物理学经典教材

物理学经典教材
物理学经典教材

考研差不多在大学四年级上学期结束的时候,1月份。因此目前为止你有大约16个月的学习时间。

根据你的现状,开始学习的策略,分为三点

一是读书,掌握基础知识

二是选择将来的方向

三是提前联系学校和联系老师

关于读书,最后面开的书单花费的时间周期过长,且英语要求并不适合。但是你可以从另一个角度开始

考研的理论部分考试是各类专业里水分最小的,所以必须要彻底拿下。除了数学政治英语,物理课可以分为

普通物理+数理方法+四大力学几个部分,需要从普物开始击破。

普物的教材,清华张三慧编写的是比较简单也全面的,让你了解物理学的基本的面貌,每册都不厚,力,热,电,光,量子,在清华工科是两个学期的课程。里面有习题和思考题,如果自己思考并且做出来,就能达到普物的要求。

数学物理方法的要求就高一些。主要是复变函数和偏微分方程。如果时间不够,可以放弃复变函数,但是数理方程是必要的。《数学物理方程与特殊函数》,王元明著是最薄的一本书,也是这一个领域最低的要求。

此外是四大力学。

电动力学可以用俞允强写的《电动力学简明教程》,统计力学用汪志诚的《热力学与统计物理》,分析力学可以跳过去不学,量子力学可以用曾谨言,周世勋的书合用。

一定要解题,解题是考察自己是否真的理解的一个必要过程。可以做一下往届的考研试题。

有了这些基础,就可以考虑方向和选择学校了。方向太多,热门的竞争也会比较激烈,数理要求也比较高。多问问吧,光学,凝聚态,量子计算都很热门,但是国内差距还是很大。关于学校,国内比较好的有北京大学,中科院物理所,清华大学,南京大学。

联系老师是必要的环节,也从某种角度是一种必要的礼貌,毕竟老师没有理由只有成绩高,其他一无所知的学生。很多笔试出色的学生会落榜也是这个道理。

如果有可能,可以物理系的课程都选了,或者旁听。如果有机会,可以考虑出国读物理。报名GRE sub物理考试,大约在每年11月,要提前很久报名。题目并不难,都是选择题,且比普通物理高一点点。这是美国各大学物理系的必要的考试。

如果你有志做一名物理学家,而不只是一个物理学的博士生,下面的书单是本科阶段最好能咬牙搞定的。上面的教材虽然短小,但是国内外的教材也有很大的差距。

本科阶段物理学经典教材推荐

在网上搜索“物理学经典教材”的时候,发现了几个问题。一是单看经典,比如Diarc的The Principles of Quantum Mechanics,并不适合做教材;再是推荐人在可能并未认真读过教材的时候就给出了寥寥几句的似懂非懂的评价。为了弥补这个缺憾,方便后人,我按照如下原则,列出书单。

1. 所有书单内的书我都有研习(有的不止一遍),至少通读过大部分。

2. 每本书的特点不同,我所推荐的最大理由,在于物理图像的清晰,表述简明,富有洞察力。

3. 出版年份过早的书,虽然经典,我不推荐,因为其中的一些观念已经距离现代观念相距甚远。如Ashcroft的Solid State Physics,里面讲了很多早已被抛弃的模型。

4. 篇幅过多的不推荐。如Reif的Statistical Physics,后来的书Kardar的Statistical Physics完全可以实现更多的价值。或者法国人梅西亚的量子力学。

好的教材可以一生伴在书桌前,而不是学期结束按照重量卖掉。限于一个人读书有限,一家之言,仅供参考若有裨益,莫大欣慰。

第一部分普通物理.

普通物理分为力,热,电,光,近代物理几部分。

1.1零起点:费恩曼物理学讲义(第一卷)

从高中进入大学物理专业,起跑线上的必读书。注意要习惯和国内结构化的教材有明显不同,大段的论述可能只是在阐明一个观点。读的时候不要只是覆盖文字,而要理解背后的内容和物理过程。

通常认为这本书的缺点是没有习题。这不要紧,这本书只是用来培养进入物理世界的基本概念。

1.2 近代物理:Concepts of Modern Physics 作者:Arthur Beiser 现代物理概念/ (美)贝塞

普通物理学的近代物理(量子物理)是对于20世纪初的量子力学建立之前的物理的一种过渡。这本书的概念和物理图像非常清楚,用简单的公式阐明了问题的本质,值得反复研读。

此外,Jeremy Bernstein 等人写的Modern Physics是一本不错的教科书,有影印版。

1.3 热力学:Introduction to Statistical Physics,by Kerson Huang. 作者黄克孙是MIT的终身教授,其妻子吴健雄先生曾经用60Co的实验验证了弱相互作用下宇称不守恒的理论,直接使得杨振宁和李政道先生获得诺贝尔奖。通常提到的Kerson Huang的书,是更高深的一本Statistical Mechanics. 但是这本书的好处,在于简洁,清晰。他用箭头和方块图极大的简化了看似复杂maxell relation,并且在书里面引入了很多如对称破缺的前沿的内容,用不复杂的式子,对新物理给出了半定量的解释。

1.4 电磁学:国内有些电磁学教材的讲法,到达最后一章才给出了Maxwell方程组。其实电磁学是一门一劳永逸的课程——只要掌握了这个方程组,任何电磁现象都能加以描述。在普通物理程度,核心内容在于给出电荷产生电场,通过电流计算磁场,而对于电磁波的传播,运动电荷的辐射都由于矢量分析数学工具的缺乏而得以限制。因此我的建议是了解一些基本概念,并且及早进入电动力学的学习。

1.5 光学:光学是一个很特殊的学科。因为即使是在不需要高深理论的经典光学的范畴,也因为太多有趣的光学现象,教材得以变得厚重。如果只是掌握基本原理,却食之无味。我的大学老师曾经Eugene Hecht写的Optics做教材,这是一部很好的书,对于很多现象加以了阐释。如果时间充裕,值得一读。影印版的缺陷是把Index给删掉了,给查询造成不便。

1.6 新概念物理学教程

英文是物理学家的通用语言。因此要及早阅读英文书。开始的时候即使满页生词,查完了仍不理解整句的意思,也不要灰心,这是成为一名物理学家的必经之路。如果认为阅读英文书仍欠火候,这套书是中文书中的经典。作者赵凯华老先生是莫斯科大学的博士,他的数理基础非常深厚。本书一大缺点是相对严密的推导论证可能使得一部分同学失去兴趣,但是每章后面的思考题很有价值,是先生毕生功力的结晶,值得去独立思考。

