βcos 2)()()('0 ' 0'0 '0'00'00+-=++-=+=----- 由此可见,行驻波由一行波与一驻波合成而得。其模值为:

微波技术与天线复习题

微波技术与天线复习题 一、填空题 1微波与电磁波谱中介于(超短波)与(红外线)之间的波段,它属于无线电波中波长(最短)的波段,其频率范围从(300MHz)至(3000GHz),通常以将微波波段划分为(分米波)、(厘米波)、(毫米波)和(亚毫米波)四个分波段。 2对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 3无耗传输线的状态有(行波状态)、(驻波状态)、(行、驻波状态)。 4在波导中产生各种形式的导行模称为波导的(激励),从波导中提取微波信息称为波导的(耦合),波导的激励与耦合的本质是电磁波的(辐射)和(接收),由于辐射和接收是(互易)的,因此激励与耦合具有相同的(场)结构。 5微波集成电路是(微波技术)、(半导体器件)、(集成电路)的结合。 6光纤损耗有(吸收损耗)、(散射损耗)、(其它损耗),光纤色散主要有(材料色散)、(波导色散)、(模间色散)。 7在微波网络中用(“路”)的分析方法只能得到元件的外部特性,但它可以给出系统的一般(传输特性),如功率传递、阻抗匹配等,而且这些结果可以通过(实际测量)的方法来验证。另外还可以根据

微波元件的工作特性(综合)出要求的微波网络,从而用一定的(微波结构)实现它,这就是微波网络的综合。 8微波非线性元器件能引起(频率)的改变,从而实现(放大)、(调制)、(变频)等功能。 9电波传播的方式有(视路传播)、(天波传播)、(地面波传播)、(不均匀媒质传播)四种方式。 10面天线所载的电流是(沿天线体的金属表面分布),且面天线的口径尺寸远大于(工作波长),面天线常用在(微波波段)。 11对传输线场分析方法是从(麦克斯韦方程)出发,求满足(边界条件)的波动解,得出传输线上(电场)和(磁场)的表达式,进而分析(传输特性)。 12微波具有的主要特点是(似光性)、(穿透性)、(宽频带特性)、(热效应特性)、(散射特性)、(抗低频干扰特性)。 13对传输线等效电路分析方法是从(传输线方程)出发,求满足(边界条件)的电压、电流波动解,得出沿线(等效电压、电流)的表达式,进而分析(传输特性),这种方法实质上在一定条件下是(“化场为路”)的方法。 14传输线的三种匹配状态是(负载阻抗匹配)、(源阻抗匹配)、(共轭阻抗匹配)。 15波导的激励有(电激励)、(磁激励)、(电流激励)三种形式。

射频与微波论文-射频与微波应用与发展综述

射频与微波技术应用与发展综述 班级: 姓名: 学号: 序号: 日期:

摘要: 微波技术是近一个世纪以来最重要的科学技术之一,从雷达到广播电视、无线电通信,再 到微波炉,微波技术对社会发展和人们生活的进步产生着深远的影响。本文介绍了微波技 术的发展以及在各个领域中的应用,并对微波技术未来的发展方向进行了讨论。Abstract: Microwave technology is one of the most important technology in the nearly century, from radar to broadcast TV, radio communication, microwave oven, microwave technology had a profound impact on society development and progress of people's lives .The paper introduced the development of microwave technology and it’s applications in various fields. It also discussed the future direction of microwave technology. 关键词:微波技术,微波电效应,污水处理 Keywords: Microwave technology, microwave electric effect, sewage treatment 微波是指波长在1mm~1000mm、频率在300MHz~300GHz范围之间的电磁波,因为 它的波长与长波、中波与短波相比来说,要“微小”得多,所以它也就得名为“微波”了。微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断地得到发展和应用。 19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其 进行了研究。但赫兹本人并没有想到将这种电磁波用于通信,他的实验仅证实了麦克斯韦 的一个预言──电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4 月美国科学家SouthWorth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导 传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个预言──电磁波可以 在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,又提供了一个有效

