离散数学期末复习试题及答案(七)

离散数学期末复习试题及答案(七)
离散数学期末复习试题及答案(七)

第七章 谓词逻辑

1.用谓词表达下列命题

1) 小张不是工人。

设 c:小张 W(x): x 是工人 )c (W ?

2) 所有教练员都是运动员。

设 J(x):x 是教练, W(x):x 是运动员 ))x (W )x (J )(x (→?

3) 没有一个国家选手不健壮。

设 C(x):x 是国家选手,J(x):x 健壮 ))x (J )x (C )(x (?∧??

4) 有些大学生不钦佩老师。

设 D(x):x 是大学生, L(x):x 是老师, P(x,y):x 钦佩y

)))y ,x (P )y (L )(y ()x (D )(x (∧?∧?

5) 小莉既聪明又美丽。

设 l:小李 C(x):x 聪明 M(x):x 美丽 )l (M )l (C ∧

6) 不是所有的高中生都能上大学。

设 G(x):x 是高中生, D(x):x 上大学 ))x (D )x (G )(x (→??

7) 每个有理数都是实数。

设Q(x):x 是有理数, R(x):x 是实数 ))x (R )x (Q )(x (→?

8) 某些实数是有理数。

设R(x):x 是实数, Q(x):x 是有理数 ))x (Q )x (R )(x (∧?

9) 并非每个实数都是有理数。

设R(x):x 是实数, Q(x):x 是有理数 ))x (Q )x (R )(x (→??

10) 若m 是奇数,则2m 不是奇数。

设Q(x):x 是奇数, )m 2(Q )m (Q ?→

11) 直线A 与直线B 平行,当且仅当直线

A 与

B 不相交。

设L(x):x 是直线,P(x,y):x 平行于y, X(x,y):x 与y 相交

→←))B ,A (X )B (L )A (L ())B ,A (P )B (L )A (L (?∧∧∧∧

12) 对于每个实数x,存在一个更大的实数y。

设R(x):x 是实数, D(x,y):x 大于y,

)))x ,y (D )y (R )(y ()x (R )(x (∧?→?

2. 设P(x)为“x 是质数”,E(x)为“x是偶数”,

Q(x)为“x 是奇数”,D(x,y)为“x 除尽y ”,把下

列各式译成汉语:

1)P(5);

2)E(2)∧P(2);

3)(?x)(E (x)∧D(x,6));

4)(?x)(D(2,x)→E(x));

5) (?x)(E(x)→D(2,x));

6)(?x)(E(x)→(?y)(D(x,y)→E(y)));

7) (?x)(P(x)→(?y)(E(y)∧D(x,y)));

8) (?x)(Q(x)→(?y)(P(y)→D(x,y))

1) P(5);5是偶数。

2) E(2)∧P(2);2是偶数也是质数。

3) D(x,6))(E (x))x (∧?;存在偶数可以除尽6。

4) E (x))x)(D(2,)x (→?;被2除尽的数都是偶数。

5) x))D(2,E (x)()x (?→??;

非偶数都不能被2除尽。

6) )))y (E )y ,x (D )(y ()x (E )(x (→?→?;

所有能被偶数除尽的数都是偶数。

7) )))y ,x (D )y (E )(y ()x (P )(x (∧?→?;

对任给的质数,存在偶数可被质数除尽。

8) )))y ,x (D )y (P )(y ()x (Q )(x (→?→?;

所有质数都不能被任意奇数整除。

3. 求下列各式真值:

T

T T )T F ()F T ())2(Q )2(P ())1(Q )1(P (}

2,1{,

2x :)x (Q ,1x :)x (P ))x (Q )x (P )(x )(1?∧?∨∧∨?∨∧∨?==∨?个体域是其中

F

F F F ))F T ()T T ()T T (()

5(R )))6(Q P ())3(Q P ())2(Q P ((}

6,3,2{:,5a ,5x :)x (R ,

3x :)x (Q ,12:P ),a (R ))x (Q P )(x )(2?∨?∨→∧→∧→?∨→∧→∧-→?-=>≤>∨→?个体域其中

T

T T T )F F (T ))1(Q )1(P (},

1{:,T ,

0x :)x (Q ,2x :)x (P ,T ))x (Q )x (P )(x )(3?∧?∧→?∧→?=>∧→?个体域是任何永真式其中

4. 如果论域是集合{a,b,c},试消去下面公式中的量词。

S (c ))

)b (S )a (S ())c (R )b (R (R (a ))

x (S )x ()x (R )x ()5))

c (P )b (P )a (P ())c (P )b (P )a (P ()

x (P )x ()x (P )x ()4)c (Q )c (P ())b (Q )b (P ())a (Q )a (P ())

x (Q )x (P )(x ()3))

c (S )b (S )a (S ())c (R )b (R )a (R ()

x (S )x ()x (R )x ()2)

c (P )b (P )a (P )x (P )x ()1∨∨∧∧∧??∧?∧∧∨?∧?∧???∨??→∧→∧→?→?∧∧∧∧∧??∧?∧∧??

