(完整版)复旦大学材料科学导论课后习题答案(搭配:石德珂《材料科学基础》教材)

(完整版)复旦大学材料科学导论课后习题答案(搭配:石德珂《材料科学基础》教材)
(完整版)复旦大学材料科学导论课后习题答案(搭配:石德珂《材料科学基础》教材)

材料科学导论课后习题答案

第一章材料科学概论

1.氧化铝既牢固又坚硬且耐磨,但为什么不能用来制造榔头?

答:氧化铝脆性较高,且抗震性不佳。

2.将下列材料按金属、陶瓷、聚合物和复合材料进行分类:

黄铜、环氧树脂、混泥土、镁合金、玻璃钢、沥青、碳化硅、铅锡焊料、橡胶、纸杯答:金属:黄铜、镁合金、铅锡焊料;陶瓷:碳化硅;聚合物:环氧树脂、沥青、橡胶、纸杯;复合材料:混泥土、玻璃钢

3.下列用品选材时,哪些性能特别重要?

答:汽车曲柄:强度,耐冲击韧度,耐磨性,抗疲劳强度;

电灯泡灯丝:熔点高,耐高温,电阻大;

剪刀:硬度和高耐磨性,足够的强度和冲击韧性;

汽车挡风玻璃:透光性,硬度;

电视机荧光屏:光学特性,足够的发光亮度。

第二章材料结构的基础知识

1.下列电子排列方式中,哪一个是惰性元素、卤族元素、碱族、碱土族元素及过渡金属?

(1) 1s2 2s2 2p6 3s2 3p6 3d7 4s2

(2) 1s2 2s2 2p6 3s2 3p6

(3) 1s2 2s2 2p5

(4) 1s2 2s2 2p6 3s2

(5) 1s2 2s2 2p6 3s2 3p6 3d2 4s2

(6) 1s2 2s2 2p6 3s2 3p6 4s1

答:惰性元素:(2);卤族元素:(3);碱族:(6);碱土族:(4);过渡金属:(1),(5)

2.稀土族元素电子排列的特点是什么?为什么它们处于周期表的同一空格内?

答:稀土族元素的电子在填满6s态后,先依次填入远离外壳层的4f、5d层,在此过程中,由于电子层最外层和次外层的电子分布没有变化,这些元素具有几乎相同的化学性质,故处于周期表的同一空格内。

3.描述氢键的本质,什么情况下容易形成氢键?

答:氢键本质上与范德华键一样,是靠分子间的偶极吸引力结合在一起。它是氢原子同时与两个电负性很强、原子半径较小的原子(或原子团)之间的结合所形成的物理键。当氢原子与一个电负性很强的原子(或原子团)X结合成分子时,氢原子的一个电子转移至该原子壳层上;分子的氢变成一个裸露的质子,对另外一个电负性较大的原子Y表现出较强的吸引力,与Y之间形成氢键。

4.为什么金属键结合的固体材料的密度比离子键或共价键固体高?

答:一是金属原子质量大;二是金属键的结合方式没有方向性,原子趋于紧密排列,得到简单的原子排列形态。离子键和共价键结合的原子,相邻原子的个数受到共价键数目的限制,离子键结合还要满足正、负离子间电荷的平衡,原子不可能紧密堆积,而且存在孔洞缺陷,故金属键结合的固体材料的密度比离子键或共价键固体高。

5.应用公式计算Mg2+O2-离子对的结合键能,以及每摩尔MgO晶体的结合键能。假设离子

半径为r Mg2+=0.065nm;r O2-=0.140nm;n=7。

答:F

吸引=?z1z2e2

4πε0a2

=e2

πε0(r Mg2++r O2?)2

F

排斥

=?nb

a n+1

=?7b

(r Mg2++r O2?)8

在平衡时,F吸引=F排斥

故e2

πε0(r Mg2++r O2?)2=7b

(r Mg2++r O2?)8

,解得b=9.763×10?87N?m10

晶体的结合键能:E

合=?e2

πε0a

+b

a7

=?3.85×10?18J

转换为每摩尔MgO晶体的结合键能:E0=E合×N A=?2318.5kJ?mol?1

6.原子序数为12的Mg有三种同位素:78.70%的Mg原子由12个中子,10.13%的Mg原

子由13个中子,11.17%的Mg原子由14个中子,试计算Mg的原子量。

答:78.70%×24+10.13%×25+11.17%×26=24.32

7.试计算原子N壳层内的最大电子数。若K,L,M和N壳层中所有能级都被填满,试确定该

原子的原子数。

答:N壳层内最大电子数:2×42=32

1s22s22p63s23p63d104s24p64d104f145s25p66s2该原子的原子数是70

8.试写出Al原子13个电子的每个电子的全部量子数。

答:

9.材料的三级和四级结构可以通过加工工艺来改变,那么材料的二级结构可以改变吗?为

什么?

答:原子的结合键是材料的二级结构。对于单一的材料来说,其价键结构是不可以通过加工工艺来改变的。但是实际工程应用中,通过一定的加工工艺来改变材料的二级结构,比如金刚石具有共价键,石墨具有共价键和物理键,而石墨等碳质原料和某些金属在高温高压下可以反应生成金刚石,即一定程度上改变了材料的二级结构。

第三章固体材料的晶体学基础

1.回答下列问题:

(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:

(001)与[210],(111)与[112?],(11?0)与[111],(1?32)与[123],(3?2?2)与[236]。(2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。(3)在立方晶系的一个晶胞中画出同时位于(101),(011),(112)晶面上的[111?]晶向。答:作图略。(2)两晶面交线的晶向指数为[11?0]或[1?10]。

2.有一正交点阵的a=b,c=a/2。某晶面在三个晶轴上的截距分别为6个,2个,4个原子

间距,求该晶面的密勒指数。

答:(263)

3.写出六方晶系的{101?2}晶面族中所有晶面的密勒指数,在六方晶胞中画出[112?0]、[11?01]

晶向和(101?2)晶面,并确定(101?2)晶面与六方晶胞交线的晶向指数。

答:{101?2}晶面族中所有晶面的密勒指数为:(101?2),(1?012),(11?02),(1?102),(011?2),(01?12)

(101?2?),(1?012?),(11?02?),(1?102?),(011?2?),(01?12?)