第二部分四大力学

2.1 理论力学

Mechanics by Landau & Lifshitz. 这是著名物理学家朗道的理论物理学十卷的

第一卷。开始学习的时候,要消除畏难心里。毕竟书上所用到的数学工具仍是我们熟悉的微积分而已。边看边跟着算是好办法,只用眼睛不用笔很容易看不下去。

2.2. 电动力学

2.2.1 费恩曼讲义第二卷. 费恩曼本人认为第一卷的教学改革比较成功,而他想不出来很好的方法改进对电动力学的教学。仔细读过发现他是一种自谦。他清晰的物理直觉,会带给人以非常牢固而正确的物理观念,比如“静”场源导致了电磁现象看起来独立。

相比之下,国内有些教材,更加适合做参考书;但从参考书的角度,却不够全面,也不够深入,不够实用,更像是显摆作者的推导能力而已。

2.2.2 Griffiths 写过一本Introduction of Electrodynamics,很适合作为两学期的教材。对于物理学本身来说,我个人还是认为Feynman讲的更加有洞察力。这本书的习题非常不错,如果阅读费恩曼的书,有这方面的困惑,可以用它弥补缺憾。

2.2.3 Classical Theory of Fields by Landau & Lifshitz. 现代物理通过场论来表达,而学习电动力学就是向场论的很好的过渡。这本书一贯是朗道的风格,从第一性原理出发,给出了经典场论的理论结构和表述。

2.3 量子力学

量子力学的名著浩如烟海,每本书的特点很不相同。他山之石,可以攻玉。如果时间有限,可以以Grifiths的Introduction to Quantum Mechanics作为开端。书的开始回顾了经典力学,旧量子论,并且以薛定谔方程为核心讨论了一些例子。但是很多量子力学的课题都没有涉及,如角动量只用了一节来讨论,自旋也不够透彻。在通过这本书掌握了波动力学和一些基本应用之后,可以读Modern Quantum Mechanics by Sakurai. 这本书虽然说是高等量子力学范畴,但完全可以适合本科生自学。它的价值是无法取代的。

有人以为它缺少了讲相对论量子力学的部分。其实相对论量子力学只是过渡理论,导致的概念不清楚,直到量子场论才得到诠释。在学习量子场论的时候,相对论量子力学,会作为QED的旋量场得到表述。

量子力学是整个现代物理学的基石。以上的量子力学教材,仅仅给了一些简化的例子,以及严格或者优美的求解,离可以应用的量子力学相差甚远。有上下卷的

practical quantum mechanics,内容相对古老,我力荐诺贝尔奖得主Hans Bethe 与MIT教授,理论物理学家Roman Jackiw 合著的Intermediate Quantum Mechanics. 这本书是丑陋的,因为不再有那么优美的谐振子,而取代以各式各样的近似。对于需要用到量子力学,而并不需要量子场论概念的很多物理分支,这是再好不过的了。

2.4 统计力学

统计力学的经典教材通常认为是Pathria写的Statistical Mechanics,以及Landau理论物理第五卷。我虽然有统计物理基础,也有这两本,但都没有读过这两本书。甚是惭愧,不敢推荐。值得一提的是,MIT的教授Kardar有两本书Statistical Theory of Particles,和Statistical Theory of Fields, 观念很新,Formulism清晰,习题也很值得思考。

2.5 其他书评

2.5.1 Classical Mechanics, by Goldstein. 物理学的前沿研究在于量子世界,经典力学作为完备的学科,留给了工程师们和其他半经验力学学科。因此,对于从事物理学的人来说,应该及早的完成从经典力学到量子力学的过渡转变。实际上,掌握了最小作用量原理,拉格朗日力学及哈密顿力学表述形式,谐振子,简正模,泊松括号,就可以放心的进入量子的世界。很多时候,对于经典力学的理解,是在于学习量子物理以及场论的时候回头看的时候才有更深的理解。因此,鉴于本书过长的篇幅——在经典力学上做了过多的逗留,是不推荐它唯一的理由。

2.5.2 量子力学曾谨言. 这本书在国内的口碑是比较好的。但是所有国人的著作都不免重视严格的推导求解,而忽略物理过程本身。很多推导,其实可以留给学生作为习题,而不是全部“告诉你该怎样推”,而是启发学生自己利用已知的物理定律把某一个物理过程表述出来。其中的数学,在推导的过程中,应当通过自学或者查询数学来完成。如果要想让初学者读懂,就要假设自己是初学者,一步步的跟着走。同样的情况也发生在喀兴林的《高等量子力学》里面。这本书缺少重点,处处篇幅一样,并且没有给场论留下足够的铺垫。相比之下,很多结论都可以作为习题留给学生思考,而不是自己把话说尽。

2.5.3 热力学与统计物理汪志诚我对这本书有个人好感,但是并没有将他列为主要的推荐书。书中规中矩,并无多少特点,但是可以作为读更深入的统计物理教材的过渡。

2.5.4 Principles of Quantum Mechanics by Shankar. 除了篇幅过大,并且怀疑它以"principle"做书名并不合适,主要认为读这部书的时候,很多本可以自己独立的思考,都被作者模式化的一一展现,有一种知识上获益,思想上偷懒的感觉。

2.5.5 Classical Electrodynamics by J.D. Jackson 我坚持认为,同经典力学一样,对于电动力学这样自洽而成熟的理论,不应该耗费太多时间。除非是做同步辐射,等离子体等方向,当真正理解电动力学之后,就应该及早进入新的物理世界,而不是继续在经典的世界里浸淫。比如作者在Scattering Cross Section里花了大力气,但是分析物质的中子和光子散射理论却都是基于量子力学的。至于折射率的计算,只是在原子理论没有形成的时候的一切唯象模型而已。实际上虽然在国外用的教材无一例外的用这一本,但是讲授的难度却普遍低于它们,侧重点也迥异。

第三部分数学物理学

首推的教材是Hassani写的Mathematical Physics,影印版有4卷。这是一部非常有价值的书,内容全面实用。并不需要数学家般的严格论证,却不含糊的涵盖了从微积分水平走入现代物理的几乎所有必要的工具,从向量空间,到格林函数,再到深入的如群表示,纤维丛。这是一部深入的书,他还写过一部同样精彩的入门数学物理书, Mathematical Methods for Students of Physics and Related Fields. 这两部书,足够涵盖一直到规范场论所需要的数学内容,习题不复杂,但是马上就可以检验理解程度。

第四部分超越四大力学

四大力学之后,往往重要的课程就是固体物理了。固体物理并未有一个如同量子力学那样经典的教材,原因在于学科本身——量子力学理论是完备的,是基本理论,而固体物理需要牵扯到各种元素和物质,和化学有了联系。因此,有的人觉得Kittel的名著写的很乱,Ashcroft的理论很完善却年代久远,而Chaikin的Principles of Condensed Matter Physics太难。

其实按照我的理解,固体中的性质,其实在其他课程的各个部分都有所介绍,不必单独成课,至少不比当作基础物理学的理论模块的一部分。相比固态物理,及早掌握场论的知识是更加重要的。