5. 对下列谓词公式中的约束变元进行改名:

y)S(x,Q(v))z)v)(P(u,)(u (y)

S(x,Q(y))z)y)(P(x,x)(( 1)?→????→??

w)

w)S(x,(v)R(v))(Q(u)))(R(u)u)(P(u)((z)

z)S(x,(x)R(x))

(Q(x)))(R(x)x)(P(x)2)((?→?∧∨→???→?∧∨→?

6. 对下列谓词公式中的自由变元进行代换:

)

w ,x (R )x ())z ,v (Q )z ()y ,u (P )y (()

y ,x (R )x ())z ,x (Q )z ()y ,x (P )y )((2)

z ,w ,x (C )z )(x ()v ,x (B )x ()y ,u (A )y (()

z ,y ,x (C )z )(x ()z ,x (B )x ()y ,x (A )y )((1?∨?∧???∨?∧???∧?→????∧?→?

7. 设个体域是自然数集,试证明下列关系式:

右?∨???∨???∨????∨???∨??∨??))y (Q )x (P )(y )(x ())

x (P )y (Q )(y )(x ())x (P )y (Q )y )((x ())

y (Q )y ()x (P )(x ()

y (Q )y ()x (P )x ())y (Q )x (P )(y )(x ()1

)

I ()x (P )x ()y (Q )y ()x (P )x ())

y (Q )y ()x (P )(x ())x (P )y (Q )y )((x ())

x (P )y (Q )(y )(x ()

x (P )x ())y (Q )x (P )(y )(x )(21???∧???∧??∧???∧?????∧??左

左??∧???∧??∧???∧????∧??∧??)y (Q )y ()x (P )x ())

y (Q )y ()x (P )(x ())x (P )y (Q )y )((x ())

x (P )y (Q )(y )(x ()

y (Q )y ()x (P )x ())y (Q )x (P )(y )(x )(3

左??→???∨????∨????∨????∨????∨???∨?????→??→??)y (P )y ()x (P )x ()

y (P )y ()x (P )x ()y (P )y ()x (P )x ())y (P )y ()x (P )(x ())x (P )y (P )y )((x ())x (P )y (P )(y )(x ())y (P )x (P )(y )(x ())

y (P )y ()x (P )x (())y (P )x (P )(y )(x )(4

左??→???∨????∨????∨????∨????∨???∨?????→??→??)y (Q )y ()x (P )x ()

y (Q )y ()x (P )x ()y (Q )y ()x (P )x ())y (Q )y ()x (P )(x ())x (P )y (Q )y )((x ())x (P )y (Q )(y )(x ())y (Q )x (P )(y )(x ())

y (Q )y ()x (P )x (())y (Q )x (P )(y )(x )(5

8. 把下列各式化为前束范式:

))

y ,x (Q )x (P )(y )(x ())y ,x (Q )y ()x (P )(x ())

y ,x (Q )y ()x (P )(x )(1∨?????∨????→?

))

x (R )z (Q )y ,x (P )(z )(y )(x ())x (R )z (Q )z ()y ,x (P )y )((x ()))

x (R )z (Q )z (())y ,x (P )y )(((x ()))

x (R )z (Q )z (())y ,x (P )y (()(x )(2∨?∨????∨??∨???∨??∨???→?→???

))v ,y (Q )v ()u ,x (Q )u ()z ,y ,x (P )z ()(y )(x ())v ,y (Q )v ())u ,x (Q )u ()z ,y ,x (P )z (()(y )(x ())v ,y (Q )v ())u ,x (Q )u ()z ,y ,x (P )z )(((y )(x )(3?∨??∨??????∨?∧??????→?∧??? ))v ,y (Q )u ,x (Q )z ,y ,x (P )(v )(u )(z )(y )(x ())v ,y (Q )v ()u ,x (Q )u ()z ,y ,x (P )z )((y )(x (∨?∨????????∨??∨?????

9. 求等价于下列合式公式的前束合取范式与

前束析取范式:

T

))x (Q )x (P )(x ())x (Q )x (P )(x ())x (Q )x (P )(x ())x (Q )x (P )(x ())

x (Q )x (P )(x ())x (Q )x ()x (P )x )((1?∨?∨∨???∨?→∨??∨?→?∨?