作图略,(101?2)晶面与六方晶胞交线的晶向指数为:

[1?21?0],[12?10],[4?223],[42?2?3?],[2?2?43],[224?3?]

4.根据刚性球模型回答下列问题:

(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。

(2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。

答:

5.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,

并分别计算这些晶面和晶向上的原子密度。

6.求下列晶面的晶面间距,并指出晶面间距最大的晶面。

(1)已知室温下α-Fe的点阵常数为0.286nm,分别求出(100)、(110)、(123)的晶面间距。

(2)已知916℃时γ-Fe的点阵常数为0.365nm,分别求出(100)、(111)、(112)的晶面间距。

(3)已知室温下Mg的点阵常数为a=0.321nm,c=0.521nm,分别求出(112?0)、(101?0)、(101?2)的晶面间距。

答:(1)d100=

√12+0+0

=0.286nm

d110=

√12+12+0

=0.202nm

d123=

√12+22+32

=0.076nm

其中,晶面间距最大的晶面为(100)

(2)d110=

√12+0+0

=0.365nm

d111=

√12+12+12

=0.211nm

d112=

√12+12+22

=0.149nm

其中,晶面间距最大的晶面为(110)

(3)d112?0=

222

a2

=0.161nm

d101?0=

√4

3×(1+0+0)/a

=0.278nm

d101?2=

√3×

a2

+(

c

)

2

=0.190nm

其中,晶面间距最大的晶面为(101?0)

7.已知Na+和Cl-的半径分别为0.097nm和0.181nm,请计算NaCl中钠离子中心到:(1)最

近邻离子中心间的距离;(2)最近邻正离子中心间的距离;(3)第二个最近的氯离子中

心间的距离;(4)第三个最近的氯离子中心间的距离;(5)它最近的等同位置间的距离。答:(1) r=r++r-=0.278nm (2) r=√2(r++r?)=0.393nm(3) r=√3(r++r?)=0.482nm

(4) r=√5(r++r?)=0.622nm(5) r=√2(r++r?)=0.393nm

8.根据NaCl的晶体结构及Na+和Cl-的原子量,计算氯化钠的密度。

答:ρ=m

V =(12×

1

4

+1)m++(8×1

8

+6×1

2

)m?

[2(r++r?)]3

=2.26g/cm3

9.示意画出金刚石型结构的晶胞,说明其中包含有几个原子,并写出各个原子的坐标。

答:作图略,其中包含原子数:1

8×8+1

2

×6+4=8

顶点坐标:(000),(100),(010),(001),(110),(101),(011),(111)(选填一个即可)

面心坐标:(1

201

2

),(1

2

11

2

),(01

2

1

2

),(11

2

1

2

),(1

2

1

2

0),(1

2

1

2

1)(选填三个即可)

晶胞内坐标:(3

41

4

1

4

),(1

4

1

4

3

4

),(1

4

3

4

1

4

),(3

4

3

4

3

4

10.何谓单体、聚合物和链节?它们相互之间有什么关系?请写出以下高分子链节的结构式:聚乙烯;聚氯乙烯;聚丙烯;聚苯乙烯;聚四氟乙烯。

答:单体是合成聚合物的起始原料,是化合物独立存在的基本单元,是单个分子存在的稳定状态。聚合物是由一种或多种简单低分子化合物聚合而成的相对分子质量很大的化合物。链节是组成大分子链的特定结构单元。

聚乙烯:[-CH2-CH2-]n; 聚氯乙烯:[-CHCl-CH2-]n; 聚丙烯:[-CHCH3-CH2-]n;

聚苯乙烯:[-CHAr-CH2-]n; 聚四氟乙烯:[-CF2-CF2-]n

第四章固体材料的晶体缺陷

1.纯Cu的空位形成能为1.5aJ/atom,(1aJ=10-18J),将纯Cu加热至850℃后激冷至室温

(20℃),若高温下的空位全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。答:C e=Aexp?u

kT

C e1 C e2=exp(?u

k

(1

T1

?1

T2

))=e274

2.空位对材料行为的主要影响是什么?

答:首先,材料中原子(或分子)的扩散机制与空位的运动有关。其次,空位可以造成材料物理性能与力学性能的改变,如密度降低,体积膨胀,电阻增加,强度提高,脆性也更明显,晶体高温下发生蠕变等。

3.某晶体中有一条柏氏矢量为a[001]的位错线,位错线的一端露头于晶体表面,另一端与

两条位错线相连接,其中一条柏氏矢量为a

2

[1?11],求另一条位错线的柏氏矢量。

答:a[001]? a

2[1?11]=a

2

[11?1]

4.如附图a所示,试求某一晶格参数为2.5A0的立方金属刃型位错的burgers矢量的Miller

指数及其长度。

答:柏氏矢量b?垂直于(220),故其Miller指数为[110]

|b?|=d220=

√22+22+02

=0.88A0

5.如附图b所示,写出在FCC金属的(1?11?)滑移方向的晶向指数。

答:[1?01],[101?],[01?1?],[011],[110],[1?1?0]

第五章固体材料的凝固与结晶

1.液体金属在凝固时必须过冷,而加热使其融化却毋需过热,即一旦加热到熔点就立即熔

化,为什么?

