天然气处理与加工工艺总结

天然气处理与加工工艺总结
天然气处理与加工工艺总结

天然气处理与加工工艺重点

第一章基本知识

1. 国内外天然气资源情况以及在未来能源结构中的地位。

世界天气资源

常规天然气资源:根据《中国能源报》2011年06月27日报道,世界天然气资源量为471万亿立方米,其中俄罗斯天然气储量居世界之首,占世界天然气储量的近23.7%,以下依次为伊朗、卡塔尔、阿联酋和沙特阿拉伯。

非常规天然气:非常规天然气主要包括页岩气、致密砂岩气、煤层气和天然气水合物等。全球非常规天然气资源丰富,达4000万亿立方米,是常规天然气资源量的8.3倍。其中煤层气256万亿立方米,致密气210万亿立方米,页岩气456万亿立方米,水合物3000万亿立方米。

我国的天然气资源

我国的常规天然气远景资源量达56万亿立方米,其中59%的资源分布在中西部的川渝、陕甘宁、青海和新疆四大气区,四大气区内天然气资源量约为22.4万亿立方米。除陆上四大气区外,我国近海天然气资源也十分丰富,南海、渤海、东海都是天然气富集地区。到2010年底月,全国累计探明的可开采天然气资源量超过38万亿立方米。

据中国工程院介绍,我国非常规天然气资源也相当丰富,初步预测,页岩气、致密气的可采资源总量在20-36万亿立方米,煤层气地质储量为36.8万亿立方米,居世界第三位。我国境内也有丰富的水合物储藏。据专家分析,青藏高原盆地和东海、南海、黄海的大陆坡及其深海,都可能存在体积巨大的水合物。据报道,我国的南海海域蕴藏着丰富的水合物,约70万亿立方米,其能源总量大约是石油储量的一半。

地位:

据近20年统计,世界天然气的消费量大致以平均每年2~3%的速度在增长;在当今世界能源消费结构中,达到24%,成为三大主力之一。目前,世界正处于天然气取代石油而成为世界主要能源的过度时期,国际能源界普遍认为,今后,世界天然气产量和消费量将会以较高的速度增长,2020年以后世界天然气的产量将要超过煤和石油,成为世界最主要的能源。“十二五”期间,我国天然气消费比例将翻番,由目前在能源消费结构中占4%的比重提高到8%。21世纪将是天然气的世纪。

2. 天然气的几个应用领域。

天然气发电天然气发电不仅可以减少污染,而且燃气机组启动速度快,既可带基本负荷,又可用于电网调峰,可有效提高电网调峰能力,改善电网运行质量。

清洁民用燃料天然气作为城市居民生活用燃料,可极大地减少城市污染,改善城市环境。我国大城市的供热正在逐步完成天然气锅炉代替燃煤锅炉的改造过程,家用燃气锅炉在新建住宅小区中的使用也正在快速发展。天然气将成为城市居民主要生活燃料。

作为化工原料天然气作为化工原料,现已逐步形成具有特色的甲烷化学与化工。以甲烷气为原料生产合成氨和甲醇的产量分别占两种产品总产量的85%和90%,构成了天燃气利用的核心。甲烷氧化偶联制乙烯和天然气经合成气转化为液体燃料等新技术也为天然气的有效利用开辟了新的途径。用天然气凝液(NGL)为原料生产的乙烯占全球总产量的40%。

天然气用作发动机燃料天然气是一种理想的车用汽油替代品。天然气的研究法辛烷值高达100以上,并可有效的降低汽车尾气对环境的污染,而费用仅为汽油的2/3~1/2。所以,世界上应用天然气的发动机的数量越来越多,截止2010年,世界上用天然气作燃料的汽车总数超过了1000万辆。近年来,我国汽车用天然气的发展也很迅速。

3. 天然气临界冷凝压力与临界冷凝温度的概念及与临界温度(Tc)与临界压力(Pc)的区别。

Tm:是相包络区内气液能够平衡共存的最高温度;Pm:是相包络区内气液能够平衡共存的最高压力、两组分体系在高于Tc时仍可能存在饱和液体,直至露点线上最高温点M为止,同样,在高于临界压力Pc时仍可能存在饱和蒸汽直至露点线上最高压力点N为止。

4. 天然气的基本组成、分类及参比条件。

1. 按矿藏特点可分为:

①气田气(气藏气;气层气)在地下储层中呈均一气相存在, 采出地面仍为气相的天然气。从气田中开采出来的,主要成分是甲烷和乙烷。

②凝析气在地下储层中呈气态,但开采到一定阶段,随储层压力下降,流体状态进入露点线内的反凝析区,部分烃类在储层及井筒中呈液态(凝析油)析出。

③伴生气在地下储层中伴随原油共生,或呈溶解气形式溶解在原油中,或呈自由气形式在含油储层游离存在的天然气。与油共生,甲烷含量一般为70~80%。

2.按烃类组成可分为:

①干气每m3(20,101.325kPa)天然气C+5液体含量小于13.5cm3的天然气。

②湿气每m3(20,101.325kPa)天然气C+5液体含量大于13.5cm3的天然气。

③贫气每m3(20,101.325kPa)天然气C+3液体含量小于100cm3的天然气。

④富气每m3(20,101.325kPa)天然气C+3液体含量大于100cm3的天然气。

通常,人们还习惯将脱水(脱除水蒸气)前的天然气称为湿气,脱水后水露点降低的天然气称为干气;将回收天然气凝液前的天然气称为富气,回收天然气凝液后的天然气称为贫气。此外,也有人将干气与贫气、湿气与富气相提并论。由此可见,它们之间的划分并不是卜分严格的。因此,讲课时提到的贫气与干气、富气与湿气也没有严格的区别

组成:

天然气是以甲烷为主的碳氢化合物的混合物,而且这些化合物大部分是烷烃,其组成如下(详细见书第5页):

CH4(70-95%)

C2H6 C3H8 C4H10 C5+C2+(5-30%)

N2 CO2 H20 H2S(少量)

He Ar Xer(微量)

在C6+的组分中,还包括①环烷烃(甲基环戊烷、环己烷等)②芳烃(苯、甲苯、二甲苯等)参比条件

简写备注

温度压力

0℃101.325kPa Nm3,m3(0℃) 我国《城镇燃气设计规范》采用

20℃101.325kPa m3 我国大部分采用

15.6℃101.325kPa m3(15.6℃),m3(15℃) 外国采用

5.. 天然气的反凝析现象。

反凝析现象:由JH线和LK线说明

在等温下降低压力时会使蒸汽冷凝,在等压下升高温

度是可析出液体;

相特性:

原油储层:在泡点线上边,储层为液体

凝析气储层:在露点线外,气体储层,开采时(降低

存液体)

天然气储层

6. 天然气中酸性组分对其饱和含水量的影响。

天然气含水量:饱和水蒸汽的量

天然气中水的危害:

降低了天然气的热值和管道的输送能力;

温度降低或者压力上升时,天然气中的水会以液相析出,造成压降,加速酸性组分腐蚀;

液态水在冰点时结冰,在高压低温下形成水合物。

7. 水合物的结构、类型、形成条件及预测方法。

在适宜的条件(T、P)下,水分子首先用氢键方式自身连结为“笼状”结构的晶格,气体分子包笼在晶格的空腔内,起到稳定晶格的作用。没有烃分子存在,这种笼状结构结构的晶格就不能形成。(热力学不稳定)。