第四部分遗漏的名著们

有没有写的很差不推荐的书?没有。一方面是出于对作者的尊重,一方面即使作者借鉴了他人的意见,在这门课程上作者还是多少有比读者强的见解。如果说不推荐Hilbert的数学物理方法,仅仅是因为难啃,倒也不难理解。以下的书,都是公认的经典。至于能攀过多少高峰,就要看造化了。

我的所有文章,我的妻子都是忠实的,也常常是唯一的读者。仅此一篇不同。我希望能有更多的人看到它。作者不重要,如有可能,欢迎转载。

中考物理总复习经验交流

中考物理总复习经验交流 尊敬的各位领导、各位老师: 大家好! 我是实验中学教师张亚坤,作为物理学科代表和大家交流,非常感谢各位领导和老师给我这次学习交流的机会。俗话说的好:教无定法,贵在得法,下面我就从物理复习的角度介绍一下我们在物理教学中的一些做法和体会,不当之处请各位领导和老师提出宝贵意见。 物理总复习是系统总结初中物理两年的教学内容、查漏补缺的一个环节,是指导学生进行知识之间的联系,从而建立一个较完整的初中物理知识体系的过程,当然也是迎接中考所必须的一个过程。 总复习的时间紧,任务重,有效的复习方法对提高总复习的整体效果起着至关重要的作用。现就物理组总复习的一些做法整理如下,和大家一起分享。 一、制定复习计划,合理安排复习时间和复习顺序。 我们学校寒假开学一周到两周,结束九年级下册内容,基本上从月份开始进入总复习。到四月份第一次模拟考试,不能完成一轮复习,到第二次模拟考试时,完成第一轮的基础知识,突破重点的复习,也进行了重点专题复习,这样在中考之前的一个月内,进行精选的模拟训练。复习顺序要根据实际情况和教学标准和要求进行大胆的调整。教辅书一般先声、光、热然后再力学和电学。根据心理学上的首因效应,我们先进行光学复习,其中突破重点凸透镜成像规律,突破难点光学作图,然后热学中先复习内能和比热容,之后开始重点进行力学复习,这是因为一是力学所占比例较大,再就

是力学在八年级学习的,间隔时间较长,并且由于学生的年龄特点,学习的效果也不理想,所以把重点复习放在了力学复习上。这样把比较容易的又需要记忆的内容:声和物态变化,内能的利用及能源、电和磁的关系放在总复习结束之前进行。由于时间原因,电学部分我们没有一二轮复习,寒假前一学期重点都在学习和复习电学中,寒假作业一般也是布置总结复习欧姆定律和电功率方面。也就是说力学复习完结后我们就结束第一轮复习,进入了专题复习中。 二、复习的重点和难点 (一)力学和电学两大部分。 力学的重点是压强、浮力、杠杆、机械效率。而且出题的综合性较强,与前面学过的力的平衡等知识联系密切。其中压强,浮力、密度综合是历年中考的难点,也是学生认为是最难入手的知识。电学的重点是欧姆定律、电功率,二者的综合题又是电学考试的难点,等效电路图的问题也要重点突破。 (二)声学、热学、光学和电与磁 热量的计算和光学做图是考试常出的考点。尤其是光学作图是学生最容易出错的知识。 三、复习安排 (一)第一轮复习 .第一轮复习的形式 物理第一轮总复习就是立足课标,依据教材,把主要的精力放在基础知识上,依据大纲,充分挖掘教材,决不能舍本逐末,好高骛远。也就是第一轮复习要踏踏实实过一遍课本,当然也用着一本教辅资料做练习。 第一轮复习的目的有三:()记忆基础知识、基本规律和

物理学史

复习资料---物理学史 1.伽利略的理想斜面试验推翻了亚里士多德的错误结论(力是维持物体运动的原因),得出了力是物体运动变化的原因的正确结论。 2.惠更斯研究单摆振动现象发现单摆周期公式,伽利略首次发现了单摆的等时性。 3.焦耳研究了电流的热效应,得出了焦耳定律:Q=I2 Rt 4.开尔文创立了热力学温标,把—273℃作为零度温标,也叫绝对温标。百分温标(摄氏温标)和热力学温标的分度间隔是相等的。 5.库伦利用扭秤实验精确研究发现库仑定律:静电荷之间的相互作用力与电量成正比,与距离平方成反比,静电力常量:9.0×109 6.麦克斯韦在理论上预言了电磁波的实现,同时发现了电磁波在真空中传播速度跟光速相等。牛顿(英):牛顿三定律和万有引力定律,光的色散,光的微粒说 7.卡文迪许(英):利用卡文迪许扭秤首测万有引力恒量6.67×10-11 8.库仑(法):库仑定律,利用库仑扭秤测定静电力常量 9.奥斯特(丹麦):发现电流周围存在磁场 10.安培(法):磁体的分子电流假说,电流间的相互作用 11.法拉第(英):研究电磁感应(磁生电)现象,法拉第电磁感应定律,法拉第首先引入了虚拟的电场线,后发现了电磁感应现象,实现了“转磁为电”的理想 12.楞次(俄):楞次定律 13.麦克斯韦(英):电磁场理论,光的电磁说 14.赫兹(德):发现电磁波 15.惠更斯(荷兰):光的波动说 16.托马斯·扬(英):光的双缝干涉实验 17.爱因斯坦(德、美):用光子说解释光电效应现象,质能方程 18.汤姆生(英):发现电子 19.卢瑟福(英):α粒子散射实验,原子的核式结构模型,发现质子 20.玻尔(丹麦):关于原子模型的三个假设,氢光谱理论 21.贝克勒尔(法):发现天然放射现象 22.皮埃尔·居里(法)和玛丽·居里(法):发现放射性元素钋、镭 23.查德威克(英):发现中子 24.约里奥·居里(法)和伊丽芙·居里(法):发现人工放射性同位素

(完整版)2018高中物理学史(归纳整理版)