∑∏???????∨?∨?????∨??∨?????→??→?6

,5,4,3,2,1,07)y )(x ()y )(x ())x ,y (R )y ,x (Q )x (P )(y )(x ()))

x ,y (R )y ,x (Q )(y ()x (P )(x ()))

x ,y (R )z ()y ,x (Q )z )((y ()x (P )(x )(2

)))

x ,y (R )y ,x (Q )x (P ())x ,y (R )y ,x (Q )x (P ())x ,y (R )y ,x (Q )x (P ())x ,y (R )y ,x (Q )x (P ())x ,y (R )y ,x (Q )x (P ())x ,y (R )y ,x (Q )x (P ())x ,y (R )y ,x (Q )x (P )((y )(x (∧?∧?∨?∧∧?∨∧∧?∨?∧?∧∨∧?∧∨∧?∧?∨∨

?∧?∧???? ∑∏????????∨∨??????∨?∨????∨??∨????∨??∨????∨??→?7

,6,5,3,2,1,04)u )(z )(x ()u )(z )(x ())

u ,y ,x (R )z ,x (Q )x (P )(u )(z )(x ())u ,y ,x (R )u ()z ,x (Q )z ()x (P )(x ())

u ,y ,x (R )u ()z ,x (Q )z )((x ()x (P )x ())

z ,y ,x (R )z ()z ,x (Q )z )((x ()x (P )x ())

z ,y ,x (R )z ()z ,x (Q )z )((x ()x (P )x )(3

)))

z ,y ,x (R )z ,x (Q )x (P ())z ,y ,x (R )z ,x (Q )x (P ())z ,y ,x (R )z ,x (Q )x (P ())z ,y ,x (R )z ,x (Q )x (P ())z ,y ,x (R )z ,x (Q )x (P ())z ,y ,x (R )z ,x (Q )x (P ())

z ,y ,x (R )z ,x (Q )x (P )((u )(z )(x (∧∧∨?∧∧∨∧?∧∨∧∧?∨?∧∧?∨∧?∧?∨?∧?∧????? ))

z ,y (Q )u (P ())y ,x (Q )x (P )(z )(u )(x ())z ,y (Q )z ()u (P )u (())y ,x (Q )x (P )(x ())

z ,y (Q )z ()y (P )y (())y ,x (Q )x (P )(x ())

z ,y (Q )z ()y (P )y (())y ,x (Q )x (P )(x )(4∧∨?∧?????∧?∨?∧???∧?∨∨?????∧?→→? )))z ,y (Q )y ,x (Q ())u (P )y ,x (Q ())

z ,y (Q )x (P ())u (P )x (P )((z )(u )(x (∨?∧∨?∧∨∧∨????

10. 证明以下各式

)

6(EG )x (A )x )(7Q

)Q P (P :),5)(4(T )u (A )6Q

P Q P ),2(T )u (B )u (A )5)

3(US )u (B )4P )x (B )x )(3)

1(US )u (B )u (A )2P

))x (B )x (A )(x )(1:

);x (A )x ()x (B )x ()),x (B )x (A )(x )(1(??∨∧?∨??→∨???→?→??????→??析取范式直接法

矛盾量词转换律

附加前提

反证法,I ),9)(5(T F )c (B )c (B )10)

8(US )c (B )9Q

)Q P (P ),7)(6(T )x (B )x )(8P

)x (B )x ()x (A )x )(7)

4(EG )x (A )x )(6I ),3(T )c (B )5I ),3(T )c (A )4)

2(ES ))c (B )c (A ()3))x (B )x (A ()x )(2))x (B )x (A )(x ()1:

));x (B )x (A )(x ()x (B )x ()x (A )x )(2(76

5

??∧?→∧??→???→?→??→??→???→?

)

6(UG ))x (A )x (C )(x )(7),5)(4(T )u (A )u (C )6,11E ),2(T )u (A )u (B )5)

3(US )u (B )u (C )4P ))x (B )x (C )(x )(3)

1(US )u (B )u (A )2P

))x (B )x (A )(x )(1));

x (A )x (C )(x ())

x (B )x (C )(x ()),x (B )x (A )(x )(3(?→??→?→??→?→?→→??→???→?→?假言三段论

逆反律

)8(UG )x (A )x )(9),7)(5(T )u (A )8)

6(US )u (B )u (A )7P

))x (B )x (A )(x )(6),4)(2(T )u (B )5)

3(US )u (C )4P

)x (C )x )(3)

1(US )u (C )u (B )2P

))x (C )x (B )(x )(1);

x (A )x ()x (C )x ()),x (C )x (B )(x ()),x (B )x (A )(x )(4(?∨∨????→?→?????→?∨?析取三段论