Ⅰ型:晶格内有46个水分子,共有8个晶穴(2个小晶穴,直径0.52nm、6个大晶穴,直径0.59nm)。

Ⅱ型:晶格内有136个水分子,共有24个空腔(16个小晶穴,直径0.48nm、8个大晶穴,直径0.69nm)。

H型:晶格内有34个水分子,共有6个空腔(由大、中、小三种晶穴组成)。

dmax>0.69nm的分子,不能形成Ⅰ型和Ⅱ型水合物,例戊烷

dmax<0.59nm的分子,能形成Ⅰ型和Ⅱ型水合物,例甲烷

0.59

水合物形成的主要条件

①天然气处于水蒸汽过饱和状态或由液态水存在。

②有足够的高压力和足够低的温度。

③在①②条件满足的情况下,气体压力产生波动、流向突然改变而产生扰动、或有晶种存在都会促进产生水合物。

所以,水合物容易产生的地方有:阀门处(压力突变)、弯头部位(流向改变)等

预测方法:相对密度法、平衡常数法、热力学模型法和实验法。其中相对密度法、平衡常数法仅适用于无硫天然气的预测,而热力学模型法测还可用于含硫天然气的预测,

8. 天然气处理与加工的4个目的。

①燃气管网供气:主要内容包括,①脱除天然气中的硫化氢和二氧化碳,解决空气污染

和热值问题,②脱重烃和水,解决输送过程的重烃和水的冷凝问题。

②天然气液化:主要解决天然气的远距离输送问题, 特别是跨海运输问题。由于液化(常压,-162℃)天然气的体积为其气体(20℃,101.325kp)体积的1/625,故有利于输送和储存。

③供应石油化工原料:a.提供较纯的原料甲烷作为制氢、生产尿素和甲醇的原料;b.回收轻烃,作为裂解、脱氢、异构化、芳构化及氧化等生产化学品的原料。

④提供石油液化气和天然气凝析油: 石油液化气为城市提供燃料,凝析油经物理加工生产系列溶剂油。

9. 不同类型燃气热值的比较。

热值:

低热值(燃烧生成的水以气态形式存在)

高热值(燃烧生成的水以液态形式存在)

10.天然气烃露点和水露点的概念

烃露点在一定压力下天然气中烃类开始冷凝的温度。为防止天然气在管输过程中有液烃析出,烃露点应低于当地环境最低温度。

水露点(也称露点)在一定压力下,天然气中水开始冷凝的温度。为防止天然气在管输或加工过程中有水析出,水露点应低于环境最低温度。

天然气的质量指标:热值、烃露点、水露点、硫含量、二氧化碳含量、机械杂质(固体颗粒)。

产品名称C1 C2 C3 C4 C5+英文名称

液化天然气(LNG) √√√√Liquefied natural gas

天然气凝液(NGL) √√√√Natural gas liquids

液化石油气(LPG) √√Liquefied petroleum gas

天然气油(稳定轻烃) √

压缩天然气(CNG) √√Compressed natural gas

12. 城镇燃气互换性的指标。

华白指数和燃烧势是判定天然气互换性的两个重要指标。

13. 城镇燃气分类。

根据燃气沃泊指数和燃烧势不同,可将燃气分为3T、4T、6T、10T、12T五类。其中3T、4T为矿井气,6T为沼气,10T和12T为天然气。

第二章天然气脱硫脱氮

1. 天然气脱硫、脱氮的目的。

天然气中含有酸性组分时,不仅在开采、处理和储运过程中会造成设备和管道腐蚀,而且用作燃料时会污染环境,危害用户健康;用作化工原料时会引起催化剂中毒,影响产品收率和质量。此外,天然气中CO2含量过高还会降低其热值。因此,当天然气中酸性组分含量超过商品气质量指标或管输要求时,必须采用合适的方法将其脱除至允许值以内。脱除的这些酸性组分混合物称为酸气(acid gas),其主要成分是H2S、CO2,并含有少量烃类。从酸性天然气中脱除酸性组分的工艺过程统称为脱硫脱碳或脱酸气。

2. 常用醇胺溶剂的性能比较。

(一)一乙醇胺

MEA可用于低吸收压力和净化气质量指标要求严格的场合。

MEA可从气体中同时脱除H2S和CO2,因而没有选择件。净化气中H2S的浓度可低达5.7mg/m3。在中低压情况下C02浓度可低达100×10-6(体积分数)。MEA也可脱除COS、CS2,但是需要采用复活釜,否则反应是不可逆的。即就是有复活釜,反应也不能完全可逆,故会导致溶液损失和在溶液中出现降解产物的积累。

MEA的酸气负荷上限通常为0.3~0.5mol酸气/molMEA,溶液质量浓度一般限定在10%~20%。如果采用缓蚀剂,则可使溶液浓度和酸气负荷显著提高。由于MEA蒸汽压在醇胺类中最高,故在吸收塔、再生塔中蒸发损失量大,但可采用水洗的方法降低损失。(二)二乙醇胺

DEA不能像MEA那样在低压下使气体处理后达到管输要求,而且也没有选择性。与MEA相比,DEA的特点为:

①DEA的碱性和腐蚀性较MEA弱,溶液浓度和酸气负荷较高,溶液循环量、投资和操作费用都较低。典型的DEA酸气负荷(0.3~0.8mol酸气/molDEA)远高于常用的MEA的酸气负荷(0.3~0.4mol酸气/molMEA);

②由于DEA生成不可再生的降解产物数量较少,故不需要复活釜;

③DEA与H2S和CO2的反应热较小,故溶液再生所需的热量较少;

④DEA与C0S、CS2反应生成可再生的化合物,故可在溶液损失很小的情况下部分脱除COS、CS2。

(三)二甘醇胺(DGA)

二甘醇:HO-CH2-CH2-O-CH2-CH2-OH;二甘醇胺:H2N-CH2-CH2-O-CH2-CH2-OH DGA是伯醇胺,不仅可脱除气体和液体中的H2S和C02,而且可脱除COS和RSH,故广泛用于天然气和炼厂气脱硫脱碳。DGA可在压力低于0.86MPa下将气体中的H2S脱除至5.7mg/m3 。此外,与MEA、DEA相比,DGA对烯烃、重烃和芳香烃的吸收能力更强。

与MEA相比,DGA的特点为:①溶液质量浓度可高达50%、70%,而MEA溶液浓度仅15%~20%;②由于溶液浓度高,所以溶液循环量小;③重沸器蒸汽耗量低。

DGA溶液浓度在50%时的凝点为-34℃,故可适用于高寒地区。由于降解反应速率大,需要采用复活釜。此外,DGA与C02,COS的副反应是不可逆的,生N,N-二甘脲,通常称为BHEEU。

(四)甲基二乙醇胺(MDEA)

MDEA是叔醇胺,可在中、高压下选择性脱除H2S以符合净化气的质量指标或管输要求。但是,如果净化气中的CO2含量超过要求则需进一步处理。

选择性脱除H2S的优点是:①由于脱除的酸气量减少而使溶液循环量降低;②再生系统的热负荷低;③酸气中的H2S/CO2摩尔比可高达含硫原料气的10~15倍。由于酸气中H2S浓度较高,有利于硫磺回收。

此外,叔醇胺与CO2的反应是反应热较小的酸碱反应,故再生时需要的热量较少,因而用于大量脱除CO2是很理想的。这也是一些适用于大量脱除CO2的配方溶液(包括活化MDEA溶液)的主剂是MDEA的原因所在。

采用MDEA溶液选择性脱硫不仅由于循环量低而可降低能耗,而且单位体积溶液再生

华东《天然气处理与加工》2019年春季学期在线作业(一)