答:液体金属在凝固时必须克服表面能,形核时自由能变化大于零,故需要过冷。固态金属在熔化时,液相与气相接触,当有少量液体金属在固相表面形成时,就会很快覆盖在整个表面(因为液体金属总是润湿同一种固体金属)。表面能变化决定过程能否自发进行。根据实验数据,在熔化过程中,表面自由能的变化小于零,即不存在表面能障碍,也就不必过热。

2.金属凝固时的形核率常桉下式做简化计算,即

N

均=C0exp (?

?G

?

kT

)

试计算液体Cu在过冷度为180K、200K和220K时的均匀形核率。并将计算结果与书图6-4b 比较。(已知L m=1.88×109J?m?3,T m=1356K,γSL=0.177J?m?2,C0=6×1028原子?m?3,k=1.38×10?23J?K?1)

答:?G v=?L m?T

T m ?G

?=16πγSL3

3(?G V)2

=16πγSL3T,,2

3L m2?T2

代入数据得,180K时N均=7.50×10?12;200K时N均=7.89×10?5;220K时N均=13.36

与图6-4b相比,结果吻合,表明只有过冷度达到一定程度,使凝固温度接近有效成核温度时,形核率才会急剧增加。

3.试解释凝固与结晶、晶胚与形核的相互关系。

答:凝固是指物质从液态冷却成固态的一种转变过程,可以形成晶态或非晶态。若冷却后成为晶体,这种凝固成为结晶。

根据热力学判断,在过冷液态金属中,短程规则排列的结构尺寸越大,就越稳定,只有尺寸较大的短程规则排列的结构,才能成为晶核。晶胚即是过冷液态金属中短程规则排列尺寸较大的原子有序排列部分。一定温度下,最大晶胚有一个极限值r max;而液态金属的过冷度越

大,实际可能出现的最大晶胚尺寸也越大。当液态金属中形成的晶胚尺寸大于或等于一定临界尺寸时,成为晶核,其有两种形成方式:均匀成核(依靠液态金属本身能量的变化获得驱动力并由晶胚直接成核的过程)和非均匀成核(晶胚是依附在其他物质表面上形核的过程)。

4.金属结晶的热力学条件和结构条件是什么?

答:过冷度是金属结晶的热力学条件;结构起伏和能量起伏是结构条件。

5.哪些因素会影响金属结晶时的非均匀形核率?

答:过冷度,固体杂质及其表面形貌,物理性能如液相宏观流动,外加电磁场,受机械作用等。

第六章材料的扩散与迁移

1. 把P原子扩散到单晶硅中的掺杂工艺是制备n型半导体的常用方法。若将原来的每107个Si原子中含有一个P原子的1mm厚的硅片,通过扩散掺杂处理后表面达到每107 Si原子中含有400个P原子,试分别按:(a) 原子百分数/cm, (b) 原子数/cm3.cm 的表示方法计算浓度梯度。硅的晶格常数为5.4307A0。

答:(a)?C

?X =Ci?Cs

?X

=1107?400107

?

?

0.1

=?0.0399%/cm

(b) 硅的晶胞体积为:V0=(5.4307×10?8)3=1.6×10?22cm3

单位晶胞中有8个Si原子,则107Si所占体积为:V=107

8

×V0=2×10?16cm3

?C ?X =Ci?Cs

?X

=12×10?16?4002×10?16

?

?

0.1

=??1.995×1019个/cm3.cm

2.试说明影响扩散的因素。

答:温度,原子键力和晶体结构,固溶体类型和浓度,晶体缺陷,第三组元。

3.试利用公式D=α2РГ,解释各因素对扩散的影响。

答:D与α2,Р,Г成正比。其中,α为最邻近的间隙原子距离,与晶体结构有关;Р为

跃迁几率,Р=exp(??G

kT ),跟温度,畸变能等有关;Г为跃迁频率,Г=ZvP=Zvexp(??G

kT

),

与温度、晶体结构、畸变能、扩散机制等因素有关。

4. 自扩散与空位扩散有何关系?为什么自扩散系数公式要比空位扩散系数Dv小得多?(Dv=D/nv,nv为空位的平衡浓度)

答:对于纯金属或间隙固溶体合金,原子都处于正常的晶格结点位置。若晶格结点某处的原子空缺时,相邻原子可能跃迁到此空缺位置,之后又留下新的空位,原子的这种扩散方式叫空位扩散。当晶体内完全是同类原子时,原子在纯材料中的扩散为自扩散。自扩散是空位扩散的一种特殊形式。

对于置换固溶体合金和纯金属,溶质原子与溶剂原子的尺寸和化学性质不同,与空位交换位置的几率也不同,D=D0exp(-Q/RT),自扩散的扩散激活能要比空位扩散的扩散激活能大。空位扩散系数Dv=D/nv,由于空位平衡浓度nv远小于1,Dv比D大得多。

第七章 热力学与相图

1. 分析共晶反应,包晶反应和共析反应的异同点。 答:(1)不同点:共晶反应是一定成分的液体合金,在一定温度下,同时结晶形成另外一种固相的反应过程;包晶反应是一定成分的固相与一定成分的液相作用,形成另外一种固相的反应过程;共析反应是由特定成分的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固相的反应过程。

(2)相同点:均是在恒温下发生,处于三相平衡的状态。

2. 试分析图7-6中合金IV 的结晶过程(w sn =70%),计算室温下组元成分的含量及显微组织。 答:结晶过程为匀晶反应+共晶反应+二次析出,冷却过程如下图所示,室温下组元成分:αII + β+(α+β)共晶

室温下组元成分的含量:

%

58.0%10002

.0-1975

.0-1619.0975.0619.070.0%

2.22%10002

.0-102

.0-975.0619.0975.0619.070.0m

%2.77%100619

.0975.070

.0972.0m )(=??--=

=??--==?--=

+II m αββα共晶 3. 铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时均能彼此无限互溶,w Bi =50%

的合金在520时开始结晶处成分为w Sb =87%的固相。w Bi =80%的合金在400℃时开始结晶出成分为w Sb =64%的固相。根据上述条件,

(1) 绘出Bi -Sb 相图,并标出各线和各相区的名称。

(2) 从相图上确定含锑量为w Sb =40%合金的开始结晶和结晶终了温度,并求出它在400℃

时的平衡相成分及相对量。

答:(1)

(2)根据相图,含锑量为40%合金开始结晶温度大约为490℃,终了温度为350℃,液相含量54.5%,固相含量45.5%。

4. (1)应用相律时需考虑哪些限制条件?

(2)试指出图5-115中的错误之处,并用相律说明理由,且加以改正。

答:(1)A.相律只适用于热力学平衡状态。平衡状态下各相的温度应相等;各相的压力应相等;每一阻元在各相中的化学位必须相同。B.相律只能表示体系中组元和相的数目,不能指明组元或相的类型和含量。C.相律不能预告反应动力学。D.自由度的值不得小于零。

(2)A.二元体系两相平衡,自由度为1,故不可为直线。

B.单一体系两相平衡,自由度为0,故应为一点。

C.二元体系最多只能三相平衡,此处含四相。

D.二元体系三相平衡,自由度为0,故应为水平线。

5. 分析w c=0.2%的铁-碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图,说明各阶段的组织,并分别计算室温下的相组织物及组织组成物的相对量。

答:合金在t1~t2之间发生匀晶反应析出δ固溶体,冷却至t2(1495℃)时,液相L与δ固溶体发生包晶转变生成γ。包晶转变完成后,剩余的液相L在t2~t3之间不断结晶出奥氏体,冷却至t3,合金全部为奥氏体。单相奥氏体在t4开始析出铁素体。当温度达t5(727℃)时,剩余的奥氏体发生共析反应转变为珠光体,此时合金组织为铁素体加珠光体。727℃以下,铁素体中会析出少量三次渗碳体。该合金室温时的组织为铁素体与珠光体,相组成为α与Fe3C。冷却至室温的转变过程如图所示。

相组成物的相对量:wα= 6.69?0.2

6.69?0.0218

×100%=97.3%

w Fe3C=0.2?0.0218

6.69?0.0218

×100%=2.7%

组织组成物的相对量: w P=0.2?0.0218

0.77?0.0218×100%=23.8% wα=1?w P=76.2%

材料科学基础课后作业及答案(分章节)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、 [1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题:

材料科学基础简答题(doc 12页)

简答题 第一章材料结构的基本知识 1、说明结构转变的热力学条件与动力学条件的意义。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 2、说明稳态结构与亚稳态结构之间的关系。 答:稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 3、说明离子键、共价键、分子键和金属键的特点。 答:离子键、共价键、分子键和金属键都是指固体中原子(离子或分子)间结合方式或作用力。离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原于相互作用时,产生电子得失而形成的离子固体的结合方式。 共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。 分子键是由分子(或原子)中电荷的极化现象所产生的弱引力结合的结合方式。 当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属键。 第二章材料的晶体结构 1、在一个立方晶胞中确定6个表面面心位置的坐标。6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数、各个棱边和对角线的晶向指数。

解八面体中的晶面和晶向指数如图所示。图中A、B、C、D、E、F为立方晶胞中6个表面的面心,由它们构成的正八面体其表面和棱边两两互相平行。 ABF面平行CDE面,其晶面指数为; ABE面平行CDF面,其晶面指数为; ADF面平行BCE面,其晶面指数为; ADE面平行BCF面,其晶面指数为(111)。 棱边,,,,, ,其晶向指数分别为[110],,[011],,[101]。 对角线分别为,其晶向指数分别为[100],[010],[001] 图八面体中的晶面和晶向指数 2、标出图中ABCD面的晶面指数,并标出AB、BC、AC、BD线的晶向指数。 解:晶面指数: ABCD面在三个坐标轴上的截距分别为3/2a,3a,a, 截距倒数比为 ABCD面的晶面指数为(213) 晶向指数: AB的晶向指数:A、B两点的坐标为 A(0,0,1),B(0,1,2/3) (以a为单位) 则,化简即得AB的晶向指数 同理:BC、AC、BD线的晶向指数分别为,,。

石德珂材料科学选择题

《材料科学基础》 选择题 第一章材料结构的基本知识 1、原子结合健中 B 的键的本质是相同的 A、金属键与离子键 B、氢键与范德瓦尔斯键 C、离子键与共价键 2、钨、钼熔点很高,其结合键是 A 的混合键 A、金属键和离子键 B、金属键和共价键 C、离子键和共价键 3、MgO、Al2O3等的结合键是 C 的混合键 A、金属键和离子键 B、金属键和共价键 C、离子键和共价键 4、工程材料的强度与结合键有一定的联系,结合键能高的其强度也 A 些。 A、高 B、低 5、激活能反应材料结构转变 B 的大小; A、动力 B、阻力 6、材料处于能量最低状态称为 A ; A、稳态结构 B、亚稳态结构 7、一般而言,晶态结构的能量比非晶态要 B ; A、高 B、低 C、相等 第二章材料的晶体结构 1.氯化铯(CsCl)为有序体心立方结构,它属于 C A、体心立方 B、面心立方 C、简单立方点阵; 2.理想密排六方结构金属的c/a为 B A、 B、2(2/3)1/2; C、2/3 3.对面心立方晶体而言,表面能最低的晶面是 c A、 (100); B、(110), C、(111); D、(121) 4.下列四个六方晶系的晶面指数中,哪一个是错误的: C A、(1322); B、(0112); C、(0312); D、(3122) 5.面心立方结构的铝中,每个铝原子在本层(111)面上的原子配位数为 B

