射频参数解析

射频参数解析
射频参数解析

射频参数

1.回波损耗

又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。

不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。

回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。

回波损耗= -10 lg [(反射功率)/(入射功率)]

2.反射系数

反射波和入射波电压之比

回波损耗= 20|lg(反射系数Γ)|

3.驻波比

全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比。驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去。

驻波比会随着频率而改变

在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。

其它各点的振幅值则介于波腹与波谷之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比

驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果SWR 的值等于

1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。

如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温

驻波比反射率:

1.00.00%

1.10.23%

1.20.83%

1.3 1.70%

1.5 4.00%

1.7 6.72%

1.88.16%

2.011.11%

2.518.37%

3.025.00%

4.036.00%

5.044.44%

7.056.25%

1066.94%

1576.56%

2081.86%

4.天线增益

天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。

增益与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。

表示天线增益的参数有dBd和dBi,dBi是相对于点源天线的增益,在各方向上的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同条件下,增益越高,电波传播的距离越远

5.天线辐射方向图(XY、XZ、YZ三个平面)

6.天线尺寸(微带天线—单极子天线等)

7.接收灵敏度

8.辐射边界条件

9.天线上的电流分布

10.阻抗匹配

反应输入电路与输出电路的功率传输关系,当电路实现阻抗匹配时,将获得最大的功率传输(50%),当阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害在高频电路中,必须考虑反射问题。当信号频率很高时,信号的波长就很短,当波长短的跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(不相等)时,在负载端就会产生反射,降低能量传输效率。

天线电路中常留一个π型网络以做阻抗匹配用

阻抗匹配的方法(不同领域):

1)考虑使用变压器来做阻抗转换。如电视机的阻抗转换器(即传输线变压器),将300

Ω的阻抗变换成75Ω的阻抗

2)使用串联/并联电容或电感的方法,常用在射频电路

3)使用串/并联电阻的方法。如485总线接收器,常在数据线终端并联120Ω的匹配电

阻。(一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联的一个几十欧姆的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120Ω的匹配电阻)

11.射频电阻阻抗

射频电路阻抗一般为50欧姆的标准阻抗,天线和电路阻抗匹配到理想值(50Ω时),天线就可以将能量最大限度的转换为电磁波传递出去、

12.特征阻抗

特征阻抗(又名特性阻抗)是相对于传输线而言的,不是导线电阻。它表征了传输线某截面上的电压和电流的关系(无反射条件下)。50Ω特征阻抗的传输线具有传输能量密度和效率的综合优势

在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源或

地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一个电流I,如果信号的输出电平为V,在信号传输过程中,传输线就会等效成一个电阻,大小为V/I,把这个等效的电阻称为传输线的特性阻抗Z。

特性阻抗是信号线没处的电压和电流的比值,是一个“点的概念”

信号在传输过程中,如果传输路径上的特性阻抗发生变化,信号就会在阻抗不连续的结点产生反射。

影响特性阻抗的因素有:介电常数、介质厚度、线宽、铜箔厚度

13.输入阻抗

14.其它

HFSS中的参数设置

1.phi角、thera角

phi:XY平面上的夹角

thera:垂直方向上与Z轴的夹角

thera从0到180°画出来的图形不对称,所以就从-180°到180°;phi一般是对称的,所以取90°的也行,但是为了图形好看,一般是0到360°

2.坐标

3.板材、板厚

常用材质:FR4(介电常数:标准4.2(因生产厂家而异))

4.介质参数

5.辐射边界条件

6.空气盒子(Airbox)

7.参考地尺寸、层数

如Gnd_top、Gnd_bottom上下两层

8.天线尺寸(微带线天线)

9.其它

Smith chart 1.输入阻抗

Z = R + jx 串联电感、电容时,实部R值不变2.导纳

电导和电纳

单位:西门子(S)