------------------------------------------------------------------------------------------------------------------------------ (判断题)1: 天然气水合物是水与天然气中烃类组份反应生成的液体化合物。 A: 错误 B: 正确 正确答案: (判断题)2: 可燃冰是一种天然气水合物。 A: 错误 B: 正确 正确答案: (判断题)3: 天然气轻烃回收工艺中,一般采用反作用式透平膨胀机。 A: 错误 B: 正确 正确答案: (判断题)4: 在天然气吸附脱水工艺设计中,以分子筛的平衡湿容量为设计依据。 A: 错误 B: 正确 正确答案: (判断题)5: 天然气的烃露点是指天然气中的烃分开始冷凝的温度,与压力无关。 A: 错误 B: 正确 正确答案: (判断题)6: 天然气的水露点是指天然气中的水分开始冷凝的温度,与压力无关。 A: 错误 B: 正确 正确答案: (判断题)7: 在天然气吸附脱水过程中,当床层达到破点时,说明床层内分子筛已达到饱和状态。 A: 错误 B: 正确 正确答案: (判断题)8: 天然气的热值约为人工燃气热值的4倍。 A: 错误 B: 正确 正确答案: (判断题)9: 水露点为30℃的天然气与水隔绝后加热到50℃,然后再降到20℃,此时天然气的水露点变成了20℃。 A: 错误 B: 正确 正确答案: (判断题)10: 天然气中的酸性组分对天然气的含水量几乎没有影响。 A: 错误 B: 正确 正确答案: (判断题)1: 天然气水合物是水与天然气中烃类组份反应生成的液体化合物。

2019最新范文-天然气工艺安全管理

天然气工艺安全管理 天然气处理过程在很多方面具有与化工、石化行业等生产过程相同的特点。近几十年来,随着经济发展和科技进步,给这些行业带来了巨大变化,其规模不断扩大,生产过程大量采用新的工艺、技术和设备、材料,随之而来的是产品品种更多且储存量更大、应用的工艺技术更复杂、操作条件更苛刻、工艺系统危害更多等,而愈来愈复杂的工艺系统又对安全提出了更高的要求。因此,为防止灾难性的工艺安全事故发生,确保工艺系统的设计、生产满足有关安全要求,就有必要建立和贯彻有效的工艺安全管理系统。 1.工艺安全 (1)工艺安全是一门独立的学科,其基本出发点之一是预防工艺物料(或能量)泄漏。虽然天然气处理过程发生的各类事故通常表现为火灾、爆炸和有毒物质暴漏等形式,但都可归咎为物料的泄漏或能量的释放(也可视为一种泄漏形式)。 工艺系统一旦出现泄漏,就可能导致灾难性的工艺安全事故。这种物料泄漏或能量释放可能发生在正在运行的工艺装置、原料或产品储罐、输送管道或槽车以及船舶等。 在天然气处理过程中,泄漏出来的天然气或凝液气化后形成蒸气云,其体积增大并蔓延,接触到火源后就会引发火灾或爆炸。火焰烘烤临近设备、管线,又可导致它们破裂;爆炸也可造成周围设备、管线破裂。这样,就会出现更多的泄漏,形成更大范围的火灾或更多的爆炸,即

泄漏蒸气云火源火灾或爆炸更多泄漏更多火灾或爆炸 反之,如果工艺物料按照正常工况(温度、压力、流量等)在设备、管线内运行,整个工艺系统就处在安全状态。 (2)工艺安全的目的是在设计、施工、生产和维修中,运用工程知识、原理和经验,消除或减少与工艺过程相关的危害。 此处所谓的工艺过程相关的危害,一方面是指工艺介质本身的危害,另一方面是指工艺过程(对该物料的处理、加工和储运等)所赋予 的危害。例如,含硫天然气中H2S的毒性属于其本身的危害性;而在 压力容器和管线内流动的高压含硫天然气就具有一定的能量,此处的 具有能量是指含硫天然气在高压的处理过程中所带来的危害性。 因此,工艺安全既关注工艺过程中所涉及的各种物料的理化性质,同时又关注如何处理、加工和储存这些物料。 (3)工艺安全所指的安全有别于传统的安全概念。传统的安全概念 主要是指使用各种个人防护用品和建立相应的规章制度来保护作业人员,防止发生人员伤害事故。工艺安全所指的安全则强调采用系统的 方法对工艺危害进行辨识,根据建设项目不同阶段(设计、施工和生产)的特点,采用不同方式辨识所存在的危险有害因素和评估它们可能导 致的事故频率和后果,并提出对策措施消除危害以避免事故发生,或 减轻危害可能造成的事故后果。工艺安全重视以往设计的经验教训, 强调严格执行相关的设计标准和规范。 (4)工艺安全的侧重点是工艺系统或设备、设施本身。职业安全更 多的是关注作业人员的行为,而工艺安全除了关注作业人员及周围人 员的安全外,则较关注工艺系统或设备、设施本身是否存在技术缺陷 或安全隐患,并且重视泄漏事故对工厂设备、设施的损坏和对环境的

微电子工艺习题总结(DOC)

1. What is a wafer? What is a substrate? What is a die? 什么是硅片,什么是衬底,什么是芯片 答:硅片是指由单晶硅切成的薄片;芯片也称为管芯(单数和复数芯片或集成电路);硅圆片通常称为衬底。 2. List the three major trends associated with improvement in microchip fabrication technology, and give a short description of each trend. 列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势 答:提高芯片性能:器件做得越小,在芯片上放置得越紧密,芯片的速度就会提高。 提高芯片可靠性:芯片可靠性致力于趋于芯片寿命的功能的能力。为提高器件的可靠性,不间断地分析制造工艺。 降低芯片成本:半导体微芯片的价格一直持续下降。 3. What is the chip critical dimension (CD)? Why is this dimension important? 什么是芯片的关键尺寸,这种尺寸为何重要 答:芯片的关键尺寸(CD)是指硅片上的最小特征尺寸; 因为我们将CD作为定义制造复杂性水平的标准,也就是如果你拥有在硅片某种CD的能力,那你就能加工其他所有特征尺寸,由于这些尺寸更大,因此更容易产生。 4. Describe scaling and its importance in chip design. 描述按比例缩小以及在芯片设计中的重要性 答:按比例缩小:芯片上的器件尺寸相应缩小是按比例进行的 重要性:为了优电学性能,多有尺寸必须同时减小或按比例缩小。 5. What is Moore's law and what does it predict? 什么是摩尔定律,它预测了什么 答:摩尔定律:当价格不变时,集成电路上可容纳的晶体管数,月每隔18个月便会增加1倍,性能也将提升1倍。 预言在一块芯片上的晶体管数大约每隔一年翻一番。 第二章 6. What is the advantage of gallium arsenide over silicon? 砷化镓相对于硅的优点是什么 答:优点:具有比硅更高的电子迁移率;减小寄生电容和信号损耗的特性;集成电路的速度比硅电路更快;材料的电阻率更大。 7. What is the primary disadvantage of gallium arsenide over silicon? 砷化镓相对于硅的主要缺点是什么 答:主要缺点:缺乏天然氧化物;材料的脆性;成本比硅高10倍;有剧毒性在设备,工艺和废物清除设施中特别控制。