A 、12; B 、6; C 、4; D 、3 6. 简单立方晶体的致密度为 C A 、100% B 、65% C 、52% D 、58% 7. 立方晶体中(110)和(211)面同属 D 晶带 A 、[110] B 、[100] C 、[211] D 、[111] 8. 立方晶体中(111)和(101)面同属 D 晶带 A 、[111] B 、[010] C 、[011] D 、]011[ 9. 原子排列最密的一族晶面其面间距 A 、最小 B 、最大 10. 六方晶系中和(1121)晶面等同的晶面是 A A 、(1211)面; B 、(1112)面; C 、(1211)面; D 、(2111)面 11. 配位数是指晶体结构中: B A 、每个原子周围的原子数; B 、每个原子周围最邻近的原子数; C 、每个原子周围的相同原子数; D 、 每个原子周围最邻近的和次近邻的原子数之和 12. 密排六方与面心立方均属密排结构,他们的不同点是: D A 、晶胞选取方式不同; B 、原子配位数不同; C 、密排面上,原子排列方式不同; D 、原子密排面的 堆垛方式不同 13. 在立方晶系中,与(101)、(111)同属一晶带的晶面是: d A 、(110); Bb 、(011); C 、(110); D 、(010) 14. TiC 与NaCl 具有相同的晶体结构,但它们不属于同一类中间相,这是因为: D A 、TiC 是陶瓷,NaCl 是盐; B 、NaCl 符合正常化合价规律,Ti C 不符合正常化合价规律; C 、TiC 中电子浓度高, D 、NaCl 的致密度高 15. 立方晶体中(110)和(310)面同属 D 晶带 A 、[110] B 、[100] C 、[310] D 、[001] 16. 14种布拉菲点阵: A A 、按其对称性分类,可归结为七大晶系; B 、按其点阵常数分类,可归结为七大晶系;

材料科学基础期末试题

材料科学基础考题 I卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷答: 单位位错:柏氏矢量等于单位点阵矢量的位错称为单位位错。 交滑移:两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,称为交滑移。滑移系:一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。 离异共晶:由于非平衡共晶体数量较少,通常共晶体中的a相依附于初生a相生长,将共晶体中另一相B推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。 奥氏体:碳原子溶于丫-Fe形成的固溶体。 成分过冷:在合金的凝固过程中,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷称为成分过冷。 二、选择题(每题2分,共20分) 1. 在体心立方结构中,柏氏矢量为a[110]的位错(A )分解为a/2[111]+a/2[l11]. (A)不能(B)能(C)可能 2. 原子扩散的驱动力是:(B ) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 3?凝固的热力学条件为:(D ) (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4?在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现(A) (A)氧离子空位(B)钛离子空位(C)阳离子空位 5?在三元系浓度三角形中,凡成分位于( A )上的合金,它们含有另两个顶角所代表的两 组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6?有效分配系数k e表示液相的混合程度,其值范围是(B ) (A)1vk e

石德珂计算题

《材料科学基础》 计算题 第一章 材料结构的基本知识 1、计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 。已知 Na 、F 、Ca 、O 、Zn 、S 的电负性依次为0.93、3.98、1.00、3.44、1.65、2.58。 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 第二章 材料的晶体结构 1、标出图2中ABCD 面的晶面指数,并标出AB 、BC 、AC 、BD 线的晶向指数。 解:晶面指数: ABCD 面在三个坐标轴上的截距分别为3/2a,3a,a, 截距倒数比为 3:1:21:3 1 :32= ∴ABCD 面的晶面指数为 (213) 4分 晶向指数: AB 的晶向指数:A 、B 两点的坐标为 A (0,0,1),B (0,1,2/3) (以a 为单位) 则 )3 1 ,1,0(-=,化简即得AB 的晶向指数]103[ 二(2)图 同理:BC 、AC 、BD 线的晶向指数分别为]230[,]111[,]133[。 各2分 2、计算面心立方、体心立方和密排六方晶胞的致密度。 解:面心立方晶胞致密度: η=V a /V=33 344a r π? =0.74 6分 体心立方晶胞致密度: η=V a /V =3 3 342a r π? =0.68 6分 密排六方晶胞致密度: η=V a /V =c a r ???60sin 334 62 3π(理想情况下) 8分 3、用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算 这些晶面和晶向上的原子密度。 解:1、体心立方