Y = G + jx 并联电感、电容时,实部G值不变3.其它

(完整版)射频指标测试介绍

目录 1GSM部分 (1) 1.1常用频段介绍 (1) 1.2 发射(transmitter )指标 (2) 1.2.1发射功率 (2) 122 发射频谱(Output RF spectrum) (4) 1.2.2.1调制频谱 (4) 1.2.2.2开关频谱 (5) 1.2.3 杂散(spurious emission) (5) 1.2.4 频率误差(Frequency Error) (6) 1.2.5 相位误差( Phase Error) (6) 1.2.6功率时间模板(PVT) 7 1.2 接收(receiver) 指标 (8) 1.2.1接收误码率(BER (8) 2 WCDMA (9) 2.1常用频段介绍 (9) 2.2 发射(Transmitter )指标 (9) 2.3 接收(receiver) 指标 (15) 3 CDMA2000 (15) 3.1常用频段介绍 (15) 3.2 发射(transmitter )指标 (16) 3.3 接收(receiver) 指标 (19) 4 TD-SCDMA 部分 (20) 4.1常用频段介绍 (20) 4.2 发射(transmitter )指标 (20) 4.3 接收指标( Receiver) (26) 1GS M部分 1.1常用频段介绍

1.2 发射(transmitter)指标 1.2.1发射功率 定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送 到手机天线或收集及其天线发射的功率的平均值。 测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。如果发射功 率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。如果 发射功率在相应的级别超出指标的要求,则会造成邻道干扰。 测试方法: 手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。 GSM频段分为124个信道,功率级别为5----33dBm,即卩LEVEL5--LEVEL19共15 个级别;DCS频段分为373个信道(512----885),功率级别为0----30dBm,即LEVEL0---LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。 功率控制:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站 近时发射功率小。具体过程如下:手机中的数据存储器存放有功率级别表,当手 机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的 功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。 测试指标: DCS1 800 Power con trol Nomi nal Output Toleranee (dB) for con diti ons

硬盘SMART检测参数详解

硬盘SMART检测参数详解 用户最不愿意看到的事情,莫过于在毫无警告的情况下发现硬盘崩溃了。诸如RAID的备份和存储技术可以在任何时候帮用户恢复数据,但为预防硬件崩溃造成数据丢失所花费的代价却是相当可观的,特别是在用户从来没有提前考虑过在这些情况下的应对措施时。 硬盘的故障一般分为两种:可预测的(predictable)和不可预测的(unpredictable)。后者偶而会发生,也没有办法去预防它,例如芯片突然失效,机械撞击等。但像电机轴承磨损、盘片磁介质性能下降等都属于可预测的情况,可以在在几天甚至几星期前就发现这种不正常的现象。 对于可预测的情况,如果能通过磁盘监控技术,通过测量硬盘的几个重要的安全参数和评估他们的情况,然后由监控软件得出两种结果:“硬盘安全”或“不久后会发生故障”。那么在发生故障前,至少有足够的时间让使用者把重要资料转移到其它储存设备上。 最早期的硬盘监控技术起源于1992年,IBM在AS/400计算机的IBM 0662 SCSI 2代硬盘驱动器中使用了后来被命名为Predictive Failure Analysis(故障预警分析技术)的监控技术,它是通过在固件中测量几个重要的硬盘安全参数和评估他们的情况,然后由监控软件得出两种结果:“硬盘安全”或“不久后会发生故障”。 不久,当时的微机制造商康柏和硬盘制造商希捷、昆腾以及康纳共同提出了名为IntelliSafe的类似技术。通过该技术,硬盘可以测量自身的的健康指标并将参量

值传送给操作系统和用户的监控软件中,每个硬盘生产商有权决定哪些指标需要被监控以及设定它们的安全阈值。 1995年,康柏公司将该技术方案提交到Small Form Factor(SFF)委员会进行标准化,该方案得到IBM、希捷、昆腾、康纳和西部数据的支持,1996年6月进行了1.3版的修正,正式更名为S.M.A.R.T.(Self-Monitoring Analysis And Reporting Technology),全称就是“自我检测分析与报告技术”,成为一种自动监控硬盘驱动器完好状况和报告潜在问题的技术标准。 SMART的目的是监控硬盘的可靠性、预测磁盘故障和执行各种类型的磁盘自检。如今大部分的ATA/SATA、SCSI/SAS和固态硬盘都搭载内置的SMART系统。作为行业规范,SMART规定了硬盘制造厂商应遵循的标准,满足SMART标准的条件主要包括: 1)在设备制造期间完成SMART需要的各项参数、属性的设定; 2)在特定系统平台下,能够正常使用SMART;通过BIOS检测,能够识别设备是否支持SMART并可显示相关信息,而且能辨别有效和失效的SMART信息; 3)允许用户自由开启和关闭SMART功能; 4)在用户使用过程中,能提供SMART的各项有效信息,确定设备的工作状态,并能发出相应的修正指令或警告。在硬盘及操作系统都支持SMART技术并且开启的情况下,若硬盘状态不良,SMART功能会在开机时响起警报,SMART技术能够在屏幕上显示英文警告信息:“WARNING IMMEDIATLY BACKUP YOUR DATA AND REPLACE YOUR HARD DISK DRIVE,A FAILURE MAY BE IMMINENT.”(警告:立刻备份你的数据并更换硬盘,硬盘可能失效。)