天然气处理与加工工艺

天然气处理与加工工艺 第一章 1,天然气的主要成分是甲烷,此外还有乙烷,丙烷,丁烷,戊烷及己烷以上的烃类 2,天然气的分类(1)按产状分类,游离气和溶解气(2)按经济价值分类,常规天然气和非常规天然气(3)按来源分类,于油有关的气,与煤有关的气,天然沼气,深源气,化合物气(4)按组成分类,干气,湿气,贫气,富气或净气,酸气(5)我国习惯分法,伴生气,气藏气和凝析气 3.天然气的主要产品;液化天然气,液化石油气,天然气凝液,天然气油,压缩天然气 4.天然气处理与加工含义(1)天然气加工是指从天然气中分离,回收某些组分,使之成为产品的那些工艺过程(2)天然气处理是指使天然气符合商品质量和管道运输要求所采取的工艺过程 5.烃露点;在一定压力下,天然气中烃类开始冷凝的温度 水露点;在一定压力下,天然气中水蒸气开始冷凝的温度 6.华白指数;是代表燃气特性的一个参数,是燃气互换性的一个判定指数,只要一种燃气于燃具所使用的另一种燃气的华白指数相同,则此燃气对另一种燃气具有互换性 第二章 1.相图 2.预测天然气水含量的方法,图解法和状态方程法 3.引起水合物形成的主要条件是(1)天然气的温度等于或低于露点温度,有液态水存在(2)在一定压力和气体组成下,天然气温度低于水合物形成的温度(3)压力增加,形成水合物的温度相应增加 4.水合物形成的条件预测;相对密度法,平衡常数法,Baillie和Wichert法,分子热力学模型法,实验法 5.天然气水合物的结构;体心立方晶体结构,金刚石型结构,结构H型水合物 在形成水合物的气体混合物体系中,可能出现平衡共存的相有气相,冰相,富水液相,富烃液相和固态水合物相 6.吸附负荷曲线(吸附波);在吸附床层中,吸附质沿不同床层高度的浓度变化曲线,称为吸附曲线 7.破点;床层出口气体中水的浓度刚刚开始发生变化的点,为破点 8.透过(穿透)曲线;从破点到整个床层达到饱和时,床层出口端流体中吸附质的浓度随时间的变化曲线 9.吸附剂平衡吸附量;当床层达到饱和时,吸附剂的吸附量 10.动态(有效)吸附(湿容)量,吸附过程达到破点时,吸附剂的吸附量 11.天然气脱水方法,天然气绝对含水量;每标准立方米天然气的实际含水量 12.天然气饱和含水量;在一定温度压力下,天然气与液态水达到平衡时气体的绝对含水量 13.天然气的相对湿度;天然气中实际含水量与饱和含水量之比 14.天然气的水露点;在一定压力下,天然气中的水蒸汽开始冷凝的温度 第三章 热力小学抑制剂,动力学抑制剂的作用机理及应用特点? 向天然气中加入水合物动力学抑制剂后,可以改变水溶液或水合物相的化学位,从而使水合物形成的条件向较低的温度或较高的压力范围;动力学抑制剂注入水后在溶液中的浓度

天然气处理工艺

第一篇天然气处理工艺

一、天然气基本概念 1.天然气的利用 天然气发电清洁民用燃料作为化工原料天然气用作发动机燃料 2.天然气的组成与分类 (1)天然气的组成 天然气是以甲烷为主的碳氢化合物的混合物,而且这些化合物大部分是烷烃,其组成如下 CH4 C2H6 C3H8 C4H10 C5+ N2 CO2 H20 H2S He Ar Xer (2)天然气的分类 (1) 按天然气的来源可分为: ①气田气(气藏气;气层气)在地下储层中呈均一气相存在, 采出地面仍为气相的天然气。从气田中开采出来的,主要成分是甲烷和乙烷。 ②伴生气在地下储层中伴随原油共生,或呈溶解气形式溶解在原油中,或呈自由气形式在含油储层游离存在的天然气。与油共生,甲烷含量一般为70~80%。 (2)按甲烷含量可分为: ①干气(贫气)一般甲烷含量在90%以上,轻烃含量少。 ②湿气(富气)一般甲烷含量在90%以下,轻烃含量较高。 3.天然气加工的目的(4个) (1)燃气管网供气:主要内容包括,①脱除天然气中的硫化氢和二氧化碳,解决空气污染和热值问题,②脱重烃和水,解决输入过程的重烃和水的冷凝问题。 (2)天然气液化:主要解决天然气的远距离输送问题, 特别是跨海运输问题。由于液化(常压,-162℃)天然气的体积为其气体(20℃,101.325kp)体积的1/1625,故有利于输送和储存。(3)供应石油化工原料:①提供较纯的原料甲烷作为制氢、生产尿素和甲醇的原料;②回收轻烃,作为裂解、脱氢、异构化、芳构化及氧化等生产化学品的原料。 (4)提供石油液化气和天然气凝析油:石油液化气为城市提供燃料,凝析油经物理加工生产系列溶剂油。 5.天然气加工过程

天然气造气工艺流程说明

天然气造气工艺流程说明 一、合成氨工序造气流程: 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体和甲醇工段送来的驰放气进入二段炉。压缩送来的空气,经过空气预热器预热达到一定温度后进入二段炉,空气中的氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化(当有甲醇弛放气时,配适量的纯氧)。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后进入中温变换炉进行一氧化碳的变换,中温变换炉出来的气体进入甲烷化第二换热器,预热甲烷化入口气,换热后的中温变换气进入中变废锅,气体降至一定温度后进入低温变换炉,进一步将一氧化碳变换为二氧化碳,出低温变换炉一氧化碳达到≤. 0.3%,经低变废锅回收部份热量产蒸汽,回收热量后的低变气进入脱碳系统低变气再沸器预热再生塔底部溶液,最后进入低变冷却系统降温至35℃以下进入压缩工段或碳化工段。脱碳来的净化气或压缩来的碳化气进入甲烷化第一换热器

预热后进入甲烷化第二换热器进一步预热,气体达到一定温度后进入甲烷化炉,残余的一氧化碳和二氧化碳在镍触媒作用下生成甲烷,使CO+CO的含量<10PPm,甲烷化出来的气2体进入甲一换回收部份热量后进入甲烷化第一、第二冷却器,气体温度降至35℃以下送压缩加压,最后送往合成氨工序。 二、甲醇造气流程 经加压脱硫来的天然气和蒸汽混合分别送进各自的混合气 预热器预热后进入箱式一段转化炉和换热式转化炉进行转 化反应,反应后的气体进入二段炉。空分来的氧气经预热后达到一定温度进入二段炉,氧与转化气中的氢燃烧释放热量在二段炉内继续进行甲烷转化。出二段炉的工艺气体进入换热式转化炉的管间,作为热源供换热式转化炉转化管内天然.气的转化,然后管间的二段转化气离开换热式转化炉进入换转炉的混合气预热器,预热进换转炉的混合气,换热后的二段转化气经过废热锅炉进一步回收热量产生蒸汽,气体降至一定温度后根据甲醇合成气体成分情况通过中变近路阀调 整入中温变换炉的气量进行一氧化碳的变换,以便调整气体成分。中温变换炉出来的气体和中变近路转化气进入甲化第二换热器,预热甲醇合成来的弛放气,换热后的中温变换气或转化气进入中变废锅,气体降至一定温度后根据中变气体的成分通过低变近路阀调整入低温变换炉的气量,进一步调整气体成分,低变炉或低变近路来的气体经低变废锅回收部

集成电路工艺认识实习报告

集成电路工艺认识实习报告 1.专题一MEMS(微机电系统)工艺认识 1.1 重庆大学微系统研究中心概况 重庆微光机电工程技术研究中心依托于重庆大学,主要合作单位有中国电子科技集团公司第二十四研究所等。中心主要从事MEMS设计、研发及加工关键技 术研究、产业化转化和人才培养。 中心建立了面向西南地区的“MEMS器件及系统设计开发联合开放实验室,拥有国际先进的MEMS和CMOS电路设计及模拟软件,MEMS传感器及微型分析仪 器的组装和测试设备。 1.2主要研究成果 真空微电子压力传感器、集成真空微电子触觉传感器、射频微机械无源元件、硅微低电压生化分析系统、折衍混合集成微小型光谱分析仪器、全集成硅微二维加速度传感器、集成硅微机械光压力传感器、硅微加速度阵列传感器、硅微力平衡电容式加速度传感器、反射式混合集成微型光谱分析系统、微型振动式发电机系统、真空微电子加速度传感器 1.3微系统中心主要设备简介 1.3.1. 反应离子刻蚀机 1.3.2双面光刻机 1.3.3. 键合机 1.3.4. 探针台

1.3.5. 等离子去胶机 1.3.6. 旋转冲洗甩干机 1.3.7. 氧化/扩散炉 1.3.8. 低压化学气相淀积系统 1.3.9. 台阶仪 1.3.10. 光学三维形貌测试仪 1.3.11. 膜厚测试仪 1.3.1 2. 感应耦合等离子体(ICP)刻蚀机