2018年高考物理学史总结 物理学史这部分内容在高考卷上通常以选择题形式出现(实验题中也会小概率出现),分值在6分以下,一般情况下不会出偏难怪的,毕竟这不是考纲里的重点。复习建议:以现有的生活经验常识为主,稍加了解就可以。现总结如下:1、伽利略 (1)通过理想实验推翻了亚里士多德“力是维持运动的原因”的观点(2)推翻了亚里士多德“重的物体比轻物体下落得快”的观点2、开普勒:提出开普勒行星运动三定律;3、牛顿 (1)提出了三条运动定律。(2)发现表万有引力定律; 4、卡文迪许:利用扭秤装置比较准确地测出了引力常量G 5、爱因斯坦 (1)提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体)(2)提出光子说,成功地解释了光电效应规律,并因此获得诺贝尔物理学奖 (3)提出质能方程,为核能利用提出理论基础 2MC E 6、库仑:利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。7、焦耳和楞次 先后独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律(这个很冷门!以教材为主!)8、奥斯特 发现南北放置的通电直导线可以使周围的磁针偏转,称为电流的磁效应。 9、安培:研究电流在磁场中受力的规律(安培定则),分子电流假说,磁场能对电流产生作用 10、洛仑兹:提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。11、法拉第 (1)发现了由磁场产生电流的条件和规律——电磁感应现象(教材上是这样的,实际不是有一定历史原因,以教材为主!) (2)提出电荷周围有电场,提出可用电场描述电场,提出电磁场、磁感线、电场线的概念 12、楞次:确定感应电流方向的定律,愣次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。13、亨利:发现自感现象(这个也比较冷门)。 14、麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。15、赫兹: (1)用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。(2)证实了电磁理的存在。16、普朗克 提出“能量量子假说”——解释物体热辐射(黑体辐射)规律电磁波的发射和

近代物理学史论文

关于经典力学体系的建立的思索 【摘要】:力学又称经典力学,是物理学发展的最早的分支学科。力学知识最早起源于人们对自然现象和生产劳动的经验。经典力学体系的建立和古代劳动人民日常物理经验和科学家的努力探索精神是分不开的。经典力学的研究对象是天体和地面上物体的机械运动。、现在主要就以下几个方面谈谈本人关于经典力学体系的建立的思索:古希腊对物理学的贡献、中国古代的力学成就、伽利略的运动理论、牛顿与经典力学的建立。 【关键词】:第谷与开普勒奠基人——伽利略牛顿力学 首先谈谈古希腊对物理学的贡献。古希腊人在文化领域取得光辉夺目成就的同时,也对科学做出巨大的贡献。亚里士多德(公元前384~前322年)和阿基米德(前287—前212)是古希腊的伟大学者,是古希腊力学知识的集大成者。 亚里士多德研究了在重力作用下物体的运动,论证了运动、时间和空间的关系,区分了物质方面的运动、量方面的运动和空间方面的运动。他的主要成就有时提出了以下五点:(1)物体的运动:物体永远在运动变化,变化就是运动;(2)将自然界的运动分为自然运动和非自然运动;(3)①力是产生物体运动的原因,②力是维持物体运动的原因;(4)对抛体运动的解释:自然界害怕虚空,填补空虚推动物体;(5)自由落体:物体越重,下落速度应该越大。 在我看来,亚里士多德对经典力学体系的建立,和他的以下几点精神十分不开的:(1)亚里士多德能够摆脱神的意志,并能形成一套自圆其说的体系,在当时是有非常重要意义的;(2)亚里士多德重视近身事物的观察,强调思辨的作用,并总结出结论解释现象,引起众多的讨论与研究。与亚里士多德从小对自然科学特别爱好,也很钻研、好学多问、才华横溢、成绩优异也是分不开的。在那个物理理论贫瘠的年代,亚里士多德的成就是璀璨的,虽然由于他自身的局限性,提出的一些错误的观点,阻碍了物理学的快速发展,但是他对物理的贡献仍然是不可否认的。 阿基米德是古希腊继亚里士多德之后又一科学巨匠,他从生产实践出发,运用数学的方法建立起静力学,被誉为“力学之父”,还有人认为他是近代型的物理学家。阿基米德在力学上的贡献主要是严格地证明了杠杆定律的浮力定律,后

中考物理复习经验交流材料

中考物理复习经验交流材料 2017年中考马上就要到来了,全体师生都在全力以赴进行复习迎考,如何对初中物理有效的复习,下面是我们丁岭中学九年级物理组的一些做法,仅供大家参考。 一、认真学习《新课标》和《潜江市中考说明》 《新课标》和《潜江市中考说明》是教学的基本要求,它规定了中考的范围和要求,是中考命题的依据之一,对于中考复习具有重要的作用。通过对《新课标》和《潜江市中考说明》的学习,我们明确了考试的要求,了解题型和对学生的能力要求,使自己的复习有方向、有目标,使自己的复习能有一个明确的评价依据,从而有利于把握复习的广度和深度,使复习更有的放矢。 二、制定切实可行的教学计划 开学初,我们物理组的教师根据《新课标》和《潜江市中考说明》要求,经过反复的讨论,制定了本学年度的教学计划,将教学内容细化到每天,甚至每一课时,开学后,严格按计划教学: 一轮复习(3月1号到4月底):一轮复习中,我们只用一本资料,这本资料是我们全体毕业班教师根据中考要求,对近三年的中考题汇编而成,对课本进行五清教学,教学案分为以下几个版块:(一)我要记住(清知识点):掌握物理概念和规律形成的过程;(二)我会识图(清插图):对教材中的插图进行实例分析;(三)下面的实验我会做(清实验):采用空白教案的形式,让学生对实验器材,实验过程及实验现象、结论进行总结;(四)实验方法小结(清方法);(五)和同桌比一比(清习题),通过和同桌比解题速度的方式,让学生会对课后习题进行解答,以达到解决一类问题的作用,从而达到举一反三、触类旁通。 二轮复习(4月28到5月底):一轮复习的同时,我们全体教师特别留心学生的学习动态,将学生在一轮复习的过程中所表现出来的突出问题设计成专题,比如,光学中的凸透镜的成像规律问题、光学做图问题;力学中的特殊方法测密度问题,图像问题,效率问题;电学中的动态电路分析,电路安全问题,实际功率的计算问题,热学中的效率问题,同时,还进行题型的专题训练,比如实验专题、作图专题,综合计算专题等等进行专题训练,进行重点和难点的突破,让学生把前后知识联系起来,使所学的知识相互迁移,连成线,织成网,强化学