微波与天线习题

第一章 均匀传输线理论 1.在一均匀无耗传输线上传输频率为3GHZ 的信号,已知其特性阻抗0Z =100Ω,终端接 l Z =75+j100Ω的负载,试求: ① 传输线上的驻波系数; ② 离终端10㎝处的反射系数; ③ 离终端2.5㎝处的输入阻抗。 2.由若干段均匀无耗传输线组成的电路如图,已知g E =50V ,Z 0=g Z = 1l Z =100Ω,Z 01=150Ω,2l Z =225Ω,求: ① 分析各段的工作状态并求其驻波比; ② 画出ac 段电压、电流振幅分布图并求出极值。 3.一均匀无耗传输线的特性阻抗为500Ω,负载阻抗l Z =200-j250Ω,通过4 λ 阻抗变换器及并联支节线实现匹配,如图所示,已知工作频率f =300MHZ ,求4 λ 阻抗变换段的特性阻抗01Z 及并联短路支节线的最短长度min l 。

4.性阻抗为0Z 的无耗传输线的驻波比为ρ,第一个电压波节点离负载的距离为min1l ,试证明此时终端负载应为 min1 min1 1tan tan l j l Z j l ρβρβ-Z =- 5 明无耗传输线上任意相距 4 λ 的两点处的阻抗的乘积等于传输线特性阻抗的平方。 6某一均匀无耗传输线特性阻抗为0Z =50Ω,终端接有未知负载l Z ,现在传输线上测得电压最大值和最小值分别为100mV 和200mV ,第一个电压波节的位置离负载min13 l λ =,试求 负载阻抗l Z 。 7.传输系统如图,画出AB 段及BC 段沿线各点电压、电流和阻抗的振幅分布图,并求出电压的最大值和最小值。(图中R=900Ω) 8.特性阻抗0150Z =Ω的均匀无耗传输线,终端接有负载250100l j Z =+Ω,用 4 λ 阻抗

微波技术与天线考试试卷(A)

一、填空(102?) 1、充有25.2r =ε介质的无耗同轴传输线,其内、外导体直径分别为 mm b mm a 72,22==,传输线上的特性阻抗Ω=__________0Z 。(同轴线的单位分布电容和单位分布电感分别()() 70120104,F 1085.8,ln 2ln 2--?==?===πμμεπμπεm a b L a b C 和m H ) 2、 匹配负载中的吸收片平行地放置在波导中电场最_ __________处,在电场作用下吸收片强烈吸收微波能量,使其反射变小。 3、 平行z 轴放置的电基本振子远场区只有________和________ 两 个分量,它们在空间上___________(选填:平行,垂直),在 时间上_______________(选填:同相,反相)。 4、 已知某天线在E 平面上的方向函数为()?? ? ??-=4sin 4sin πθπθF ,其半功率波瓣宽度_________25.0=θ。 5、 旋转抛物面天线由两部分组成, ___________ 把高频导波能量转变成电磁波能量并投向抛物反射面,而抛物反射面将其投过来 的球面波沿抛物面的___________向反射出去,从而获得很强 ___________。 二、判断(101?) 1、传输线可分为长线和短线,传输线长度为3cm ,当信号频率为20GHz 时, 该传输线为短线。( ) 2、无耗传输线只有终端开路和终端短路两种情况下才能形成纯驻波状态。( )