1.3.13. 箱式真空镀膜机 1.3.14. 槽式兆声清洗机 1.3.15.射频等离子体系统 1.4MEMS的主要特点 体积小,重量轻,材料省,能耗低;完整的MEMS一般是由微动力源、微致动器、微传感器组成,智能化程度高,集成度高;MEMS整体惯性小,固有频率高,响应快,易于信号实时处理;由于采用光刻、LIGA等新工艺,易于批量生产,成本低;MEMS可以达到人手难于达到的小空间和人类不能进入的高温,放射等恶劣环境,靠MEMS的自律能力和对微机械群的遥控,可以完成宏观机械难于完成的任务。 1.5MEMS器件的应用 1.5.1 工业自动控制领域 应用MEMS器件对“温度、压力、流量”三大参数的检测与控制,目前普遍采用有微压力、微流量和微测温器件 1.5.2生物医学领域 微型血压计、神经系统检测、细胞组织探针和生物医学检测,并证实MEMS器件具有再生某些神经细胞组织的功能。

天然气与工业炉窑

几种锅炉的特点比较 1、电锅炉:优点:可以实现零污染,容易实现全自动控制,占地面积小,无需能源运输费用。缺点:运行费用高。 2、煤锅炉:优点:运行费用低。缺点:污染严重,要缴纳排污费;劳动强度大;无法实现全自动操作;占地面积大,需要煤场、渣场、污水处理场地。 3、自产煤气锅炉:缺点:一次性投资大,煤气发生炉购臵费和锅炉差不多,甚至比锅炉更贵;劳动强度大,煤气发生炉无法实现自动控制;占地面积更大,除锅炉占地外还要加一个煤气发生炉的占地。 4、燃油锅炉:优点:环保指标远远优于燃煤锅炉;占地面积小;可以实现自动控制,达到无人值守的目的。在燃轻油时,可以采取技术措施,减少氮氧化物的排放。缺点:燃油锅炉需要有油库,与燃天然气锅炉比,增加了油品运输费用和油库建设管理费用,而且油库也是一个安全隐患;烧重油时,重油还需要有加热系统保温管道才能流动,既有管理负担,也增加了运行费用。 5、燃气锅炉特点:其环保指标仅次于电锅炉;能很好地实现自动控制,达到无人值守;燃料无需运费,也不要运输管理;运行费用较用油和用电低,不缴排污费;且政府支持,无政策风险。 工业炉窑是社会生产中耗能的主要设备。它们所使用的能源包括

除核能以外的所有能源。天然气作为新世纪的清洁能源,在工业炉窑中有极广泛的应用。 第一节、综述 工业炉是在工业生产中,利用燃料燃烧或电能转化的热量,将物料或工件加热的热工设备。 1、机械工业应用的工业炉有多种类型。如果应用的行业来分。 1)在铸造车间,有熔炼金属的冲天炉、感应炉、电阻炉、电弧炉真空炉、平炉、坩埚炉等、有烘烤砂型的砂型干燥炉、铁合金烘炉和铸件退火炉等; 2)在锻压车间,有对钢锭或钢坯进行锻前加热的各种加热炉,和锻后消除应力的热处理炉; 3)在金属热处理车间,有改善工件机械性能的各种退火、正火、淬火和回火的热处理炉; 4)在焊接车间,有焊件的焊前预热炉和焊后回火炉; 5)粉末冶金车间有烧结金属的加热炉等。 6)汽车和家电行业的金属表面涂装固化炉等。 2、应用于冶金工业中有金属熔炼炉、矿石烧结炉和炼焦炉、轧钢加热炉; 3、应用于石油工业中有常压炉、减压炉、加氢炉、裂解炉、裂

晶体加工工艺总结

晶体加工工艺总结(德清华瑞光学) 晶体加工 1、方解石:光轴面抛光后不能用白胶布保护,必需用黑胶布。光轴面B=Ⅲ,用玻璃盘细磨,细磨光圈半个左右。抛光:用绸布(真丝布)绑在抛光好的平玻璃板上,一定要平,然后用704粘合剂均匀地涂在绸布上,未干时放在平玻璃板上轻轻磨一下,然后等完全干透。 2、白宝石、红宝石:要求B=Ⅳ,θ=1′,N=1,ΔN=1/2。一般用钢盘加研磨膏抛光,钢盘一定要改好。如果B要求较高,可用特殊胶盘。细磨一定要好。 3、磁光(旋光)晶体:YIG、GGG。细磨一定用碳化硼280#,20#,抛光先用宝石粉W2.5抛亮后,再用刚玉微粉W1.5抛,用水晶作垫子。 4、BBO,微潮,磨砂用302#、302.5#。在铁盘或玻璃盘上磨。抛光用CeO2可抛好。晶体易开裂,加工时及加工前后均应注意保持恒温。并要求选取无包裹的纯单晶加工,有方向要求。BBO晶体较软,易划伤,抛光面不可与任合物擦拭。BBO晶体易潮解,抛光后置于红外灯下烘干,然后置于密封干燥的容器中保存。 5、氟化钙(CaF2)B=Ⅲ,可用CeO2抛好。用302#、303#磨砂,用宝石粉抛亮后,改用钻石粉水溶液抛光圈和道子。用宝石粉W1抛光很快,然后用W0.5 抛光圈和道子。用聚胺树脂作抛光模范,也可用宝石粉抛亮后用氧化铬抛光,胶盘用软胶盘,工件最好抛高光圈,但不必高太多。 6、LBO材料硬度与K9相似,点胶上盘,如封蜡可用电烙铁直接封,研磨、抛光同K9玻璃相似,用CeO2抛光。 7、氟锂锶锂:软晶体、易坏,B=Ⅱ,上盘用红外灯慢慢加热。在清洗时不可多擦表面,否则易出道子。用氟化锂做保护片,W1.5刚玉粉抛亮后改用W0.5钻石微粉水溶液抛光。用CeO2抛光也可抛好。(500目) 8、KTP晶体:硬度和ZF相差不多,用ZF做保护片,进行抛光。KD*P、KT*P,用软胶盘(一般用特殊配制的胶盘),也可用1#(天较冷)2#(天较热)号胶盘,抛光后用洗砂倒边。KD*P易潮解、易碎,抛光时温度、湿度要求较高。 9、双45°LN电光Q开关:双45°LN电光Q开关是一种利用LN晶体作材料加工成的斜方棱镜,有六个加工面,其中四个面抛光,另两个面只须定向和研磨。在四个抛光面中,入射面、出射面为晶体Y晶面。入射面、出射面的夹角为45°±1′,电极面为X晶面,须镀金。加工时首先要确定Y基准面,X、Y晶面的衍射角为θ(110)=17°24′和θ(300)=31°12′。上盘用石膏模固定,配盘材料用LN或与LN相似的K9玻璃。加工时入射面、出射面主要控制几何尺寸和平行度,技术要求:N=1/4、B=Ⅲ,θ≤10〞。加工第一个45°反射面主要控制角度和塔差,第二个45°反射面除控制零件的长度外,还要控制光线经过四个抛光面反射后所反映出来的综合平行度。由于光线在晶体内部经过四次反射,因此测量综合平行度只是分划板读数的1/4n(n为LN折射率)通常要求θ≤10〞。LN电光Q开关的两个45°反射面的粗糙程度的好坏与晶体抗激光损伤能力密切相关。LN属于铁电晶体,当抛光级剂选用不当时会出现抛不亮或返毛现象,可通过选高熔点的抛光剂或在溶液中加入HCL或肥皂粉,如果仍不行须重新磨砂。 10、Mg2SiO4 (镁橄榄石)晶体,莫氏硬度为7,抛光较难。 1、用聚胺树脂硬胶盘加W3.5、W2.5宝石研磨膏抛光,大约要5~6小时,一天左右可抛亮。 2、抛亮厚用W0.5钻石微粉水溶液改光圈。低光圈较难改。 11、SeZn晶体,软晶体。磨砂用302#、302.5#在玻璃盘上,抛光用软胶盘,先用W1.