(完整)初中物理学史

初中物理学史

初中物理常用研究方法 1. 控制变量法 在研究物理问题时,某一物理量往往受几个不同物理的影响,为了确定各个不同物理量之间的关系,就需要控制某些量,使其固定不变,改变某一个量,看所研究的物理量与该物理量之间的关系。在很多探究性实验中经常用到此法。如:(1)探究影响滑动摩擦力大小的因素;(2)探究影响电流产生的热量大小的因素;(3)探究影响压力作用大小的因素;(4)电磁铁磁性与哪些因数有关大小的因素;(5)探究响物体的动能、重力势能大小大小的因素等。 2、等效替代法 在物理学中,将一个或多个物理量、一种物理装置、一个物理状态或过程来替代,得到同样的结论,这样的方法称为等效(替代)法,运用这样的方法可以使所要研究的问题简单化、直观化。例如:⑴串联电路的总电阻、并联电路的总电阻都利用了等效的思想。⑵在“曹冲称象”中用石块等效替换大象,效果相同。⑶在研究平面镜成像实验中,用两根完全相同的蜡烛,其中一根等效另一根的像。(4)研究多个力作用产生的效果,引入合力。 3、建立理想模型法 把复杂问题简单化,摒弃次要条件,抓住主要因素,对实际问题进行理想化处理,构建理想化的物理模型,这是一种重要的物理思想。例如:匀速直线运动、杠杆是一种理想模型。在建立起理想化模型的基础上,有时为了更加形象地描述所要研究的物理现象、物理问题,还需要引入一些虚拟的内容,籍此来形象、直观地表述物理情景。例如:原子结构模型、光线、磁感线都是虚拟假定出来的。 4. 实验推理法 实验推理法它以大量的可靠的事实为基础,以真实的实验为原形,通过合理的推理得出结论,深该地揭示物理规律的本质,是物理学研究的一种重要的思想方法。如:⑴研究牛顿第一定律;⑵研究真空中能否传声;(3)卢瑟的子结构模型;(4)人们认识自然界只有两种电荷。 5. 转换法 在物理学习中,有时需要研究看不见的物质(如电流、分子、力、磁场),这时就必须将研究的方向转移到由该物质产生的各种可见的效应、效果上,由此来分析、研究该物质的存在、大小等情况,这种研究方法称为转换法。如: ⑴电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定,即根据电流产生的效应来判断。 ⑵分子运动看不见、摸不着,不好研究,便可通过研究扩散现象认识它。 ⑶磁场运动看不见、摸不着,判断磁场是否存在时,用小磁针放在其中看是否转动来确定。 ⑷判断电磁铁强弱时,用电磁铁吸引大头针的多少来确定。 6. 类比法 为了把要表述的物理问题说得清楚明白,往往用具体的、有形的、人们民熟知的事物来类比要说明的那些抽象的、无形的、陌生的事物。通过类比,使人们对所要提示的事物有一个直接的、具体的、形象的认识,找出类似的规律。⑴固体、液体、气体的分子结构用学生在校的情况类比。⑵原子核的链式反应与火柴的链式反应类比;(3)中继站与接力赛类比;(4)分子的动能、势能与物体的动能、势能类比;(5)电流、电压类比水路、水圧等。

近代物理学史小论文

近代物理学史小论文 浅谈大学教育 关键词:大学教育知识问题 摘要:通过对现今大学教育的了解~加上自己所处学校的教育情况~提出一些小小的看法,同时对大学的教育方法与方式就自己的认为讲述一下自己的见解~并且对现今的大学教育中存在的问题结合自己的所见略微加以提出。 大学教育是每一个学子都渴望经历的一个过程,在中国,学生对大学特别是名牌大学更是趋之若鹜,都希望上一个好的大学,接受好的教育。这是无可厚非的。然而,就现今的大学教育,虽然是那么的让人向往,但是有些方面还是有必要去做深深地思考。 就我的看法而言,大学之所以区别于高中,主要在一个“大”字上,这里的“大”有几层含义,最表面也是最简单的那就是因为大学的校园之大,面积之广,建筑之多;其次,深一层次,是因为大学所涉及的知识面之广和全,所传授的知识是直接运用于各个领域的;最后,“大”字再某种层次还可以理解为“高”的意思,即大学里所学的知识不再像以前那样,以前学的基本都是一些表面的浅显的知识,重在的是了解而不是深究,然而在大学里,我们更注重的是有深入知识的内部层面,要知其然并知其所以然。举个例子,就我们理科生而言,在中学时代,像有些课程,比如物理,我们只是简单的套用课本上的一些物理公式用来解题,只要知其然已达要求,不必深究这么东西是从何而来,在大学就不一样了,对于物理专业的学生,也许一个简单的公式就需要大量的时间来推演与深究,每个细节都必不可少。还有,在中学数学课程上有些内容,例如微积分,只是提出,给些公式并一笔带过,很少就其具体的推导方法,在大学,却几乎要用一到两个学期都不能系统的

学完这门课。总之,我们在大学我们更注重的是对知识更深一层次的剖析,究其本质来说明问题。正因为如此,我们才说大学教育是一种高等教育。 大学教育不仅在教育的内容上有所不同,同时在教育的方法和手段上与中学更是大不相同。我们知道,在中学阶段,大都数学生都是在被动的学习,接受知识。是因为有强大的压制力和学校老师的监督管理,学生才不得不去学习,努不努力那就另当别论了。而在大学,我们倡导的是学习自主自觉,没有人再会太大的干预你的学习,一切都是自主,只不过最后通过学期末的考试来检查你的学习情况。也许有时候在某门课没通过,最大的“处罚”就是重修及取消一切评优资格,最后只要过了就达到了要求。至于你做的好不好,并不受限制,只要过了最低标准就行。所以,人们常说,大学是很轻松的。其实不然。 在大学里,虽然学校或者是学院对学生的学习的要求并不是那么的严格,但是在某些方面还是有一些强制性的规定。比如说,学校规定每个在校生必须按照要求完成大学四年内所需的学分,不仅仅在与自己的专业有关课程上,而且在公共选修课程上。这就需要学生规定的时间内尽可能学到更多的知识,即扩大知识面,这不仅仅局限于自己的专业方面。这也许就大学教育的一个较大的特点。 就我自己这个专业来讲,要求大体上和学校规定的一样,在前两个学年这个阶段,主要是学习一些通识课加上必要的专业基础课,并没有更加全面的接触专业课程,所以学习要求基本和全校其他各学院系同届的学生一样,所以我觉得大学更重要的时期是在接受专业课程教育的阶段,虽然只有一年,但在我认为,这应该是大学四年的核心内容。所以,在大学,最能凸显各个专业特点的时期就应在这宝贵的一年。同时,要想在大学里学有所得,重要的是把我专业课的这一年,这也是以后能够融入社会参加工作的保证。 国家对教育事业的关注应该是很重视的,因为一个国家要发展,必须要有技术人才,而高等院校正是国家所需各行各业的人才的来源地,教育事业得不到发展,

九年级2018年物理中考备考心得体会

九年级2018年物理中考备考心得体会 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2018年物理中考备考心得体会 **中学张*丽 5月6日我参加了县教研室在县一初中举办的2018年第三次中考物理备考,会上认真聆听了郑州市八十二中董慧老师关于今年中招物理课的复习及试题分析和命题预测课受益匪浅。体会如下 一、在今后的教学工作中给我的启示是: 1.求变:教师的教学理念要变,改进教师的教学方式及学生的学习方式。将教学重心从过分强调知识的传授和积累向培养学生的学习兴趣、学习方式、学习愿望和学习能力的培养方向转化, 使学生成为主动获得知识的主体, 形成尊重事实、探索真理的科学态度。 2.求源:重视概念的形成和规律的建立过程。教师对中考片面的理解,使得初中物理教学只注重习题教学而忽视了对物理概念、规律形成过程的教学。造成进入学生大脑的知识是僵硬的, 学得越多死知识越多, 长期如此, 不仅师生消耗大量的时间和精力, 还造成学习潜力得不到挖掘, 越学越吃力, 打击学生学习的积极性。越是原始的知识,迁移能力就越强,因此,对知识本身的理解和知识意义的建构,在知识获得的初期十分重要。 3.求真:突出学科特点,重视能力培养。 2017年物理试题中知识的应用, 除要求知识本身的理解和知识意义的建构外, 还在能力上提出了较高的要求, 如观察能力、审题能力、理解分析能力、实验能力、归纳和表达能