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

材料科学基础试题

第一章原子排列 本章需掌握的内容: 材料的结合方式:共价键,离子键,金属键,范德瓦尔键,氢键;各种结合键的比较及工程材料结合键的特性; 晶体学基础:晶体的概念,晶体特性(晶体的棱角,均匀性,各向异性,对称性),晶体的应用 空间点阵:等同点,空间点阵,点阵平移矢量,初基胞,复杂晶胞,点阵参数。 晶系与布拉菲点阵:种晶系,14种布拉菲点阵的特点; 晶面、晶向指数:晶面指数的确定及晶面族,晶向指数的确定及晶向族,晶带及晶带定律六方晶系的四轴座标系的晶面、晶向指数确定。 典型纯金属的晶体结构:三种典型的金属晶体结构:fcc、bcc、hcp; 晶胞中原子数、原子半径,配位数与致密度,晶面间距、晶向夹角 晶体中原子堆垛方式,晶体结构中间隙。 了解其它金属的晶体结构:亚金属的晶体结构,镧系金属的晶体结构,同素异构性 了解其它类型的晶体结构:离子键晶体结构:MgO陶瓷及NaCl,共价键晶体结构:SiC陶瓷,As、Sb 非晶态结构:非晶体与晶体的区别,非晶态结构 分子相结构 1. 填空 1. fcc结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______致密度为___________配位数是________________晶胞中原子数为___________,把原子视为刚性球时,原子的半径是____________;bcc结构的密排方向是_______,密排面是_____________致密度为___________配位数是________________ 晶胞中原子数为___________,原子的半径是____________;hcp结构的密排方向是_______,密排面是______,密排面的堆垛顺序是_______,致密度为___________配位数是________________,晶胞中原子数为 ___________,原子的半径是____________。 2. bcc点阵晶面指数h+k+l=奇数时,其晶面间距公式是________________。 3. Al的点阵常数为0.4049nm,其结构原子体积是________________。 4. 在体心立方晶胞中,体心原子的坐标是_________________。 5. 在fcc晶胞中,八面体间隙中心的坐标是____________。 6. 空间点阵只可能有___________种,铝晶体属于_____________点阵。Al的晶体结构是__________________, -Fe的晶体结构是____________。Cu的晶体结构是_______________, 7点阵常数是指__________________________________________。 8图1是fcc结构的(-1,1,0 )面,其中AB和AC的晶向指数是__________,CD的晶向指数分别 是___________,AC所在晶面指数是--------------------。

材料科学基础试题库答案

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编

东华理工大学材料科学与工程系 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r 与时 间t 的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、 _____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、 _____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl 晶胞中(001)面心的一个球(Cl- 离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008. 一个立方晶系晶胞中,一晶面在晶轴X 、Y 、Z 上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O 含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 2+进入到KCl 间隙中而形成0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca 点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。 0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel 缺陷时,晶体体积_________,晶体密度_________;而有Schtty 缺陷时,晶体体积_________, 晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大 时,_________是主要的。 0016.少量CaCl2 在KCl 中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其 缺陷反应式为_________。 0017.Tg 是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg 比慢冷时_________ ,淬冷玻璃比 慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的 三种熔体,其粘度大小的顺序为_________。 0019.三T 图中三个T 代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2 组成的熔体,若保持Na2O 含量不变,用CaO 置换部分SiO2 后,电导_________。 0022.在Na2O-SiO2 熔体中加入Al2O3(Na2O/Al2O3<1), 熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2 的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。 2

石德珂材料科学填空题

《材料科学基础》 填空题 第一章材料结构的基本知识 1. 原子核外电子的分布与四个量子数有关,且服从下述两个基本原理:泡利不相容原理和最低能量原理 2. 原子结合键中一次键(强健)有离子键、共价键、金属键;二次键(弱健)有范德瓦尔斯键、氢键、____________ 离子晶体和原子晶体硬度高,脆性大,熔点高、导电性差。 3. 金属晶体导电性、导热性、延展性好,熔点较高。 4. 能量最低的结构称为稳态结构或平衡态结构,能量相对较高的结构则称为亚稳态结_____ 5. 材料的稳态结构与亚稳态结构由热力学条件和动力学条件共同决定; 第二章材料的晶体结构 1、晶体结构中基元就是化学组成相同、空间结构相同、排列取向相同、周围环境相同的基本单元; 2、简单立方晶胞中(100)、( 110)、( 111)晶面中,面间距最小的是(111)面,最大的是(100) 面; 3、晶面族{100}包含(100) (010) (001)及平行(100IX 010 H201)等晶面; 4、(100) , (210), (110) , (2 1)等构成以[001]为晶带轴的晶带: (01 ) (01) (10) (11)等构成以[111]为晶带轴的晶带; 5、晶体宏观对称元素只有1, 2, 3, 4, 6,丄,m, £_等8种是基本的 6、金属中常见的晶体结构有面心立方、体心立方、密排六方三种; 7、金属密堆积结构中的间隙有四面体间隙和八面体间隙两种类型 &面心立方晶体中1个晶胞内有4个八面体间隙,8个四面体间隙。 9、陶瓷材料是以离子键、共价键以及离子键和共价键的混合键结合在一起; 10、硅酸盐的基本结构单元是硅 11、_____________________________________ Siθ2中主要化学键为共价键与离子键; 12、硅酸盐几种主要结构单元是岛状结构单元、双四面体结构单元、环状结构_________

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

上大材料科学基础简答题

A1(fcc)密排面:(100)密排方向:【110】h+k+l全基或全偶衍射 A2(bcc)密排面:(110)密排方向:【111】h+k+l为偶数衍射 A3(hcp)密牌面:(001)密排方向:【100】 2dsinθ=λ 性质、结构成分(研究对象)、合成/制备=效用 1.如何理解点缺陷是一种热力学平衡缺陷? 随着点缺陷数量增加,熵增加导致自由能下降,但是同时内能增加导致自由能增加,所以有一个平衡浓度,此时有最低的自由能值。 2.何谓位错的应变能。何谓位错的线张力,其估算值为多少。 位错在晶体中引起畸变,使晶体产生畸变能,称之为位错的应变能或位错的能量。