《天然气处理与加工工艺》自编习题

自编习题 第一章绪论 1.概述我国天然气资源及地区分布情况(截至2005年最新统计数据) 2.天然气组成及分类? 3.天然气加工的主要产品种类及组成? 4.简述商品气的质量要求? 5.简述天然气处理与加工过程? 第二章天然气的相特性 1.由下面的P-T相图回答问题? ①简述沿HJ线相态变化;②简述沿KL线的相态变化;③解释M点温度,N点压力? 2.简述图解法用于不含酸性组分的天然气水含量的确定步骤? 3.简述水合物的形成条件、危害及预测方法。 4.简述平衡常数法如何用于确定天然气水合物形成条件? 5.简述Baillie和Wichert法如何用于确定天然气水合物形成条件 6.简述固体二氧化碳形成条件预测步骤? 第三章防止天然气水合物形成的方法 1.简述防止天然气水合物形成的方法? 2.简述热力学抑制剂、动力学抑制剂和防聚剂的作用机理及应用特点 3.简述注入抑制剂的低温分离法的工艺流程? 4.甲醇类抑制剂与甘醇类抑制剂使用性能比较?

第四章吸收法脱水 1.露点降定义? 2.简述天然气脱水的方法及其原理? 3.甘醇法脱水与吸附法脱水的优缺点? 4.简述甘醇法脱水的工艺流程? 5.当用天然气甘醇吸收法脱水时,要求的干气 含水量确定以后,进塔贫甘醇的浓度如何确定? 6.甘醇在使用过程中将会受到各种污染, 产生这些污染的原因及解决方法? 第五章吸附法脱水 1.吸附质和吸附剂定义,化学吸附与物理吸附概念及区别? 2.用于天然气脱水的固体吸附剂应具有那些特征? 3.请说明天然气吸附法脱水工艺中,为什么要用分子筛吸附剂。 4.简述复合固体吸附剂的特点及其用途? 5.简述采用湿气和干气再生的吸附脱水工艺流程? 6.吸附剂的湿容量、平衡湿容量、有效湿容量定义? 7.简述酸性天然气分子筛脱水工艺流程? 第六章天然气凝液回收 1.天然气凝液回收定义? 2.天然气凝液回收的目的和方法? 3.简述采用膨胀机制冷法的NGL回收工艺流程? 4.蒸汽制冷概念? 5.由下图简述采用丙烷做致冷剂的蒸汽压缩制冷循环工艺流程?

微电子器件原理总结

三种管子的工作原理、符号、结构、电流电压方程、电导、跨导、频率 然后还有集边效应,二次击穿 双极型晶体管: 发射极电流集边效应: (1)定义:由于p-n 结电流与结电压的指数关系,发射结偏压越高,发射极边缘处的电流较中间部位的电流越大 (2)原因:基区体电阻的存在引起横向压降所造成的 (3)影响:增大了发射结边缘处的电流密度,使之更容易产生大注入效应或有效基区扩展效应,同时使发射结面积不能充分利用 (4)限制:限制发射区宽度,定义发射极中心到边缘处的横向压降为kT /q 时所对应的发射极条宽为发射极有效宽度,记为2S eff 。S eff 称为有效半宽度。 发射极有效长度 : (1)定义:沿极条长度方向,电极端部至根部之间压降为kT/q 时所对应的发射极长度称为发射极有效长度 (2)作用:类似于基极电阻自偏压效应,但沿Z 方向,作用在结的发射区侧 二次击穿和安全工作区: (1)现象:当晶体管集电结反偏增加到一定值时,发生雪崩击穿,电流急剧上升。当集电结反偏继续升高,电流I c 增大到某—值后,cb 结上压降突然降低而I c 却继续上升,即出现负阻效应。 (2)分类: 基极正偏二次击穿(I b >0)、零偏二次击穿和(I b =0)、反偏二次击穿(I b <0)。 (3)过程:①在击穿或转折电压下产生电流不稳定性; ②从高电压区转至低电压区,即结上电压崩落,该击穿点的电阻急剧下降; ③低压大电流范围:此时半导体处于高温下,击穿点附近的半导体是本征型的; ④电流继续增大,击穿点熔化,造成永久性损坏。 (4)指标:在二次击穿触发时间t d 时间内,消耗在晶体管中的能量 ?=d t SB IVdt E 0 称为二次击穿触发能量(二次击 穿耐量)。晶体管的E SB (二次击穿触发功率P SB )越大,其抗二次击穿能力越强。 (5)改善措施: 1、电流集中二次击穿 ①由于晶体管内部出现电流局部集中,形成“过热点”,导致该处发生局部热击穿。

微电子加工工艺总结资料

1、分立器件和集成电路的区别 分立元件:每个芯片只含有一个器件;集成电路:每个芯片含有多个元件。 2、平面工艺的特点 平面工艺是由Hoerni于1960年提出的。在这项技术中,整个半导体表面先形成一层氧化层,再借助平板印刷技术,通过刻蚀去除部分氧化层,从而形成一个窗口。 P-N结形成的方法: ①合金结方法 A、接触加热:将一个p型小球放在一个n型半导体上,加热到小球熔融。 B、冷却:p型小球以合金的形式掺入半导体底片,冷却后,小球下面形成一个再分布结晶区,这样就得到了一个 pn结。 合金结的缺点:不能准确控制pn结的位置。 ②生长结方法 半导体单晶是由掺有某种杂质(例如P型)的半导体熔液中生长出来的。 生长结的缺点:不适宜大批量生产。 扩散结的形成方式 与合金结相似点: 表面表露在高浓度相反类型的杂质源之中 与合金结区别点: 不发生相变,杂质靠固态扩散进入半导体晶体内部 扩散结的优点 扩散结结深能够精确控制。 平面工艺制作二极管的基本流程: 衬底制备——氧化——一次光刻(刻扩散窗口)——硼预沉积——硼再沉积——二次光刻(刻引线孔)——蒸铝——三次光刻(反刻铝电极)——P-N结特性测试 3、微电子工艺的特点 高技术含量设备先进、技术先进。 高精度光刻图形的最小线条尺寸在亚微米量级,制备的介质薄膜厚度也在纳米量级,而精度更在上述尺度之上。 超纯指工艺材料方面,如衬底材料Si、Ge单晶纯度达11个9。 超净环境、操作者、工艺三个方面的超净,如 VLSI在100级超净室10级超净台中制作。 大批量、低成本图形转移技术使之得以实现。 高温多数关键工艺是在高温下实现,如:热氧化、扩散、退火。