力以及应用数学知识处理物理问题的能力等, 只有真正做到既能理解又能应用的程度, 才能达到知识与技能、过程与方法的教学目标。 4.求高:教师站位要高。教师站位高不仅是知识层次,教学能力,也包含对《课程标准》的理解程度、有明确的教学目标等,在教学中做到游刃有余,举重若轻。引导学生加强知识的横向联系, 从不同角度解读所谓的旧知识, 达到灵活运用的程度。 5.求低:重视基础知识和基本技能教学。关注基础教育的基础性、普及性, 面向全体学生, 使大多数学生的都有所收获。教师要区分讲授新课还是初三总复习, 不能时时刻刻瞄准中考。其实即使是中考试题也有约 70%左右的容易题和中等难度题,基础知识和基本技能教学不应弱化。因此,教学中避免那些大题量, 高难度,实:一是狠抓落实,执行计划要不折不扣,有始有终;二是落到纸面,确保学生会的试题能做对,避免出现“学而不会、懂而不对”。 三、复习的大致安排: 第一阶段全面系统复习:应该是以中考知识点的整理和查漏补缺为主要目的,将学生以前学到的所有零碎知识系统地、有条理地重组,优化知识结构。第一阶段复习是中考能否取得成功的关键。在第一阶段复习中, 应注意避免以下几个问题:

物理学史及其物理研究方法 教案

微专题物理学史及常见的思想方法一、人物部分 1.力学部分 (1)胡克:发现了胡克定律. (2)伽利略:在研究自由落体中采用的“逻辑推理+实验研究”方法是人类思想史上最伟大的成就之一.(理想斜面实验) (3)牛顿:得出牛顿运动定律及万有引力定律,奠定了以牛顿运动定律为基础的经典力学. (4)开普勒:发现了行星运动规律——开普勒三定律,研究的是第谷的观察数据 (5)卡文迪许:巧妙地利用扭秤装置测出了万有引力常量,被称作是测出地球质量的人 2.电磁学部分 (1)库仑:,利用库仑扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量. (2)密立根:测定电荷量 (3)欧姆:德国物理学家,在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系——欧姆定律. (4)奥斯特:,通过试验发现了电流能产生磁场,电流的磁效应 (5)安培:,提出了著名的分子电流假说,总结出了右手螺旋定则和左手定则.安培在电磁学中的成就很多,被誉为“电学中的牛顿”. (6)劳伦斯:,发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步. (7)法拉第:英国科学家,发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念. (8)楞次:概括试验结果,发表了确定感应电流方向的楞次定律. 3.选考部分 (4)麦克斯韦:总结前人研究的基础上,建立了完整的电磁场理论.

(5)赫兹:在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,并测得电磁波传播速度等于光速,证实了光是一种电磁波. (6)惠更斯:在对光的研究中,提出了光的波动说,发明了摆钟. (7)托马斯·杨:,首先巧妙而简单地解决了相干光源问题,成功地观察到光的干涉现象. (8)伦琴:德国物理学家,继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线——伦琴射线. (9)普朗克:德国物理学家,提出量子概念——电磁辐射(含光辐射)的能量是不连续的,其在热力学方面也有巨大贡献. (10)爱因斯坦:他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论. (11)德布罗意:提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应. (12)汤姆生:,研究阴极射线时发现了电子,测得了电子的比荷;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象. (13)卢瑟福:通过α粒子的散射现象,提出原子的核式结构.实现人工核转变的第一人,发现了质子. (14)玻尔:,把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论. (15)查德威克:英国物理学家,从原子核的人工转变实验研究中,发现了中子. (16)威尔逊:英国物理学家,发明了威尔逊云室以观察α、β、γ射线的径迹. (17)贝克勒尔:法国物理学家,首次发现了铀的天然放射现象,开始认识原子核结构是复杂的. (18)玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者. (19)约里奥·居里夫妇:法国物理学家,老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素.

(完整版)人教版物理学史归纳

一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 牛顿第一定律—惯性定律:一切物体中保持匀速直线运动或静止状态,除非作用在它上面的力迫使它改变这种状态。(力是改变物体运动状态的原因) 牛顿第二定律:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向与作用力的方向相同。(作用力即合外力;F=ma) 牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律(F=kx);经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆的,太阳处在椭圆的一个焦点上。 开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。 开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它轨道周期的二次方的比值都相等。 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 二、电磁学:(选修3-1、3-2) 1、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 2、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 3、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 4、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 5、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出

物理学史

物理学史 ★伽利略(意大利物理学家)对物理学的贡献: ①发现摆的等时性 ②物体下落过程中的运动情况与物体的质量无关 ③伽利略的理想斜面实验:在1683年出版的《两种新科学的对话》一书中,运用观察—假设—数学推理的方法,详细地研究了落体运动。将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因) 经典题目1 伽利略根据实验证实了力是使物体运动的原因(错) 伽利略认为力是维持物体运动的原因(错) 伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对) 伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对) ★胡克(英国物理学家) 对物理学的贡献:胡克定律 经典题目2 胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) ★牛顿(英国物理学家)对物理学的贡献 ①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学 ②经典力学的建立标志着近代自然科学的诞生 经典题目3 牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对) 牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对) ★卡文迪许 贡献:测量了万有引力常量 典型题目4 牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对) ★亚里士多德(古希腊) 观点: ①重的物理下落得比轻的物体快 ②力是维持物体运动的原因 经典题目5 亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对) ★开普勒(德国天文学家) 对物理学的贡献开普勒三定律 经典题目6 开普勒发现了万有引力定律和行星运动规律(错)★托勒密(古希腊科学家) 观点:发展和完善了地心说 ★哥白尼(波兰天文学家)观点:日心说 ★第谷(丹麦天文学家)贡献:测量天体的运动 ★库仑(法国物理学家) 贡献:发现了库仑定律——标志着电学的研究从定性走向定量 典型题目7 库仑总结并确认了真空中两个静止点电荷之间的相互作用(对) 库仑发现了电流的磁效应(错) ★密立根贡献:密立根油滴实验——测定元电荷通过油滴实验测定了元电荷的数值。 e=1.6×10-19C ★昂纳斯(荷兰物理学家)发现超导 ★欧姆:贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家) 电流可以使周围的磁针偏转的效应,称为电流的磁效应(电流能够产生磁场)