雷达射频集成电路的发展及应用

龙源期刊网 https://www.360docs.net/doc/807653171.html, 雷达射频集成电路的发展及应用 作者:黄林锋 来源:《山东工业技术》2017年第24期 摘要:本文概述了雷达射频集成电路技术的特点,是一种以半导体和射频电路技术为基础,一种集信号放大、数据传输和转化功能为一体的技术,并从其发展与演变切入进行研究,探讨了目前常用的几种雷达射频集成电路的发展成果及其应用状况。 关键词:雷达射频集成电路;发展;应用 DOI:10.16640/https://www.360docs.net/doc/807653171.html,ki.37-1222/t.2017.24.099 现代的雷达系统越来越注重高精度的距离探测与跟踪,还要求较强的抗干扰性、目标识别作用和气象探测功能。由此,要求完整一套的现代雷达系统包含近万个信号接收器和信号发射装置,这也极大提高了系统的复杂性和设备的成本造价。雷达系统的现代化除保留上述基本功能,还应减少设备的造价,这推进了射频集成电路在现代雷达领域的研发 [1]。由无线天线、电磁信号处理器、显示屏幕、控制面板、信号的发射和接收器所组成的现代雷达系统。目前,射频集成系统已经应用于信号的发射和接收器,下文从射频集成电路在雷达系统的研发入手,通过深入研究,介绍雷达系统目前的几种应用现状。 1 雷达射频集成电路的发展概述 随射频集成技术和信息化在雷达系统中的深入发展,射频集成电路已经演变了好几个架构形态[2]。以信号接收系统为例,在三十年内演化出三种不同的形态。在此过程,雷达系统的 数字化不断提高,实现某些频段的完全数字化,使射频集成电路向混合集成电路的方向不断发展。 2 雷达系统射频集成电路的发展及应用研究 2.1 射频集成SOC 以单片作为射频电路的集成基板,SiGe和CMOS作为集成射频与数字化特点的技术平台。技术的快速发展极大提高了射频电路的集成化程度,上部集混合频率、放大频率和合成信号功能为一体,下部集增频、分贝放大功能的器件。雷声公司(美国)研发的最新设备——X 波段应用了上述技术 [3],其在实际中具有高性能、减小雷达体积和节约造价的应用优势。 2.2 射频多通道集成电路 在一个集成芯片上集多通道于一体,这种集成电路没有射频集成电路那么多的器件,应用系统的封装工艺,以高度集成化的多通道芯片,实现射频混合电路的性能优化和结构简化。采

射频电缆参数理论

射频电缆的参数理论 第一节 特性阻抗 特性阻抗是选用电缆的首先要考虑的参数,它是电缆本身的参数,它取决于导体的直径以及绝缘结构的等效介电常数。 特性阻抗对于电缆的使用有很大的影响。例如在选择射频电缆作为发射天线馈线时,其特性阻抗应尽可能和天线的阻抗一致,否则会在电缆和天线的连接处造成信号反射,使得天线得到的功率减少,电缆的传输效率也会下降,更为严重的是,反射的存在会使电缆沿线出现驻波,有些地方会出现电压和电流的过载,从而造成电缆的热击穿或热损伤而影响电缆的正常运行。电缆内部反射的存在,还会造成传输信号的畸变,使传输信号出现重影,严重影响信号传输质量。 为了便于使用,射频电缆的阻抗已经标准化了。因此在选用电缆时应尽可能选用标准阻抗值。对于射频同轴电缆有以下三中标准阻抗: 50±2ohm 推荐使用于射频及微波,用于测试仪表以及同轴-波导转换器等; 75±3ohm 用于视频或者脉冲数据传输,用于大长度例如CA TV 电缆传输系统; 100±5ohm 用于低电容电缆以及其它特种电缆。 以下是同轴电缆特性阻抗计算的各种公式。 §1.1同轴电缆阻抗公式 根据传输理论,特性阻抗公式为: Zc =)/()(C j G L j R ωω++ 式中,R 、L 、G 、C 、代表该传输线的一次参数,而ω=2πf 代表信号的角频率。 对于射频同轴电缆传输高频信号,通常都有R <<ωL ,G <<ωC ,此时特性阻抗公式可以简化为:

Zc =C L/=60?ln(D/d)/ε=138?l g(D/d)/ε(ohm) 式中,D为外导体内直径(mm) d为内导体外直径(mm) ε为绝缘相对介电常数 表1给出了常用绝缘材料的相对介电常数。 表1常用介质材料的特性 皱纹外导体已经获得广泛应用,阻抗尚无标准的方法计算,可以利用电容电感参考方法进行计算。 测量出L和C后可以计算阻抗: Zc =C L/ §1.4特性阻抗与电容的关系 同轴电缆的特性阻抗与电容有如下简单的关系,即 Zc=104/3·ε/ C 式中,C为电缆电容(pF/m) 第二节电容 电容是射频电缆的一个重要参数,同轴电缆的电容按照下式计算: C=1000ε/(18lnD/d)=24.13ε/(lgD/d)(pF/m) 第三节衰减 衰减是射频电缆的重要参数之一,它反映了电磁能量沿电缆传输时的

SMART技术检测磁盘故障参数

SMART检测参数说明 一般情况下,用户只要观察当前值、最差值和临界值的关系,并注意状态提示信息即可大致了解硬盘的健康状况。下面简单介绍各参数的含义,以红色标出的项目是寿命关键项,蓝色为固态硬盘(SSD)特有的项目。 在基于闪存的固态硬盘中,存储单元分为两类:SLC(Single Layer Cell,单层单元)和MLC(Multi-Level Cell,多层单元)。SLC成本高、容量小、但读写速度快,可靠性高,擦写次数可高达100000次,比MLC高10倍。而MLC 虽容量大、成本低,但其性能大幅落后于SLC。为了保证MLC的寿命,控制芯片还要有智能磨损平衡技术算法,使每个存储单元的写入次数可以平均分摊,以达到100万小时的平均无故障时间。因此固态硬盘有许多SMART参数是机械硬盘所没有的,如存储单元的擦写次数、备用块统计等等,这些新增项大都由厂家自定义,有些尚无详细的解释,有些解释也未必准确,此处也只是仅供参考。下面凡未注明厂商的固态硬盘特有的项均为SandForce主控芯片特有的,其它厂商各自单独注明。 01(001)底层数据读取错误率 Raw Read Error Rate 数据为0或任意值,当前值应远大于与临界值。底层数据读取错误率是磁头从磁盘表面读取数据时出现的错误,对某些硬盘来说,大于0的数据表明磁盘表面或者读写磁头发生问题,如介质损伤、磁头污染、磁头共振等等。不过对希捷硬盘来说,许多硬盘的这一项会有很大的数据量,这不代表有任何问题,主要是看当前值下降的程度。 在固态硬盘中,此项的数据值包含了可校正的错误与不可校正的RAISE错误(UECC+URAISE)。 注:RAISE(Redundant Array of Independent Silicon Elements)意为独立硅元素冗余阵列,是固态硬盘特有的一种冗余恢复技术,保证内部有类似RAID 阵列的数据安全性。 02(002)磁盘读写通量性能 Throughput Performance 此参数表示硬盘的读写通量性能,数据值越大越好。当前值如果偏低或趋近临界值,表示硬盘存在严重的问题,但现在的硬盘通常显示数据值为0或根本不显示此项,一般在进行了人工脱机SMART测试后才会有数据量。