天然气加工

1、天然气广义:在自然界中天然生成的气体化合物。 2、狭义:专指在岩石圈中生成并蕴藏于其中的以气态烷烃混合物为主的可燃性气体。 3、有机成因:成岩作用早期,在浅层生物化学作用带内沉积有机质经微生物的群体发酵和合成作用形成天然气。 4、无机成因:有水和二氧化碳与金属氧化物发生地球化学反应生成。 5、烃露点:一定压力下天然气中析出第一滴液烃时的温度。水露点:一定压力条件下,天然气与液态水平衡时的温度。 1、当原料天然气中酸性气体分压较高时,为了降低重沸气的水蒸气消耗,可考虑采用分流循环流程。 2、醇胺法装置的腐蚀形态:电化学腐蚀、化学腐蚀、应力腐蚀。 3、醇胺溶液降解:热降解、化学降解、氧化降解。 4、醇胺溶剂损失:蒸发、降解、夹带、在烃液中的溶解、机械损失。 5、用于气体分离的膜材料按材质分为:多孔膜、均质膜、非对称膜、复合膜机理:微孔扩散机理、溶解扩散机理。 6、自然界中的氧化铁有多种类型,但只有α—Fe2O3~H2O和γ—Fe2O3~H2O两种可以用于气体脱硫,它们对H2S有很高的反应活性,生成的硫化铁易于再生而重新氧化为活性态的氧化铁。 7、克劳斯法应用型式:部分燃烧法、分流法、直接氧化法。 8、吸附操作:间歇操作、半连续操作、连续操作。 9、天然气工业中常用的吸附剂:硅胶、活性氧化铝、活性铝土矿、分子筛。10、天然气用途:燃料(城镇居民、公共建筑、商业部门)、化工原料。11、天然气中常用的平衡计算:泡点、露点、等温闪蒸、绝热闪蒸。12、三甘醇工艺流程:脱水、再生、冷却。13、醇胺法工艺流程:吸收、闪蒸、换热、再生。14、1m3可燃冰=164m3天然气和0.8m3水。15、天然气的取样原则:所取气样要有代表性、取样管线上不能含有游离水、气体在取样管线内应保持在露点温度之上、取样管线应尽可能短,以缩短取样时间并防治水蒸汽冷凝、系统中有过滤,气体应流动5min,让水饱和过滤器。 1、天然气分类:(1)按矿藏特点分类:气井气、凝析气、油田气;(2)按烃类组分分类:C3界定发—干气、湿气C5界定法—贫气、富气;(3)按酸气含量分类:酸性天然气、洁气。 2、砜胺法中为什么溶液含水量不应低于10%且上限为25%:溶液含水量过少,再生困难,溶液粘度大,导致换热设备效果变差,而且与酸性气体同时被吸收的烃类量也随溶液水量的减少而增加,因此溶液中水含量不应低于10%;但是水含量过高容易引起发泡,一般认为水含量的上限为25%。 3、硫磺回收催化剂的失活原因及其防治方法:(1)催化剂内部结构变化,高温下内部结构变化,引起比表面积逐渐变小。方法:催化剂床层温度要低于500℃,比表面积高于123㎡/g;(2)外部因素,硫沉积、含碳物质沉积和硫酸盐化,可恢复。 4、液态硫磺的粘度随温度变化原因:液态硫在温度达到159℃以前主要以Sλ和Sπ存在,粘度降低;温度达到159℃以后开始变成Sμ,随着温度继续上升Sμ含量增加,粘度升高;从187℃开始直到硫沸点,由于S—S键断裂使Sμ的链变短,粘度降低。 5、分子筛作干燥剂的特点:选择性高、吸附性能好、为极性吸附剂、热稳定性和化学稳定性高。 6、硫磺回收工艺中反应炉、余热锅炉的作用,空速高低的影响:用空气燃烧1/3的H2S使其生成SO2,使其余2/3的H2S 于转换器中与生成的SO2继续反应;部分氧化H2S而直接生成元素硫;破坏原料酸气中的杂质;冷却反应炉出口气流并回收大量废热。空速过高或过低会造成H2S与SO2比之偏高或偏低,造成化学平衡硫损失。 7、醇胺溶液发泡原因及后果:发泡通常是由溶液中的杂质引起的,(1)醇胺的降解产物(2)溶液中悬浮的固体(3)原料气带入装置的烃类凝液或气田水(4)几乎进入溶液的外来物都可能引起发泡溶液发泡会导致脱硫装置处理能力严重下降,醇胺溶液再生不合格,脱硫效率达不到设计标准,净化气中H2S含量超标,溶液损失增加。 8、为什么醇胺法脱硫工艺流程中需要向系统补充水分:由于离开吸收塔的净化气及离开回流冷凝器的酸气都含有饱和水蒸汽,而且净化气离塔的温度远高于原料气。 9、为什么醇胺可用于天然气脱硫:醇胺中的羟基能够降低化合物的蒸气压,并增加其在水中的溶解度;氨基则在溶液提供所需的碱度,以促进对酸气组分的吸收。 10、脱水原因:(1)含有二氧化碳和硫化氢的天然气在有水存在情况下形成酸而腐蚀管路和设备(2)在一定条件下形成天然气水合物而堵塞阀门管路和设备(3)降低管路输送能力,造成不必要的动力消耗(4)水会在管路中冷凝从而造成段塞流(5)外输气必须满足质量标准(6)脱水能保证天然气在深冷的条件下冷凝。 11、天然气脱水固体吸附剂的选择特征:多孔性,大比表面积;具有高度选择性;高传质速率;再生方便,寿命长;颗粒大小均匀,强度高;具有较大的堆积密度;有良好的化学稳定性,热稳定性以及价格便宜,原料充足。 12、天然气作为燃料的优点:天然气密度小,泄漏后会很快升空,易散失,而汽、柴油较重,液态挥发有过程,且不易散失,易着火爆炸,天然气的爆炸极限比汽、柴油高2.5~4.7倍,而且天然气自燃点高,故天然气比其、柴油泄露着火危险性小;天然气汽车的钢瓶系高压容器,其材质及制造检验试验在各国均装有防爆设施,不会因汽车碰撞造成失火或爆炸,而汽油汽车的油箱装置普通,易发生失火或爆炸。

天然气加工与处理

《天然气处理与加工》课程综合复习资料 一、填空题 1.在同一燃器炉具上可燃烧相同的天然气。 2.可燃冰是一种。 3.天然气的热值约为人工燃气热值的倍。 4.天然气轻烃回收工艺中,一般采用透平膨胀机。 5.对于多组分体系,混合物的临界温度混合物能够液化的最高温度。(是、不是) 6.水露点为30℃的天然气与水隔绝后加热到50℃,然后再降到20℃,此时天然气的水露点变成了 ℃。 7.天然气中的酸性组分对天然气的含水量影响。(几乎没有、有) 8.能和天然气中的水生成Ⅱ型水合物的化合物是不能和水生成水合物的化合物。(甲烷、乙烷、丙烷、戊烷) 9.在天然气回收NGL的工艺中,天然气脱水主要是为防止水在低温下生成固体堵塞设备和管道。 10.天然气所含的酸性气CO2和H2S均可用乙醇胺水溶液吸收脱除,是属于化学吸收,其特点是CO2的含量 H2S的吸收。(不影响、影响) 11.用单乙醇胺吸收天然气中的酸性组分时,吸收塔的温度应控制在℃以下。 12.气体等熵膨胀总是比节流膨胀产生的温度效应。(更大、较小) 13.在LPG回收工艺中,丙烷的收率越高越好。(并不是、应该是) 14.在天然气吸附脱水工艺设计中,以分子筛的湿容量为设计依据。(平衡、破点、设计)。 15.在一定温度下,天然气的饱和含水量随着压力的升高而。 16.在LPG回收工艺中,其冷凝压力一般应控制在 MPa;在NGL回收工艺中,其冷凝压力一般应控制在 MPa。 17.在天然气甘醇法吸收脱水工艺中,贫甘醇溶液进吸收塔的温度应比塔内气体温度高3~8℃,主要是为了。 18.在用A型分子筛进行天然气脱水的工艺中,若希望能同时吸附脱除天然气中的酸性组分,则应选择(3A、4A、5A)分子筛。 19.在天然气吸附法脱水工艺中,可用湿气或干气作再生气,当用气作再生气时,可使脱水操作中天然气的水露点更低。 20.从全球已探明的天然气储量看出,目前世界天然气资源储量(大于、小于、等于)石油资