高中物理学史人物大全

新课程高考高中物理学史参考 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 1、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 3、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 选修部分: 4、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 5、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 6、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 7、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 8、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。 9、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。 10、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。 11、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。 12、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。

物理学史名人排行榜

1.艾萨克·牛顿 艾萨克·牛顿——英格兰物理学家、数学家、天文学家、自然哲学家。杰出贡献是对万有引力和三大运动定律进行了描述,这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。 2.阿尔伯特·爱因斯坦 爱因斯坦——美籍德裔犹太人,现代物理学的开创者和奠基人,相对论的提出者,“决定论量子力学诠释”的捍卫者,他在科学史中有着不可磨灭的地位和影响。 3.詹姆斯·麦克斯韦 麦克斯韦——19世纪伟大的英国物理学家、数学家。他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一。他为物理学树起了一座丰碑。 4.尼尔斯·玻尔 尼尔斯·亨利克·戴维·玻尔——丹麦物理学家。他通过引入量子化条件,提出了玻尔模型来解释氢原子光谱,提出互补原理和哥本哈根诠释来解释量子力学,对二十世纪物理学的发展有深远的影响。 5.阿基米德 阿基米德——古希腊伟大的数学家、力学家。阿基米德对数学和物理的发展做出了巨大的贡献,为社会进步和人类发展做出了不可磨灭的影响,即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感,他是“理论天才与实验天才合于一人的理想化身”,文艺复兴时期的达芬奇和伽利略等人都拿他来做自己的楷模。 6.维尔纳·海森堡 维尔纳·卡尔·海森堡——德国物理学家。量子力学是整个科学史上最重要的成就之一,他的《量子论的物理学基础》是量子力学领域的一部经典著作。 7.伽利略·伽利雷 伽利略——意大利物理学家、天文学家和哲学家,将定量分析引入物理学,爱因斯坦认为是他开创了近现代物理学的研究方法。他创制了天文望远镜来观测天体,他发现了月球表面的凹凸不平,并亲手绘制了第一幅月面图。先后发现了木星的四颗卫星、土星光环、太阳黑子、太阳的自转、金星和水星的盈亏现象等等。这些发现开辟了天文学的新时代。 8.安德烈·玛丽·安培 安德烈·玛丽·安培——法国物理学家,安培在他的一生中,只有很短的时期从事物理工作,可是他却能以独特的、透彻的分析,论述带电导线的磁效应,因此称他是电动力学的先创者,他是当之无愧的。

初三物理备考经验交流会发言稿

初三物理学科备考经验交流会 发言稿 尊敬的各位领导、老师们: 大家好! 我是来自于大王初中的陈美玲,非常荣幸能有这样的机会与大家一起交流,2018年中考转眼即将来临,面对临考的学生,新的考试形势,在17年中考的基础上,怎样才能科学高效的组织好今年中考备考阶段的教学和复习工作,是我们在座的教师细思而深思的问题,在这里,我作为物理学科的教师从我校角度谈几点浅显的感受和做法,谈不上经验,因为作为一名年轻教师,我自己也是摸着石头过河,在不断地学习,不断地成长,今天这个会对我来说更是一个反思进步的机会,不妥之处恳请各位不吝批评指正。 下面我粗浅的谈一下我们在物理复习中的几点做法: 一、明确考点抓基础 复习课和新授课一样,首先领悟课程标准把握好教材,明确教学目标、内容等。在这一点上,我们会做到“四个研究”。 1.研究试题 研究试题,包括研究考点、命题规律以及答案。我们老师也和在座的老师一样做遍历年中考题及其副题,在做题的时候注意知识点的贯穿,分析答案,把握得分点。一轮复习是滚雪球式的,这样在一轮复习时可以把握好基础及重点,让学生也知道高频考点。在这一点上我们对优生多抓失分点,中等生找生长点,学困生抓得分点。 2.研究学生

及时做当堂练、阶段练,了解学情,掌握学生基础,根据考点分析学生理解情况,及时作出调整与改进。针对学生情况我们实施分层教学、分类布置作业,并做到培优补差,优生我们会加大知识的拓展,在关注优生的同时,也会给学困生相应的补充,比如做一些书上的例题。注重个别辅导并推行优生帮差生。同时,为避免复习枯燥无味,根据学生性格、学习能力等等因素我们对学生进行合理分组,建立一定的反馈评分制度,促进组内合作与组间竞争。 3.研究课堂 把握课堂,向课堂要效率,认真仔细备课,把上课当做“做饭”来做,教学内容为食材,教学方法、途径则是加料、加味。在这一点上我们会做到“三个必讲”(1)核心问题必讲,(2)思路方法必讲,(3)易错易混必讲。“两个不讲”已会的不讲、讲了也不会的不讲,尽量做到精讲、精练。尤其是在二轮复习,采用专题式复习,为避免上课成为教师讲学生听,我们在小组中把课堂一分为三,围绕一个知识点,前几分钟老师讲,10—15分钟学生做,其余时间学生自行讨论,对个别基础太差的同学,我们又会细分,在课堂前五分钟让他们描述考点,由于任务紧迫加上集体督促,这些学生往往积极性较高,也会有不同层次的收获,不至于置身于课堂之外。 4.研究题型 我们也是吃透历年中考说明并注意最新变化,针对知识点,分析题目类型,培养学生做题的素养。例如实验题我们会重视实验抓应用,实验题要求学生掌握各种基本仪器和测量工具的运用,以及某些物理量的测量原理、步骤、方法。我们会根据题型利用手头的实验仪器或

物理学史教学大纲

《物理学史》课程教学大纲(10学时) (理论课程) 一课程说明 (一)课程概况 课程中文名称:《物理学史》 课程英文名称:history of physics 课程编码:3910252217 开课学院:理学院 适用专业/开课学期:物理学/第7学期 学分/周学时:0.5/ 《物理学史》为物理学专业限定专业选修课。本课程在学习完专业课的基础上,系统介绍物理学发展的历史过程,能帮助学习者还原物理学发展的历史面目,了解与概括物理学基础知识发展的全貌及总体规律,有利于巩固和加深理解已学的物理知识。物理规律的发现包含了物理学家们大量思想和方法的创新,了解掌握物理学思想和方法的发展过程,对于理解物理规律的本质,培养大学生的创新思想和创新意识、创新能力都有着重要的作用。 学习《物理学史》,一般要求已学完物理学方面的专业课程。 (二)课程目标 通过本课程学习,学生应了解物理学各主要分支学科的发展历史,弄清物理学发展历程中重要思想、方法、规律、原理提出的前因后果及其发展的历史线索,掌握其中包含的创新思想和创新方法。并在此基础上形成对物理学历史发展的全面认识。 二教学方法和手段 本课程的教学以讲授为主,以课堂讨论为补充。不管是讲授还是课堂讨论,都要贯彻启发式教学原则,启迪学生思维,引导学生对物理学的历史进行正确理解,培养学生分析、判断历史问题能力。 为达到上述目的,应充分发挥好课堂教学主渠道的作用,并利用计算机辅助教学、网络教学等现代化教育技术的优势,扩大教学信息量,提高教学质量和效率。 三教学内容 第一章中国古代物理学(第一、二章共1学时) 一、教学目标