3、由于沿smith 圆图转一圈对应2λ,4λ变换等效于在图上旋转180°, 它也等效于通过圆图的中心求给定阻抗(或导纳)点的镜像,从而得出对 应的导纳(或阻抗)。( ) 4、当终端负载阻抗与所接传输线特性阻抗匹配时,则负载能得到信源的最大 功率。( ) 5、微带线在任何频率下都传输准TEM 波。( ) 6、导行波截止波数的平方即一定大于或等于零。( ) 7、互易的微波网络必具有网络对称性。( ) 8、谐振频率、品质因数和等效电导是微波谐振器的三个基本参量。( 对) 9、天线的辐射功率越大,其辐射能力越强。( ) 10、二端口转移参量都是有单位的参量,都可以表示明确的物理意义。( ) 三、简答题(共19分) 1、提高单级天线效率的方法?(4分) 2、在波导激励中常用哪三种激励方式?(6分) 3、从接受角度来讲,对天线的方向性有哪些要求?(9分) 四、计算题(41分) 1、矩形波导BJ-26的横截面尺寸为22.434.86a mm b ?=?,工作频率为3GHz ,在终端接负载时测得行波系数为0.333,第一个电场波腹点距负载6cm ,今用螺钉匹配。回答以下问题。 (1)波导中分别能传输哪些模式?(6分) (2)计算这些模式相对应的p νλ,p 及。(9分)

微波技术与天线试卷B

1 2007 /2008学年第 2 学期 课程名称:微波技术与天线 共 5 页 试卷: B 考试形式: 闭 卷 一、 填空题(每空1分,共10分) 1、微波的频率范围从 到 。 2、圆波导的主模是 。 3、微带线的高次模有两种模式,其中波导模式存在于 与 之间。 4、无耗传输线上任意相距λ/2处的阻抗 。 5、矩形波导中传输的主模是__________。 6、圆波导中损耗最小的的模式是_______________。 7、电基本振子的远区场是一个沿着径向向外传输的 电磁波。 8、天线的有效长度越长,表明天线的辐射能力___________。 二、选择题(每题2分,共20分) 1、若传输线上全反射时,驻波比等于 。 A :0 B :1 C :2 D :∞ 2、双导体传输系统中传输的是 。 A :TE 波 B :TM 波 C :TEM 波 D :TE 和TM 波 3、匹配双T 的四个端口 。 A :只有两个端口匹配 B : 完全匹配 C :只有三个端口匹配 D :完全不匹配 4、当单极天线的高度h<<λ时,其有效高度约为实际高度的 。 A :2/3 B :1/3 C : 1/2 D :1/4

5、无耗传输线,终端断短路时在电压波腹点处,相当于。A:并联谐振B:串联谐振C:纯电感D:纯电容 6、在微波视距通信设计中,为使接收点场强稳定,希望反射波的成分 _________。 A:愈小愈好B:愈大愈好C:适当选择D:不确定 7、传输线的工作状态与负载有关,当负载开路时,传输线工作在何种状态?( ) A.混合波 B.行波 C.驻波 D.都不是 8、可以导引电磁波的装置称为导波装置,传播不受频率限制的导波装置是( ) A. 方波导 B.同轴线 C. 圆波导 D.以上都可以 9.天线是发射和接收电磁波的装置,其关心的主要参数为( ) A.增益 B.驻波比 C. 方向图 D.以上都是 10、在规则金属波导中波的传播速度比无界空间媒质中传播的速度。A:快B:慢C:相等D:无法确定 三、简答题(每题6分,共24分) 1、对均匀传输线的分析方法通常有哪两种?各自特点是什么? 2