天然气处理与加工工艺总结

—.填空 1.天然气的分类: (1)按产状分类,游离气和溶解气 (2)按经济价值分类,常规天然气和非常规天然气 (3)按来源分类,与油有关的气,与煤有关的气,天然沼气,深源气,化合物气 (4)按组成分类,a,以天然气中烃类组成:干气,湿气,贫气,富气.b,以天然气中硫化氢、二氧化硫含量分类:净气,酸气。 (5)我国习惯分法,伴生气,气藏气和凝析气 2.天然气的主要产品:液化天然气,液化石油气,天然气凝液,天然气油,压缩天然气3.冷却脱水的方法:直接冷却法,加压冷却法,膨胀制冷冷却法,机械制冷冷却法 天然气脱水的方法:冷却法,吸收法和吸附法 4.常用的脱水吸附剂:活性铝土、活性氧化铝、硅胶和分子筛 5.固体吸附剂的吸附容量与被吸附气体的特性和分压,固体吸附剂的特性,比表面积和空隙率以及吸附温度等有关。 6.天然气液回收方法:吸附法、油吸收法、冷凝分离法。 目的:生产管输气、满足商品气的质量要求、最大程度的回收天然气液。7.尾气处理方法:从类型上可分为干法、湿法和直接灼烧法三类。除灼烧法外,按其基本原理又可分为延续反应法、H2S回收法和SO2回收法三类。SO2回收率不可能超过100%。 8.吸附剂/催化剂需要再生:Sulfreen法 还原---吸收法:SCOT法 氧化---吸收法:Wellman-Lord 二.选择 1.天然气的主要成分是甲烷,此外还有乙烷,丙烷,丁烷,戊烷及己烷以上的烃类 2.天然气处理与加工含义: (1)天然气加工是指从天然气中分离,回收某些组分,使之成为产品的那些工艺过程(2)天然气处理是指使天然气符合商品质量和管道运输要求所采取的工艺过程 3.烃露点:在一定压力下,天然气中烃类开始冷凝的温度 水露点:在一定压力下,天然气中水蒸气开始冷凝的温度 4.华白指数:是代表燃气特性的一个参数,是燃气互换性的一个判定指数 5.预测天然气水含量的方法:图解法和状态方程法 6.引起水合物形成的主要条件:(1)天然气的温度等于或低于露点温度,有液态水存在(2)在一定压力和气体组成下,天然气温度低于水合物形成的温度(3)压力增加,形成水合物的温度相应增加 7.水合物形成的条件预测:相对密度法、平衡常数法、Baillie和Wichert法、分子热力学模型法、实验法 8.天然气水合物的结构:体心立方晶体结构、金刚石型结构、结构H型水合物 在形成水合物的气体混合物体系中,可能出现平衡共存的相有气相,冰相,富水液相,富烃液相和固态水合物相 9.吸附负荷曲线(吸附波):在吸附床层中,吸附质沿不同床层高度的浓度变化曲线,称为吸附曲线

半导体工艺主要设备大全

清洗机超音波清洗机是现代工厂工业零件表面清洗的新技术,目前已广泛应用于半导体硅片的清洗。超声波清洗机“声音也可以清洗污垢”——超声波清洗机又名超声波清洗器,以其洁净的清洗效果给清洗界带来了一股强劲的清洗风暴。超声波清洗机(超声波清洗器)利用空化效应,短时间内将传统清洗方式难以洗到的狭缝、空隙、盲孔彻底清洗干净,超声波清洗机对清洗器件的养护,提高寿命起到了重要作用。CSQ系列超声波清洗机采用内置式加热系统、温控系统,有效提高了清洗效率;设置时间控制装置,清洗方便;具有频率自动跟踪功能,清洗效果稳定;多种机型、结构设计,适应不同清洗要求。CSQ系列超声波清洗机适用于珠宝首饰、眼镜、钟表零部件、汽车零部件,医疗设备、精密偶件、化纤行业(喷丝板过滤芯)等的清洗;对除油、除锈、除研磨膏、除焊渣、除蜡,涂装前、电镀前的清洗有传统清洗方式难以达到的效果。恒威公司生产CSQ系列超声波清洗机具有以下特点:不锈钢加强结构,耐酸耐碱;特种胶工艺连接,运行安全;使用IGBT模块,性能稳定;专业电源设计,性价比高。反渗透纯水机去离子水生产设备之一,通过反渗透原理来实现净水。 纯水机清洗半导体硅片用的去离子水生产设备,去离子水有毒,不可食用。 净化设备主要产品:水处理设备、灌装设备、空气净化设备、净化工程、反渗透、超滤、电渗析设备、EDI装置、离子交换设备、机械过滤器、精密过滤器、UV紫外线杀菌器、臭氧发生器、装配式洁净室、空气吹淋室、传递窗、工作台、高校送风口、空气自净室、亚高、高效过滤器等及各种配件。 风淋室:运用国外先进技术和进口电器控制系统,组装成的一种使用新型的自动吹淋室.它广泛用于微电子医院\制药\生化制品\食品卫生\精细化工\精密机械和航空航天等生产和科研单位,用于吹除进入洁净室的人体和携带物品的表面附着的尘埃,同时风淋室也起气的作用,防止未净化的空气进入洁净区域,是进行人体净化和防止室外空气污染洁净的有效设备. 抛光机整个系统是由一个旋转的硅片夹持器、承载抛光垫的工作台和抛光浆料供给装置三大部分组成。化学机械抛光时,旋转的工件以一定的压力压在旋转的抛光垫上,而由亚微米或纳米磨粒和化学溶液组成的抛光液在工件与抛光垫之间流动,并产生化学反应,工件表面形成的化学反应物由磨粒的机械作用去除,即在化学成膜和机械去膜的交替过程中实现超精密表面加工,人们称这种CMP为游离磨料CMP。 电解抛光电化学抛光是利用金属电化学阳极溶解原理进行修磨抛光。将电化学预抛光和机械精抛光有机的结合在一起,发挥了电化学和机构两类抛光特长。它不受材料硬度和韧性的限制,可抛光各种复杂形状的工件。其方法与电解磨削类似。导电抛光工具使用金钢石导电锉或石墨油石,接到电源的阴极,被抛光的工件(如模具)接到电源的阳极。 光刻胶又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。光刻胶广泛用于印刷电路和集成电路的制造以及印刷制版等过程。光刻胶的技术复杂,品种较多。根据其化学反应机理和显影原理,可分负性胶和正性胶两类。光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。基于感光树脂的化学结构,光刻胶可以分为三种类型。①光聚合型,采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。②光分解型,采用含有叠氮醌类化合

天然气生产及处理安全技术(标准版)

天然气生产及处理安全技术 (标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0682

天然气生产及处理安全技术(标准版) 从油气田中开采出的天然气,其成分主要是以甲烷为主的碳氢化合物的混合物(油田伴生气的甲烷含量一般占80%~90%,气田气的甲烷含量一般占90%以上),还含有少量的CO2、H2、N2、H2O等组分,有些气田采出的天然气还含有H2S和有机硫(硫醚、硫醇)等组分。当天然气从地层流人气井井底,沿井筒流至地面时,常常带有地层水、泥沙、岩屑等杂质,有些气田还产轻质凝析油。因此,天然气在生产过程中必须经过一系列处理。天然气生产及处理一般包括以下工艺内容:注入缓蚀剂、降压、加热、分离、计量、调压、增压等。对于含硫气田,采出的天然气要进行脱硫、脱水处理。经过处理的天然气达到管输标准,才能输入管网供厂矿和城镇居民使用。 1.注入缓蚀剂。对于含硫气井,为了抑制和减缓硫化氢气体对

井内油管套管的腐蚀,要定期向井内加注一定量的缓蚀剂。缓蚀剂流经井内油管和套管时,附着在钢管的内壁、外壁上,形成一层保护膜,将H2S、CO2等腐蚀性气体与钢管隔开,起到防腐作用。 2.降压。高压天然气必须经过降压处理,达到设备和管道允许的压力才能流人设备和管道中。通常所用的降压装置为角式节流阀。 3.加热。高压天然气在降压过程中会产生“节流效应”,膨胀吸热,温度降低。当温度下降到一定程度,甲烷与天然气中的水分结合,就会生成一种类似冰雪一样的白色结晶物质,通常人们把它叫做水合物。水合物堆积在采气设备和管道中,会引起堵塞,压力上升,气井生产出现异常,严重时,将造成设备或管道憋压爆破。为了防治水合物的生成,一般可以采用水套加热炉提高天然气温度或向天然气中加入甲醇、乙二醇等防冻剂,破坏水合物生成的条件,以保证生产正常进行。 4.分离。经过加热后的天然气流人分离器,除去油水和固体杂质,油放人储油罐储存待运,水和固体杂质排人污水池进行处理,地层水回注入废井中。

相关文档
最新文档