拒取式

Q P Q P ),4(T ))c (W )c (M ()5M

.D ),3(T ))c (W )c (M ()4),2(T ))c (W )c (M ()3)1(ES )c (W )c (M )2P

))y (W )y (M )(y )(1))

x (S )x (F )(x ())y (W )y (M )(y ()),y (W )y (M )(y ())x (S )x (F )(x )(5(∨??→→?∨???∧???∧?∧??→???∧?→?→∧?对合律

)

13(UG ))x (S )x (F )(x )(14Q

P Q P ),12(T )a (S )a (F )13M

.D ),11(T )a (S )a (F )12)

10(US ))a (S )a (F ()11),9(T ))x (S )x (F ()x )(10),8)(7(T ))x (S )x (F )(x ()9P

))y (W )y (M )(y ())x (S )x (F )(x )(8),6(T ))y (W )y (M )(y ()7)

3(EG ))y (W )y (M ()y )(6→?∨??→?→?∨?∧?∧??∧??→?→∧?→??→??量词转换律拒取式

量词转换律

11. 指出下面推理中的错误

(1)设个体域为整数集I,y x :)y ,x (G >

)

4(EG )y ,x (G )x )(y )(5)

3(US )c ,x (G )x )(4)2(ES )c ,a (G )3)

1(US )y ,a (G )y )(2P

)y ,x (G )y )(x )(1??????

3)到4)错, 运用推广规则应按量词次序自右而左顺序推广, 保持多重量词原来次序。

)

5(EG )x (Q )x )(6,I ),4)(2(T )y (Q )5)

3(ES )y (P )4P )x (P )x )(3)

1(US )y (Q )y (P )2P

))x (Q )x (P )(x )(1)

2(9??→→?假言推论

4)不能指定为y, 1),2)与3),4)换一下就行。

(完整word版)离散数学期末练习题带答案

离散数学复习注意事项: 1、第一遍复习一定要认真按考试大纲要求将本学期所学习内容系统复习一遍。 2、第二遍复习按照考试大纲的要求对第一遍复习进行总结。把大纲中指定的例题及书后习题认真做一做。检验一下主要内容的掌握情况。 3、第三遍复习把随后发去的练习题认真做一做,检验一下第一遍与第二遍复习情况,要认真理解,注意做题思路与方法。 离散数学综合练习题 一、选择题 1.下列句子中,()是命题。 A.2是常数。B.这朵花多好看呀! C.请把门关上!D.下午有会吗? 2.令p: 今天下雪了,q:路滑,r:他迟到了。则命题“下雪路滑,他迟到了” 可符号化为()。 A. p q r ∨→ ∧→ B. p q r C. p q r ∨? ∧∧ D. p q r 3.令:p今天下雪了,:q路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为()。 A.p q ∧ ∧? B.p q C.p q →? ∨? D. p q 4.设() Q x:x会飞,命题“有的鸟不会飞”可符号化为()。 P x:x是鸟,() A. ()(()()) Q x ??∧()) x P x Q x ??→ B. ()(() x P x C. ()(()()) Q x ??∧()) x P x Q x ??→ D. ()(() x P x 5.设() L x y:x大于等于y;命题“所有整数 f x:x的绝对值,(,) P x:x是整数,() 的绝对值大于等于0”可符号化为()。 A. (()((),0)) ?→ x P x L f x ?∧B. (()((),0)) x P x L f x C. ()((),0) ?→ xP x L f x ?∧ D. ()((),0) xP x L f x 6.设() F x:x是人,() G x:x犯错误,命题“没有不犯错误的人”符号化为()。 A.(()()) ??→? x F x G x ?∧B.(()()) x F x G x C.(()()) ??∧? x F x G x ??∧D.(()()) x F x G x 7.下列命题公式不是永真式的是()。 A. () p q p →→ →→ B. () p q p C. () →∨ p q p p q p ?∨→ D. () 8.设() R x:x为有理数;() Q x:x为实数。命题“任何有理数都是实数”的符号化为()