微波技术与天线

知识梳理 绪论 微波、天线与电波传播是无线电技术的一个重要组成部分,它们三者研究的对象和目的有所不同。微波主要研究如何引导电磁波在微波传输系统中的有效传输,它的特点是希望电磁波按一定要求沿微波传输系统无辐射的传输,对传输系统而言辐射是一种能量的损耗。天线的任务则是将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波,因此天线有两个基本作用:一个是有效地辐射或接收电磁波,另一个是把无线电波能量转换为导行波能量。电波传播则是分析和研究电波在空间的传播方式和特点。微波、天线与电波传输播三者的共同基础是电磁场理论,三者都是电磁场在不同边值条件下的应用。 第一章均匀传输线理论 微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称, 它的作用是引导电磁波沿一定方向传输, 因此又称为导波系统, 其所导引的电磁波被称为导行波。一般将截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统称为规则导波系统, 又称为均匀传输线。把导行波传播的方向称为纵向, 垂直于导波传播的方向称为横向。无纵向电磁场分量的电磁波称为横电磁波,即TEM波。另外, 传输线本身的不连续性可以构成各种形式的微波无源元器件, 这些元器件和均匀传输线、有源元器件及天线一起构成微波系统。 1.1均匀无耗传输线的输入阻抗 定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗两个特性: (1)λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Zin(z)=Zin(z+λ/2);(2)λ/4变换性:Zin(z)-Zin(z+λ/4)=Z02 1.2均匀无耗传输线的三种传输状态 (1) 行波状态:无反射的传输状态, 匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相; (2) 纯驻波状态:全反射状态, 负载阻抗分为短路、开路、纯电抗状态; (3)行驻波状态:传输线上任意点输入阻抗为复数。 1.3传输线的三类匹配状态 (1)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。 (2)源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。此时,信号源端无反射。 (3)共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Zin=Zg﹡时,负载能得到最大功率值。共轭匹配的目的就是使负载得到最大功率。 1.4阻抗圆图的应用 (1) 反射系数圆图:Γ(z)=|Γ1|ej(Φ1-2βz)=|Γ1|ejΦ

最新微波技术与天线 考试重点复习归纳

第一章 1.均匀传输线(规则导波系统):截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统。 2.均匀传输线方程, 也称电报方程。 3.无色散波:对均匀无耗传输线, 由于β与ω成线性关系, 所以导行波的相速v p 与频率无关, 称为无色散波。色散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为色散特性。 1101 0010110 cos()sin()tan() ()tan()cos()sin() in U z jI Z z Z jZ z Z z Z U Z jZ z I z j z Z ββββββ++==++ 2p v f πλβ===/2处的阻抗相同, 称为λ/2重复性z1 终端负载 221021101()j z j z j z j z Z Z A e z e e Z Z A e ββββ----Γ===Γ+ 1 10 1110 j Z Z e Z Z φ-Γ= =Γ+ 终端反射系数 均匀无耗传输 线上, 任意点反射系数Γ(z)大小均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性 4. 00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ 111ρρ-Γ= + 1 111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波比 其倒数称为行波系数, 用K 表示 5.行波状态就是无反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。综上所述, 对无耗传输线的行波状态有以下结论: ① 沿线电压和电流振幅不变, 驻波比ρ=1; ② 电压和电流在任意点上都同相; ③ 传输线上各点阻抗均等于传输线特性阻抗 6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e -j2β z 此时传输线上任意一点z 处的输入阻抗为 0()tan in Z Z jZ z β= ① 沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为无功功率, 即无能量传输; ② 在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最大且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最大且等于2|A 1|, 而电流为零, 称这些位置为电压波腹点。 ③ 传输线上各点阻抗为纯电抗, 在电压波节点处Z in =0, 相当于串联谐振, 在电压波腹点处|Z in |→∞, 相当于并联谐振, 在0<z <λ/4内, Z in =jX 相当于一个纯电感, 在λ/4<z <λ/2内, Z in =-jX 相当于一个纯电容,从终端起每隔λ/4阻抗性质就变换一次, 这种特性称为λ/4阻抗变换性。 短路线ls l 110arctan()2s X l Z λπ= 开路线loc 0cot() 2c oc X l arc Z λ π= 9.无耗传输线上距离为λ/4的任意两点处阻抗的乘积均等于传输线特性阻抗的平方, 这种特 性称之为λ/4阻抗变换性。 10.负载阻抗匹配的方法 基本方法:在负载与传输线之间接入一个匹配装置(或称匹配网络),使其输入阻抗等于传输线的特性阻抗Z 0. 对匹配网络的基本要求:简单易行、附加损耗小、频带宽、可调节以匹配可变的负载阻抗。 实现手段分类:串联λ/4阻抗变换器法、支节调配器法 (1)因此当传输线的特性阻抗 01 Z = 时, 输入端的输入阻抗Z in =Z 0, 从而实现了负载和传输 线间的阻抗匹配(2)串联

相关文档
最新文档