了解中国古代自然观、中国古代的力学、热学、光学、电磁学、声学知识和中国古代物理学的特点,能分析形成这些特点的原因。 二、教学重、难点 1·重点:中国古代自然观、中国古代的力学、热学、光学、电磁学、声学知识和中国古代物理学的特点 2·难点:分析形成这些特点的原因 三、主要内容 1·中国古代自然观 2·中国古代的力学知识 3·中国古代的热学知识 4·中国古代的光学知识 5·中国古代的电磁学知识 6·中国古代的声学知识 7·中国古代物理学的特点 第二章西方古代物理学(1学时) 一、教学目标 了解古希腊的自然观、古希腊和中世纪的物理知识,能总结出西方古代物理学的特点,与中国古代物理学的特点相区别,并能分析形成这些区别的主要原因。 二、教学重、难点 1·重点:古希腊的自然观、古希腊和中世纪的物理知识 2·难点:总结出西方古代物理学的特点,找出与中国古代物理学特点的区别 三、主要内容 1·古希腊的自然观 2·古希腊的物理知识 3·中世纪的物理知识 第三章经典力学的建立和发展(1学时) 一、教学目标 了解运动定律的建立和万有引力定律的发现过程,牛顿的重大贡献和牛顿后力学的发展情况。理解伽利略在研究运动过程中对逻辑方法的应用。 二、教学重、难点 1·重点:运动定律的建立 2·难点:理解万有引力定律的发现过程

(完整word版)中考物理必背知识点总结复习提纲

中考物理必考99条知识点复习提纲 海苦无边天做岸 山登绝顶我为峰 班级: 姓名: 1、乐音三要素及决定因素:①音调是指声音的高低,频率越大,音调越高 ②响度是指声音的大小,振幅越大,距发声体越近,响度越大。 ③音色指不同发声体声音特色,不同发声体在音调和响度相同时,音色是不同的。 2、声音在空气中的传播速度为:340m/s 3、3、光的直线传播的现象:影子、小孔成像、日食和月食。 4、光的反射定律:反射光线、入射光线和法线都在同一个平面内,反射光线和入射光线分居法线的两侧,反射角等于入射角。【总结为“三线共面、法线居中、两角相等”。】 ④像与物的对应点的连线到镜面的距离垂直 6、光的折射规律:①在折射现象中,折射光线、入射光线和法线都在同一个平面内; ②光从空气斜射入水中或其他介质中时,折射光线向法线方向偏折(折射角<入射角); ③光从水或其他介质中斜射入空气中时,折射光线向界面方向偏折(折射角>入射角)。 7、光在空气中传播的速度为:c=3×108m/s 8、光的三原色:红、绿、蓝 9、凸透镜对光有会聚作用,凹透镜对光有发散作用。 10、近视眼矫正应佩带凹透镜,远视眼矫正应佩带凸透镜 11、凸透镜成像规律及应用: 13、熔化吸热,凝固放热 14、晶体熔化特点:固液共存,吸热,温度不变 非晶体熔化特点:吸热,先变软变稀,最后变为液态 非晶体熔点: 温度不断上升。

15、熔化的条件:⑴达到熔点。⑵继续吸热。 16、汽化:物质从液态变为气态的过程叫汽化。 ②汽化的两种方式:沸腾和蒸发 ③沸腾是在一定温度下在液体内部和表面同时发生的剧烈的汽化现象。 ④沸腾的条件:⑴温度达到沸点。⑵继续吸热。沸腾的特点:不断吸热,温度不变 ⑤蒸发是在任何温度下且只在液体表面发生的汽化现象。 ⑥蒸发快慢决定因素:液体的温度越高蒸发越快;液体的表面积越大蒸发越快;液体表面上的空气流动越快蒸发越快。 17、汽化吸热,液化放热 18、液化:物质从气态变为液态的过程叫液化 ①液化的两种方法:降低温度;压缩体积。②常见的液化:雾和露的形成;冰棒周围的“白气”;冷饮瓶外的水滴。29、升华:物质从固态直接变为气态的过程叫升华。物质在升华过程中要吸收大量的热,有制冷作用。常见的升华现象:樟脑丸先变小最后不见了;寒冷的冬天,积雪没有熔化却越来越少,最后不见了;用久的灯丝变细。 19、凝华:物质从气态直接变为固态的过程叫凝华。物质在凝华过程中要放热。常见的凝华现象:玻璃窗上的冰花;霜;用久的灯泡变黑;冰棒上的“白粉”。 20、物体内能的改变方法:做功和热传递。 21、分子动理论的内容是:①一切物体的分子都永不停息地做无规则运动。②分子间存在相互作用的引力和斥力。 22、比执容:单位:焦每千克摄氏度(J/(㎏·℃) 符号:C 热量的计算公式:Q吸=Cm(t-t0) 23、热值:单位:焦每千克(J/㎏)计算公式:Q放=mq 24、热机知识:①汽油机工作的四个冲程:吸气冲程,压缩冲程,做功冲程,排气冲程 汽油机的一个工作循环中曲轴转动两周对外做功一次在压缩冲程和做功冲程中发生了能量转化,压缩冲程中机械能转化为内能,在做功冲程中燃料燃烧的化学能转化为内能,内能又转化为机械能。 25分子由原子组成,原子由原子核和(核外)电子组成(和太阳系相似),原子核由质子和中子组成。 26、质量:物体含有物质的多少。质量是物体本身的一种属性,它的大小不随形状、状态、位置、温度的变化而变化 27、天平:物体放于左盘,向盘中加减砝码要用镊子, 28、天平的使用:(1)把天平放在水平台上;(2)把游码放到标尺放到左端的零刻线处,调节横梁上的平衡螺母,使天平平衡(①指针指向分度盘的中线或左右摆动幅度相等,②调平前,如果指针向左偏(右盘高)就向右调节平衡螺母,如果指针向右偏(左盘高)就向左调节平衡螺母)(3)把物体放到左盘,右盘放砝码,增减砝码并调节游码,使天平平衡。(4)读数:m物=m砝码+ m游码示数 29、密度是物质的一种特殊属性;同种物质的质量跟体积成正比,质量跟体积的比值是定值。

相关文档
最新文档