线张力的定义为:位错线增加一个单位长度时,引起晶体能量的增加。 通常用Gb2/2作为位错线张力的估算值。 请问影响合金相结构的因素主要有哪几个。 原子尺寸、晶体结构、电负性、电子浓度。 3.请简要说明:(1)刃型位错周围的原子处于怎样的应力状态(为切应力还是正应力,为拉应力还是压应力);(2)若有间隙原子存在,则间隙原子更容易存在于位错周围的哪些位置(可以以图示的方式说明)。 (1)刃型位错不仅有正应力同时还有切应力。所有的应力与沿位错线的方向无关,应力场与半原子面左右对称,包含半原子面的晶体受压应力,不包含半原子面的晶体受拉应力。 (2)对正刃型位错,滑移面上方的晶胞体积小于正常晶胞,吸引比基体原子小的置换式溶质原子或空位;滑移面下方的晶胞体积大于正常晶胞,吸引间隙原子和比基体原子大的置换式溶质原子。 4.铁素体钢在拉伸过程中很易出现屈服现象,请问:(1)产生屈服的原因?(2)如何可以消除屈服平台? 由于碳氮间隙原子钉扎位错,在塑性变形开始阶段需使位错脱离钉扎,从而产生屈服延伸现象;当有足够多的可动位错存在时,或者使间隙原子极少,或者经过预变形后在一段时间内再拉伸。 5.如何提高(或降低)材料的弹性?举例说明,并解释。 选择弹性模量小的材料、或者减小材料的截面积、或者提高材料的屈服强度都可以提高弹性。 6.何谓加工硬化、固溶强化、第二相强化、细晶强化,说明它们与位错的关系 加工硬化:晶体经过变形后,强度、硬度上升,塑性、韧性下降的现象称为加工硬化。随着变形的进行,晶体内位错数目增加,位错产生交互作用,使位错可动性下降,强度上升。 固溶强化:由于溶质原子的存在,导致晶体强度、硬度增加,塑性、韧性下降的现象叫固溶强化。由于溶质原子的存在阻碍或定扎了位错的运动,导致强度的升高。 第二相强化:由于第二相的存在,导致晶体强度、硬度上升,塑性、韧性下降的现象叫第二相强化。由于第二相的存在,导致位错移动困难,从而使强度上升。 细晶强化:由于晶粒细化导致晶体强度、硬度上升,塑性、韧性不下降的现象叫细晶强化。 由于晶粒细化,使晶界数目增加,导致位错开动或运动容易受阻,使强度上升;又由于晶粒细化,使变形更均匀,使应力集中更小,所以,细晶强化在提高强度的同时,并不降低塑性和韧性。 7.说明金属在塑性变形后,其组织和性能将发生怎样的变化 金属塑性变形后,组织变化包括晶粒和亚结构的变化,其中,晶粒被拉长,形成

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

材料科学基础试题库

一、单项选择题(请在每小题的4个备选答案中,选出一个最佳答案, 共10小题;每小题2分,共20分) 1、材料按照使用性能,可分为结构材料和 。 A. 高分子材料; B. 功能材料; C. 金属材料; D. 复合材料。 2、在下列结合键中,不属于一次键的是: A. 离子键; B. 金属键; C. 氢键; D. 共价键。 3、材料的许多性能均与结合键有关,如大多数金属均具有较高的密度是由于: A. 金属元素具有较高的相对原子质量; B. 金属键具有方向性; C. 金属键没有方向性; D.A 和C 。 3、下述晶面指数中,不属于同一晶面族的是: A. (110); B. (101); C. (011- );D. (100)。 4、 面心立方晶体中,一个晶胞中的原子数目为: A. 2; B. 4; C. 6; D. 14。 5、 体心立方结构晶体的配位数是: A. 8; B.12; C. 4; D. 16。 6、面心立方结构晶体的原子密排面是: A. {111}; B. {110}; C. (100); D. [111]。 7、立方晶体中(110)和(211)面同属于 晶带 A. [110]; B. [100]; C. [211]; D. [--111]。 6、体心立方结构中原子的最密排晶向族是: A. <100>; B. [111]; C. <111>; D. (111)。 6、如果某一晶体中若干晶面属于某一晶带,则: A. 这些晶面必定是同族晶面; B. 这些晶面必定相互平行; C. 这些晶面上原子排列相同; D. 这些晶面之间的交线相互平行。 7、金属的典型晶体结构有面心立方、体心立方和密排六方三种,它们的晶胞中原子数分别为:A. 4, 2, 6; B. 6, 2, 4; C. 4, 4, 6; D. 2, 4, 6 7、在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为: A. 肖脱基缺陷; B. 弗兰克缺陷; C. 线缺陷; D. 面缺陷 7、两平行螺旋位错,当柏氏矢量同向时,其相互作用力:

石德珂材料科学简答题

《材料科学基础》 简答题 第一章材料结构的基本知识 1、说明结构转变的热力学条件与动力学条件的意义。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 2、说明稳态结构与亚稳态结构之间的关系。 答:稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 3、说明离子键、共价键、分子键和金属键的特点。 答:离子键、共价键、分子键和金属键都是指固体中原子(离子或分子)间结合方式或作用力。离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原于相互作用时,产生电子得失而形成的离子固体的结合方式。 共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。 分子键是由分子(或原子)中电荷的极化现象所产生的弱引力结合的结合方式。 当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属键。 4、原子中的电子按照什么规律排列 答:原子核周围的电子按照四个量子数的规定从低能到高能依次排列在不同的量于状态下,同一原子中电子的四个量子数不可能完全相等。 第二章材料的晶体结构 1、在一个立方晶胞中确定6个表面面心位置的坐标。6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数、各个棱边和对角线的晶向指数。 解八面体中的晶面和晶向指数如图所示。图中A、B、C、D、E、F为立方晶胞中6个表面的面心,由它们构成的正八面体其表面和棱边两两互相平行。 ABF面平行CDE面,其晶面指数为(111); ABE面平行CDF面,其晶面指数为(111); ADF面平行BCE面,其晶面指数为(111);

复旦大学材料科学导论课后习题答案(搭配_石德珂《材料科学基础》教材)