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

离散数学作业答案

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月19日前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 1 . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为 (PQ)R . 3.含有三个命题变项P ,Q ,R 的命题公式PQ 的主析取范式是 (PQR) (PQR) . 4.设P(x):x 是人,Q(x):x 去上课,则命题“有人去上课.” 可符号化为 (x)(P(x) →Q(x)) . 5.设个体域D ={a, b},那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 (A(a) A(b)) (B(a) B(b)) . 6.设个体域D ={1, 2, 3},A(x)为“x 大于3”,则谓词公式(x)A(x) 的真值为 . 7.谓词命题公式(x)((A(x)B(x)) C(y))中的自由变元为 . 8.谓词命题公式(x)(P(x) Q(x) R(x ,y))中的约束变元为 X . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 1.解:设P :今天是天晴; 则 P . 2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式. 解:设P :小王去旅游,Q :小李去旅游, 则 PQ . 3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式. 解:设P:明天天下雪 。 Q:我去滑雪 则 P Q . 4.请将语句“他去旅游,仅当他有时间.”翻译成命题公式. 7.解:设 P :他去旅游,Q :他有时间, 则 P Q . 5.请将语句 “有人不去工作”翻译成谓词公式. 11.解:设P(x):x 是人,Q(x):x 去工作,

离散数学期末复习

离散数学期末复习 一、选择题 1、下列各选项错误的是 A、??? B、??? C、?∈{?} D、??{?} 2、命题公式(p∧q)→p是 A、矛盾式 B、重言式 C、可满足式 D、等值式 3、如果是R是A上的偏序关系,R-1是R的逆关系,则R∪R-1是 A、等价关系 B、偏序关系 C、全序关系 D、都不是 4、下列句子中那个是假命题? A、是无理数. B、2 + 5=8.

C、x+ 5>3 D、请不要讲话! 5、下列各选项错误的是? A、??? B、??{?} C、?∈{?} D、{?}?? 6、命题公式p→(p∨q∨r)是? A、重言式 B、矛盾式 C、可满足式 D、等值式 7、函数f : N→N, f(x)=x+5,函数f是 A、单射 B、满射 C、双射 D、都不是 8、设D=,则 V={a,b,c,d,e,f},R={ ,,,,},有向图D为 A、强连通 B、单向连通 C、弱连通

D、不连通的 9、关系R1和R2具有反自反性,下面运算后,不能保持自反性的是 A、R1?R2 B、R1-1 C、R1?R2 D、R1-R2 10、连通平面图G有4个结点,3个面,则G有()条边。 A、7 B、6 C、5 D、4 二、填空题 1、将下面命题符号化。设p:天冷,q:小王穿羽绒服。只要天冷,小王就穿羽绒服.符号化为 2、将下面命题符号化,设p:天冷,q:小王穿羽绒服。因为天冷,所以小王穿羽绒服.符号化为 3、将下面命题符号化,设p:天冷,q:小王穿羽绒服。若小王不穿羽绒服,则天不冷.符号化为 4、将下面命题符号化,设p:天冷,q:小王穿羽绒服。只有天冷,小王才穿羽绒服.符号化为

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学(大作业)与答案

一、请给出一个集合A,并给出A上既具有对称性,又具有反对称性的关系。(10分)解:A={1,2} R={(1,1),(2,2)} 二、请给出一个集合A,并给出A上既不具有对称性,又不具有反对称性的关系。(10分)集合A={1,2,3} A上关系{<1,2>,<2,1>,<1,3>},既不具有对称性,又不具有反对称性 三、设A={1,2},请给出A上的所有关系。(10分) 答:A上的所有关系: 空关系,{<1,1>,<1,2>,<2,1>,<2,2>} {<1,1>} {<1,2>} {<2,1>} {<2,2>} {<1,1>,<1,2>} {<1,1>,<2,1>} {<1,1>,<2,2>} {<1,2>,<2,1>} {<1,2>,<2,2>} {<2,1>,<2,2>} {<1,1>,<1,2>,<2,1>} {<1,1>,<1,2>,<2,2>}

{<1,2>,<2,1>,<2,2>} {<1,1>,<2,1>,<2,2>} 四、设A={1,2,3},问A 上一共有多少个不同的关系。(10分) 设A={1,2,3},A 上一共有2^(3^2)=2^9=512个不同的关系。 五、证明: 命题公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。(10分) 证明:设公式G 的合取范式为:G ’=G1∧G2∧…∧Gn 若公式G 恒真,则G ’恒真,即子句Gi ;i=1,2,…n 恒真 为其充要条件。 Gi 恒真则其必然有一个原子和它的否定同时出现在Gi 中,也就是说无论一个解释I 使这个原子为1或0 ,Gi 都取1值。 若不然,假设Gi 恒真,但每个原子和其否定都不同时出现在Gi 中。则可以给定一个解释I ,使带否定号的原子为1,不带否定号的原子为0,那么Gi 在解释I 下的取值为0。这与Gi 恒真矛盾。 因此,公式G 是恒真的当且仅当在等价于它的合取范式中,每个子句均至少包含一个原子及其否定。 六、若G=(P ,L)是有限图,设P(G),L(G)的元数分别为m ,n 。证明:n ≤2m C ,其中2m C 表 示m 中取2的组合数。(10分) 证明:如果G=(P,L)为完全图,即对于任意的两点u 、v (u ≠v ),都有一条边uv ,则此时对于元数为m 的P(G),L(G)的元数取值最大为C m 2。因此,若G=(P,L)为一有限图,设P(G)的元数为m ,则有L(G)