集成电路与系统

集成电路与系统 集成电路设计与集成系统专业工资待遇 截止到 2013年12月24日,57740位集成电路设计与集成系统专业毕业生的平均薪资为4639元,其中应届毕业生工资3701元,0-2年工资4104元,10年以上工资5104元,3-5年工资6069元,8-10年工资10494元,6-7年工资11198元。 集成电路设计与集成系统专业就业方向 集成电路设计与集成系统专业学生毕业后可到国内外各通信、雷达、电子对抗等电子系统设计单位和微电子产品的单位从事微电子系统的研发设计。。 集成电路设计与集成系统专业就业岗位 硬件工程师、电气工程师、模拟集成电路设计工程师、研发工程师、射频集成电路设计工程师、设计工程师、等。 集成电路设计与集成系统专业就业地区排名 集成电路设计与集成系统专业就业岗位最多的地区是上海。薪酬最高的地区是肇庆。 就业岗位比较多的城市有:上海[36个]、北京[30个]、深圳[28个]、苏州[11个]、西安[10个]、武汉[9个]、广州[7个]、成都[6个]、无锡[6个]、济南[6个]等。 就业薪酬比较高的城市有:肇庆[8065元]、信阳[6999元]、北京[6279元]、上海[6194元]、佛山[5265元]、厦门[5231元]、杭州[5024元]、南京[5013元]、惠州[4999元]、沈阳[4867元]、大连[4799元]等。 集成电路设计与集成系统专业在同类专业排名

集成电路设计与集成系统专业在专业学科中属于工学类中的电气信息类,其中电气信息类共34个专业,集成电路设计与集成系统专业在电气信息类专业中排名第28,在整个工学大类中排名第95位。 在电气信息类专业中,就业前景比较好的专业有:计算机科学与技术,自动化,软件工程,信息工程,电气工程及其自动化,网络工程,计算机软件,电子信息工程,通信工程等。

射频电路设计理论与应用答案

射频电路设计理论与应用答案 【篇一:《射频通信电路设计》习题及解答】 书使用的射频概念所指的频率范围是多少? 解: 本书采用的射频范围是30mhz~4ghz 1.2列举一些工作在射频范围内的电子系统,根据表1-1判断其工作 波段,并估算相应射频信号的波长。 解: 广播工作在甚高频(vhf)其波长在10~1m等 1.3从成都到上海的距离约为1700km。如果要把50hz的交流电从 成都输送到上海,请问两地交流电的相位差是多少? 解: 8??f?3?1?0.6???4km 1.4射频通信系统的主要优势是什么? 解: 1.射频的频率更高,可以利用更宽的频带和更高的信息容量 2.射频电路中电容和电感的尺寸缩小,通信设备的体积进一步减小 3.射频通信可以提供更多的可用频谱,解决频率资源紧张的问题 4.通信信道的间隙增大,减小信道的相互干扰 等等 1.5 gsm和cdma都是移动通信的标准,请写出gsm和cdma的英文全称和中文含意。(提示:可以在互联网上搜索。) 解: gsm是global system for mobile communications的缩写,意 为全球移动通信系统。 cdma英文全称是code division multiple address,意为码分多址。???4???2?k?1020k??0.28333 1.6有一个c=10pf的电容器,引脚的分布电感为l=2nh。请问当频 率f为多少时,电容器 开始呈现感抗。 解: ?wl?f??1.125ghz2 既当f=1.125ghz0阻抗,f继续增大时,电容器呈现感抗。

1.7 一个l=10nf的电容器,引脚的分布电容为c=1pf。请问当频率f 为多少时,电感器开始呈现容抗。 解: 思路同上,当频率f小于1.59 ghz时,电感器呈现感抗。 1.8 1)试证明(1.2)式。2)如果导体横截面为矩形,边长分别为a和b,请给出射频电阻rrf与直流电阻rdc的关系。 解: r??l?s ???l,s对于同一个导体是一个常量 2s??a当直流时,横截面积dc 当交流时,横截面积sac?2?a? 2rdc?a??ac?a?? 661.9已知铜的电导率为?cu ?6.45?10s/m,铝的电导率为?al?4.00?10s/m,金的电导率 6为?au?4.85?10s/m。试分别计算在100mhz和1ghz的频率下,三种材料的趋肤深度。 解: 趋肤深度?定义为: 在100mhz时: cu为2 mm al 为 2.539mm au为 2.306mm 在1ghz时: cu为0.633 mm al 为 0.803mm au为 0.729mm 1.10某个元件的引脚直径为d=0.5mm,长度为l=25mm,材料为铜。请计算其直流电阻rdc和在1000mhz频率下的射频电阻rrf。解: r?s 它的射频电阻 adllrrf?rdc????22?4???? d2???d????0?r?4??10?1?????????7zdf?l?0.123???d? 1.11个电阻的标示分别为:“203”、“102”和“220r”。请问三个电阻的阻值分别是多少?(提示:可以在互联网上查找贴片元件标示的规则)解:

RF 设计与应用----射频集成电路封装

RF设计与应用----射频集成电路封装 关键词:射频,多层电路板,电路封装 摘要:针对无线通信产品业者所面临的课题,本文试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 在行动通讯质量要求的提高,通讯带宽的需求量大增,因应而生的各项新的通讯规范如GPRS、W-CDMA、CDMA-2000、Bluetooth、 802.11b纷纷出笼,其规格不外乎:更高的数据传输速率、更有效的调变方式、更严谨的噪声规格限定、通讯功能的增强及扩充,另外再加上消费者对终端产品“轻、薄、短、小、久(包括产品的使用寿命、维护保固,甚至是手机的待机时间)”的诉求成了必要条件;于是乎,为了达成这些目的,各家厂商无不使出混身解数,在产品射频(Radio Frequency)、中频(Intermediate Frequency)与基频(Base Band)电路的整合设计、主动组件的选择应用、被动组件数目的减少、多层电路板内线路善加运用等,投注相当的心血及努力,以求获得产品的小型化与轻量化。 针对这些无线通信产品业者所面临的课题,我们试着从封装技术在射频集成电路上应用的角度,来介绍射频集成电路封装技术的现况、现今封装技术对射频集成电路效能的影响,以及射频集成电路封装的未来发展和面临的挑战。 射频集成电路封装技术的现况 就单芯片封装(Single Chip Package)的材质而言,使用塑料封装( P l a s t i c Pac kage)的方式,是一般市面上常见到的高频组件封装类型,低于3GHz工作频率的射频集成电路及组件,在不严格考虑封装金属导线架(Metal Lead Frame)和打线(Wire Bond)的寄生电感(Parasitic Inductance)效应下,是一种低成本且可薄型化的选择。由于陶瓷材料防水气的渗透性特佳及满足高可靠度的需求,故也有采用陶瓷封装技术;对于加强金属屏蔽作用及散热效果的金属封装,可常在大功率组件或子系统电路封装看到它的踪迹。

射频电缆的参数理论资料

射频电缆的参数理论 第一节特性阻抗 特性阻抗是选用电缆的首先要考虑的参数,它是电缆本身的参数,它 取决于导体的直径以及绝缘结构的等效介电常数。 特性阻抗对于电缆的使用有很大的影响。例如在选择射频电缆作为发 射天线馈线时,其特性阻抗应尽可能和天线的阻抗一致,否则会在电缆和天线的连接处造成信号反射,使得天线得到的功率减少,电缆的传输效率也会下降,更为严重的是,反射的存在会使电缆沿线岀现驻波,有些地方会岀现电压和电流的过载,从而造成电缆的热击穿或热损伤而影响电缆的正常运行。电缆内部反射的存在,还会造成传输信号的畸变,使传输信号岀现重影,严重影响信号传输质量。 为了便于使用,射频电缆的阻抗已经标准化了。因此在选用电缆时应 尽可能选用标准阻抗值。对于射频同轴电缆有以下三中标准阻抗: 50±2ohm推荐使用于射频及微波,用于测试仪表以及同轴-波导转换器等; 75 ± 3ohm用于视频或者脉冲数据传输,用于大长度例如CATV电缆传输系统; 100土5ohm用于低电容电缆以及其它特种电缆。 以下是同轴电缆特性阻抗计算的各种公式。 §.1同轴电缆阻抗公式 根据传输理论,特性阻抗公式为: Zc= (R j L)/(G j C) 式中,R、L、G、C、代表该传输线的一次参数,而 3 =2n f代表信 号的角频率。 对于射频同轴电缆传输高频信号,通常都有R VV 3 L,G<< 3 C,此 时特性阻抗公式可以简化为: Zc = . L/C = 60?ln(D/d) / - = 138?l g(D/d)/ ;(ohm) 式中,D为外导体内直径(mn) d为内导体外直径(mn)