材料科学导论课后习题答案 第一章材料科学概论 1.氧化铝既牢固又坚硬且耐磨,但为什么不能用来制造榔头? 答:氧化铝脆性较高,且抗震性不佳。 2.将下列材料按金属、陶瓷、聚合物和复合材料进行分类: 黄铜、环氧树脂、混泥土、镁合金、玻璃钢、沥青、碳化硅、铅锡焊料、橡胶、纸杯答:金属:黄铜、镁合金、铅锡焊料;陶瓷:碳化硅;聚合物:环氧树脂、沥青、橡胶、纸杯;复合材料:混泥土、玻璃钢 3.下列用品选材时,哪些性能特别重要? 答:汽车曲柄:强度,耐冲击韧度,耐磨性,抗疲劳强度; 电灯泡灯丝:熔点高,耐高温,电阻大; 剪刀:硬度和高耐磨性,足够的强度和冲击韧性; 汽车挡风玻璃:透光性,硬度; 电视机荧光屏:光学特性,足够的发光亮度。 第二章材料结构的基础知识 1.下列电子排列方式中,哪一个是惰性元素、卤族元素、碱族、碱土族元素及过渡金

属? (1) 1s2 2s2 2p6 3s2 3p6 3d7 4s2 (2) 1s2 2s2 2p6 3s2 3p6 (3) 1s2 2s2 2p5 (4) 1s2 2s2 2p6 3s2 (5) 1s2 2s2 2p6 3s2 3p6 3d2 4s2 (6) 1s2 2s2 2p6 3s2 3p6 4s1 答:惰性元素:(2);卤族元素:(3);碱族:(6);碱土族:(4);过渡金属:(1),(5) 2.稀土族元素电子排列的特点是什么?为什么它们处于周期表的同一空格内? 答:稀土族元素的电子在填满6s态后,先依次填入远离外壳层的4f、5d层,在此过程中,由于电子层最外层和次外层的电子分布没有变化,这些元素具有几乎相同的化学性质,故处于周期表的同一空格内。 3.描述氢键的本质,什么情况下容易形成氢键? 答:氢键本质上与范德华键一样,是靠分子间的偶极吸引力结合在一起。它是氢原子同时与两个电负性很强、原子半径较小的原子(或原子团)之间的结合所形成的物理键。当氢原子与一个电负性很强的原子(或原子团)X结合成分子时,氢原子的一个电子转移至该原子壳层上;分子的氢变成一个裸露的质子,对另外一个电负性较大的原子Y表现出较强的吸引力,与Y之间形成氢键。 4.为什么金属键结合的固体材料的密度比离子键或共价键固体高?

材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第二章

第二章答案 2-1略。 2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。 答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321); (2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。 2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[] 答:

2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 答:定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 2-8写出面心立方格子的单位平行六面体上所有结点的坐标。 答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。

《材料科学基础》考研—简答题常考题型汇总

材料科学基础简答题考研常考题型汇总 1.原子间的结合键共有几种?各自的特点如何?【11年真题】 答:(1)金属键:基本特点是电子的共有化,无饱和性、无方向性,因而每个原子有可能同更多的原子结合,并趋于形成低能量的密堆结构。当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使得金属具有良好的延展性,又由于自由电子的存在,金属一般都具有良好的导电性和导热性能。 (2)离子键:正负离子相互吸引,结合牢固,无方向性、无饱和性。因此,七熔点和硬度均较高。离子晶体中很难产生自由运动的电子,因此他们都是良好的电绝缘体。 (3)共价键:有方向性和饱和性。共价键的结合极为牢固,故共价键晶体具有结构稳定、熔点高、质硬脆等特点。共价结合的材料一般是绝缘体,其导电能力较差。 (4)范德瓦尔斯力:范德瓦尔斯力是借助微弱的、瞬时的电偶极矩的感应作用,将原来稳定的原子结构的原子或分子结合为一体的键合。它没有方向性和饱和性,其结合不如化学键牢固。 (5)氢键:氢键是一种极性分子键,氢键具有方向性和饱和性,其键能介于化学键和范德瓦耳斯力之间。 2.说明间隙固溶体与间隙化合物有什么异同。 答:相同点:二者一般都是由过渡族金属与原子半径较小的C、N、H、O、B等非金属元素所组成。 不同点:(1)晶体结构不同。间隙固溶体属于固溶体相,保持溶剂的晶格类

型;间隙化合物属于金属化合物相,形成不同于其组元的新点阵。 (2)间隙固溶体用α、β、γ表示;间隙化合物用化学分子式MX、M2X 等表示。 间隙固溶体的强度、硬度较低,塑性、韧性好;间隙化合物的强度、熔点较高,塑性、韧性差。 3.为什么只有置换固溶体的两个组元之间才能无限互溶,而间隙固溶体则不能? 答:因为形成固溶体时,溶质原子的溶入会使溶剂结构产生点阵畸变,从而使体系能量升高。溶质与溶剂原子尺寸相差较大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,溶解度越小。一般来说,间隙固溶体中溶质原子引起的点阵畸变较大,故不能无限互溶,只能有限熔解。 4.试述硅酸盐的结构和特点? 答:(1)硅酸盐结构的基本单元是[SiO4]四面体。Si原子位于O原子的四面体间隙内,Si、O之间的结合不仅有离子键还有共价键 (2)每一个氧最多被两个[SiO]四面体共有 (3)[Si]四面体可以孤立存在,也可以共顶点互相连接。 (4)Si-O-Si形成一折线。 分类:含有有限硅氧团的硅酸盐、岛状、链状、层状、骨架状硅酸盐。 5.为什么外界温度的急剧变化可以使许多陶瓷件开裂破碎? 答:由于大多数陶瓷由晶相和玻璃相构成,这两种相的热膨胀系数相差很大,高温很快冷却时,每种相的收缩程度不同,多造成的内应力足以使陶瓷器件开裂或破碎。 6.陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料所具有的特殊

相关文档
最新文档