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学期末复习试题及答案

离散数学习题参考答案 第一章集合 1.分别用穷举法,描述法写出下列集合 (1)偶数集合 (2)36的正因子集合 (3)自然数中3的倍数 (4)大于1的正奇数 (1)E={?,-6,-4,-2,0,2,4,6,?} ={2 i | i∈I } (2) D= { 1, 2, 3, 4, 6, } = {x>o | x|36 } (3) N3= { 3, 6, 9, ```} = { 3n | n∈N } (4) A d= {3, 5, 7, 9, ```} = { 2n+1 | n∈N } 2.确定下列结论正确与否 (1)φ∈φ× (2)φ∈{φ}√ (3)φ?φ√ (4)φ?{φ}√ (5)φ∈{a}× (6)φ?{a}√ (7){a,b}∈{a,b,c,{a,b,c}}× (8){a,b}?{a,b,c,{a,b,c}}√(9){a,b}∈{a,b,{{a,b}}}× (10){a,b}?{a,b,{{a,b}}}√ 3.写出下列集合的幂集 (1){{a}} {φ, {{ a }}} ( 2 ) φ {φ} (3){φ,{φ}} {φ, {φ}, {{φ}}, {φ,{φ}} } (4){φ,a,{a,b}} {φ, {a}, {{a,b }}, {φ}, {φ, a }, {φ, {a,b }}, {a, {a b }}, {φ,a,{ a, b }} } (5)P(P(φ)) {φ, {φ}, {{φ}}, {φ,{φ}} } 4.对任意集合A,B,C,确定下列结论的正确与否(1)若A∈B,且B?C,则A∈C√

(2)若A∈B,且B?C,则A?C× (3)若A?B,且B∈C,则A∈C× (4)若A?B,且B∈C,则A?C × 5.对任意集合A,B,C,证明 右 分配差差左=--=--)C A ()B A ()C B (A M .D )C B (A )C B (A ) C A ()B A ()C B (A )1(I Y I Y I I I I I Y 右 差分配差左右差的结论差左=--=-------=-)C A ()B A ()C A ()B A () C B (A M . D )C B (A )2)C A ()B A ()C A ()B A ()1()C B (A )1) C A ()B A ()C B (A )2(Y I Y I Y I I I Y I Y Y I 右 交换结合幂等差左=--=-)C A ()B A (,)C B ()A A () C B (A M . D )C B (A ) C A ()B A ()C B (A )3(I I I I I I I I Y I I Y ))B )B (A ())B B ()B A ((,)B )B A (()B )B A ((B )B A (B A B )B A )(4(I I Y I Y I I Y I I Y --⊕=⊕+结合分配对称差差左 右 零一互补==φ-φ-)B A ()B A () A ()U ) B A ((Y Y I I Y

电大 离散数学作业7答案

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 1或T . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如 果他生病或出差了,我就同意他不参加学习”符号化的结果为 (P ∨Q )→R . 3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 (P ∧Q ∧R)∨(P ∧Q ∧?R) . 4.设P (x ):x 是人,Q (x ):x 去上课,则命题“有人去上课.” 可符号化为 ?x(P(x) ∧Q(x)) . 5.设个体域D ={a , b },那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 (A(a) ∨A(b)) ∨((B(a) ∧B(b)) . 6.设个体域D ={1, 2, 3},A (x )为“x 大于3”,则谓词公式(?x )A (x ) 的真值为 0(F) . 7.谓词命题公式(?x )((A (x )∧B (x )) ∨C (y ))中的自由变元为 y . 8.谓词命题公式(?x )(P (x ) →Q (x ) ∨R (x ,y ))中的约束变元为 x . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 设P :今天是晴天。 姓 名: 学 号: 得 分: 教师签名:

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

离散数学试卷及答案

填空10% (每小题 2 分) 1、若P,Q,为二命题,P Q 真值为0 当且仅当。 2、命题“对于任意给定的正实数,都存在比它大的实数” 令F(x):x 为实数,L(x, y) : x y 则命题的逻辑谓词公式为。 3、谓词合式公式xP(x) xQ(x)的前束范式为。 4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为 换名规则。 5、设x 是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y 是自由的,则被称为存 在量词消去规则,记为ES。 选择25% (每小题分) 1、下列语句是命题的有()。 A、明年中秋节的晚上是晴天; C、xy 0 当且仅当x 和y 都大于0; D 、我正在说谎。 2、下列各命题中真值为真的命题有()。 A、2+2=4当且仅当3是奇数; B、2+2=4当且仅当 3 不是奇数; C、2+2≠4 当且仅当3是奇数; D、2+2≠4当且仅当 3 不是奇数; 3、下列符号串是合式公式的有() A、P Q ; B、P P Q; C、( P Q) (P Q); D、(P Q) 。 4、下列等价式成立的有( )。 A、P QQ P ; B、P(P R) R; C、P (P Q) Q; D 、P (Q R) (P Q) R。 5、若A1,A2 A n和B为 wff ,且A1 A2 A n B 则 ( )。 A、称A1 A2 A n 为 B 的前 件; B 、称 B 为A1,A2 A n 的有效结论

C 、 x(M (x) Mortal (x)) ; D 、 x(M(x) Mortal (x)) 8、公式 A x(P(x) Q(x))的解释 I 为:个体域 D={2} ,P(x) :x>3, Q(x) :x=4则 A 的 真 值为( ) 。 A 、 1; B 、 0; C 、 可满足式; D 、无法判定。 9、 下列等价关系正确的是( )。 A 、 x(P(x) Q(x)) xP(x) xQ(x); B 、 x(P(x) Q(x)) xP(x) xQ(x); C 、 x(P(x) Q) xP(x) Q ; D 、 x(P(x) Q) xP(x) Q 。 10 、 下列推理步骤错在( )。 ① x(F(x) G(x)) P ② F(y) G(y) US ① ③ xF(x) P ④ F(y) ES ③ ⑤G(y) T ②④I ⑥ xG(x) EG ⑤ A 、②; B 、④; C 、⑤; D 、⑥ 逻辑判断 30% 1、 用等值演算法和真值表法判断公式 A ((P Q) (Q P)) (P Q) 的类型。 C 、当且仅当 A 1 A 2 A n D 、当且仅当 A 1 A 2 A n B F 。 6、 A ,B 为二合式公式,且 B ,则( )。 7、 A 、 A C 、 A B 为重言式; B 、 B ; E 、 A B 为重言式。 人总是要死的”谓词公式表示为( )。 论域为全总个体域) M (x ) : x 是人; Mortal(x) x 是要死的。 A 、 M (x) Mortal (x) ; B M (x) Mortal (x)

离散数学作业答案完整版

离散数学作业答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

离散数学集合论部分形成性考核书面作 业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数 理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题 目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识 点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地 完成集合论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答 过程,要求本学期第11周末前完成并上交任课教师(不收电子稿)。并在03任务界 面下方点击“保存”和“交卷”按钮,完成并上交任课教师。 一、填空题 1.设集合{1,2,3},{1,2} ==,则P(A)- A B P(B )={{3},{1,3},{2,3},{1,2,3}},A? B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} . 2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 . 3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>} . 4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} ∈ y x∈ y < > = {B , , x , 2 y A x 那么R-1={<6,3>,<8,4>} 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是没有任何性质. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素{,} ,则新得到的关系就具有对 称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个. 8.设A={1, 2}上的二元关系为R={|x?A,y?A, x+y =10},则R的自反闭 包为 {<1,1>,<2,2>} . 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含 <1,1>,<2,2>,<3,3> 等元素. 10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是 {<1,a>,<2,b>}或{<1,b>,<2,a>} . 二、判断说明题(判断下列各题,并说明理由.)

离散数学试卷及答案(1)

一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为 则 R= 。

8.图的补图为 。 9.设A={a ,b ,c ,d} ,A 上二元运算如下: 那么代数系统的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。 10.下图所示的偏序集中,是格的为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ? ; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A .{4,3}Φ?; B .{Φ,3,4}; C .{4,Φ,3,3}; D . {3,4}。 3、设A={1,2,3},则A 上的二元关系有( )个。

A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() R 是自反的; A.若R,S 是自反的,则S R 是反自反的; B.若R,S 是反自反的,则S R 是对称的; C.若R,S 是对称的,则S R 是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s p R= t s ∈ =则P(A)/ R=() < > ∧ A ) (| || |} ( , {t , | s A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“?”的哈斯图为() 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是()