£为绝缘相对介电常数 表1给岀了常用绝缘材料的相对介电常数。 表1常用介质材料的特性 §.2皱纹外导体同轴电缆阻抗公式 皱纹外导体已经获得广泛应用,阻抗尚无标准的方法计算,可以利用电容电感参考方法进行计算。 测量岀L和C后可以计算阻抗: Zc = -? L / C §.4特性阻抗与电容的关系 同轴电缆的特性阻抗与电容有如下简单的关系,即 Zc= 104/3 ? . ;/ C 式中,C为电缆电容(pF/m) 第二节电容 电容是射频电缆的一个重要参数,同轴电缆的电容按照下式计算: C= 1000 £ / (18lnD/d )= 24.13 £/ (lgD/d ) (pF/m) 第三节衰减 衰减是射频电缆的重要参数之一,它反映了电磁能量沿电缆传输时的损耗的大小。 电缆的衰减表示电缆在行波状态下工作时传输功率或者电压的损耗的程度,即

SmartPSS基本使用说明

网络视频监控系统SmartPSS 使用说明 书V1.10.0

一、打开软件,弹出对话框,用户名和密码输入admin(用户名和密码相同),可以记住密码,方便下次登录。 二、打开主页,有基本功能,扩展功能和配置管理功能。双击就打开该功能并加入到菜单栏中了,方便下次使用该功能;如果不想使用了也可以删掉,

点击该功能右上角的叉以了。 序号参数说明 1 菜单显示主页的图标和已被打开 的功能图标。单击“添加”, 可以将需要打开的功能添加 到菜单上。 2 基本功能包括预览、回放、报警管理 和日志查询功能。 3 扩展功能包括电视墙、电子地图和设 备显示控制功能。 4 配置管理包括设备管理、设备配置、 报警配置、轮巡计划、 PC-NVR管理、电视墙配置、 用户配置和系统配置。 5 SmartPSS基本信息显示当前时间、用户信息和 登录SmartPSS的时间。 3. 设备管理 您可以手动或自动添加设备 手动添加设备的步骤如下:

步骤1 单击“配置管理”区域框中的。系统显示“设备管理”界面。 步骤2 单击“设备管理”界面最下面的“添加”。系统弹出“手动添加”对话框,如图3-8所示。 图3-8 手动添加 参数说明 设备名称设备的名称。 分组名称需要先在“预览”界面新增分组。 - 17 - 参数说明 设备类型选择设备的类型。 IP/域名设备的IP地址或域名。 端口设备的端口号。采用默认值37777。 用户名登录该设备的用户名。 密码登录该设备的密码。

参数说明 设备序列号设备的序列号。用户不可设置。 视频输入数该设备的视频输入数量。 视频输出数该设备的视频输出数量。 报警输入数该设备的报警输入数量。 报警输出数该设备的报警输出数量。 步骤4 单击“添加”。您也可以单击“保存并添加”,连续添加下个设备。 已添加的设备显示在设备列表中,如图3-10所示。图3-10已添加的设备 您可以在设备列表中,修改、删除、登录、登出设备。您也可以将设备批量导入和批量导出。 4.远程设备 您可以通过自动搜索或者手动添加远程设备,界面如图3-13所示。