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

离散数学试题及答案

离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=_____{3}______________; ρ(A) - ρ(B)= ____{{3},{1,3},{2,3},{1,2,3}}__________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = ___2^(n^2)________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是____A1 = {(a,1), (b,1)}, A2 = {(a,2), (b,2)}, A3 = {(a,1), (b,2)}, A4 = {(a,2), (b,1)},_________ _____________, 其中双射的是______A3, A4__________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取式是____P∧?Q∧R (m5)____. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为___12______,分枝点数为_______3_________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=______{4}______; A?B=____{1,2,3,4}_________;A-B=______{1,2}_______ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______自反性____________, _________对称性_________, _________传递性_____________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有_____(1,0,0)__________, ______(1,0,1)________, ________(1,1,0)________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1?R2= ___{(1,3),(2,2),(3,1)}____,R2?R1 =_____{(2,4), (3,3), (4,2)}_____, R12=_______{(2,2), (3,3)}_________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = ______2^(m*n)___________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = _____{x | -1 ≤x < 0, x ∈R}_______ , B-A = ______{x | 1 < x < 2, x ∈R}_____ , A∩B = ______{x | 0 ≤x ≤1, x ∈R}__________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ ________{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}_________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束式是_____?y?x(P(y)→Q(x))________ _____.

离散数学 作业及答案

2011-2012学年第一学期离散数学作业及参考答案---信息安全10级5-1 1.利用素因子分解法求2545与360的最大公约数。 解:掌握两点:(1) 如何进行素因子分解 从最小素数2的素数去除n。 (2) 求最大公约数的方法 gcd(a,b) = p1min(a1,b1)p2min(a2,b2)pn min(an,bn) 360=2332515090 2545=2030515091 gcd(2545,360) =2030515090=5 2.求487与468的最小公倍数。 解:掌握两点:(1) 如何进行素因子分解 从最小素数2的素数去除n。 (2) 求最小公倍数的方法 lcm(a,b) = p1max(a1,b1)p2max(a2,b2)pn max(an,bn) ab=gcd(a, b)﹡lcm (a, b) 487是质数,因此gcd(487,468)=1 lcm(487,468)= (487*468)/1=487*468=227916 3.设n是正整数,证明:6|n(n+1)(2n+1) 证明:用数学归纳法: 归纳基础:当n=1时,n(n+1)(2n+1)=1*2*3=6,6|6 归纳假设:假设当n=m时,6|m(m+1)(2m+1) 归纳推导:当n=m+1时, n(n+1)(2n+1)=(m+1)(m+1+1)[2(m+1)+1] =(m+1)(m+2)(2m+3) = m(m+1)(2m+3)+2(m+1)(2m+3) = m(m+1)(2m+1+2)+2(m+1)(2m+3) = m(m+1)(2m+1)+2 m(m+1)+ 2(m+1)(2m+3) = m(m+1)(2m+1)+ 2(m+1)(m+2m+3) = m(m+1)(2m+1)+ 2(m+1)(3m+3) = m(m+1)(2m+1)+ 6(m+1)2 因为由假设6|m(m+1)(2m+1)成立。 而6|6(m+1)2 所以6|m(m+1)(2m+1)+ 6(m+1)2 故当n=m+1时,命题亦成立。 所以6| n(n + 1)(2n + 1) 5-2 1 已知 6x ≡7 (mod 23),下列式子成立的是( D ): A. x ≡7 (mod 23) B. x ≡8 (mod 23) C. x ≡6 (mod 23) D. x ≡5 (mod 23) 2 如果a ≡b (mod m) , c是任意整数,则(A ):

大学离散数学期末重点知识点总结(考试专用)

1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (?x)((Ax)∨(Bx)) <=>( ?x)(Ax)∨(?x)(Bx) (?x)((Ax)∧(Bx)) <=>(?x)(Ax)∧(?x)(Bx) —┐(?x)(Ax) <=>(?x)┐(Ax) —┐(?x)(Ax) <=>(?x)┐(Ax) (?x)(A ∨(Bx)) <=>A ∨(?x)(Bx) (?x)(A ∧(Bx)) <=>A ∧(?x)(Bx) (?x)((Ax)→(Bx)) <=>(?x)(Ax)→(?x)(Bx) (?x)(Ax) →B <=>(?x) ((Ax)→B) (?x)(Ax) →B <=>(?x) ((Ax)→B) A →(?x)(Bx) <=>(?x) (A →(Bx)) A →(?x)(Bx) <=>(?x) (A →(Bx)) (?x)(Ax)∨(?x)(Bx) =>(?x)((Ax)∨(Bx)) (?x)((Ax)∧(Bx)) =>(?x)(Ax)∧(?x)(Bx) (?x)(Ax)→(?x)(Bx) =>(?x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f og=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f og 也是单射; ②如果f,g 都是满射,则f og 也是满射; ③如果f,g 都是双射,则f og 也是双射; ④如果f og 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:,,满足f(a*b)=f(a)^f(b),则f 为由的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b => c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度; ②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n =n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;