射频集成电路综述

射频集成电路低噪声放大器研究前景

摘要 近年来,随着无线通信技术在移动通信、全球互联接入以及物联网等领域越来越广泛的应用。对于现代通信系统往往要求提供两个甚至更多的无线服务,因此就要求射频电路前端中的关键部件低噪声放大器(Low Noise Amplifier,LNA)能在多个频带下具有放大能力。因此如何能够放大多个频带的宽带低噪声放大器成为研究热点。 低噪声放大器是现代无线通信、雷达、电子对抗系统等应用中的十分重要的部分,常用于接收系统的前端,在放大信号的同时降低噪声干扰,提高系统灵敏度。如果在接受系统的前端连接高性能的低噪声放大器,在低噪声放大器增益足够大的情况下,就能抑制后级电路的噪声,则整个接收机系统的噪声系数将主要取决于放大器的噪声。如果低噪声放大器的噪声系数降低,接收机系统的噪声系数也会变小,信噪比得到改善,灵敏度大大提高。由于可见噪声放大器的性能制约了整个接收系统的性能,对于整个接收系统技术水平的提高,也起了决定性的作用。 宽带低噪声放大器是一种需要有良好的输入匹配的部分。输入匹配是要求兼顾阻抗匹配和噪声系数的,对于这两个指标一般来说是耦合在一起的。现有的宽带匹配技术需要反复协调电路各部分参数,通过对阻抗匹配和噪声系数这两个指标的折中设定来达到输入匹配的要求,因此给设计增大了难度。 噪声抵消技术是一种可以有效的将上述两个重要参数进行分离的方法,对降低设计复杂度、缩短设计周期、降低设计成本具有重要意义。现有的噪声抵消电路结构基本上都是基于CMOS工艺的。近年来,随着SiGe 技术的发展,SiGe BiCMOS工艺逐渐成为射频集成电路工艺的主流。然而,基于 SiGe工艺的采用噪声抵消结构的设计方法还未见报道。因此,本文基于SiGe工艺,开展对工作于0.8-5.2GHz频段低噪声放大器的噪声抵消电路结构的设计研究。

射频中的回波损耗 反射系数 电压驻波比以及S参数的含义和关系

回波损耗,反射系数,电压驻波比,S11这几个参数在射频微波应用中经常会碰到,他们各自的含义如下: 回波损耗(Return Loss):入射功率/反射功率,为dB数值 反射系数(Г):反射电压/入射电压,为标量 电压驻波比(Voltage Standing Wave Ration):波腹电压/波节电压S参数:S12为反向传输系数,也就是隔离。S21为正向传输系数,也就是增益。S11为输入反射系数,也就是输入回波损耗,S22为输出反射系数,也就是输出回波损耗。 四者的关系: VSWR=(1+Г)/(1-Г)(1) S11=20lg(Г)(2) RL=-S11(3) 以上各参数的定义与测量都有一个前提,就是其它各端口都要匹配。这些参数的共同点:他们都是描述阻抗匹配好坏程度的参数。其中,S11实际上就是反射系数Г,只不过它特指一个网络1号端口的反射系数。反射系数描述的是入射电压和反射电压之间的比值,而回波损耗是从功率的角度来看待问题。而电压驻波的原始定义与传输

线有关,将两个网络连接在一起,虽然我们能计算出连接之后的电压驻波比的值,但实际上如果这里没有传输线,根本不会存在驻波。我们实际上可以认为电压驻波比实际上是反射系数的另一种表达方式,至于用哪一个参数来进行描述,取决于怎样方便,以及习惯如何。回波损耗、反射系数、电压驻波比以及S参数的物理意义:以二端口网络为例,如单根传输线,共有四个S参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到:以二端口网络为例,如单根传输线,共有四个S 参数:S11,S12,S21,S22,对于互易网络有S12=S21,对于对称网络有S11=S22,对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上了。在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21

看硬盘SMART参数----HDtune工具查看

从网上下载一个工具:HDtune或HDtunePro,这个工具非常管用,功能也很多,别的功能先不谈,当前只谈“健康”页签的功能。运行HDtune工具,选择你要查看的硬盘(前提,你的硬盘必须是通过SATA或eSATA连接电脑的,而不是通过USB连接的,USB连接有时SMART参数不能完全显示),再选择“健康”页签,呈现在你眼前的便是该硬盘的SMART参数。SMART参数的各项意义在本文结尾有网文介绍,此处只讲几个重要参数:(05)重映射扇区计数,(C5)当前待映射的扇区数,(C6)脱机无法校正的扇区数,(C7)Ultra DMA CRC错误计数。 (05)一旦出现,表明你的硬盘已出现了物理坏道,物理坏道无法修复的。这种情况,第一件事就是快快备份数据。你的硬盘如果在保修期内,速去更换吧。如果出保了,将就用吧,只要(05)数值不会持续增加,这硬盘还能用,容量也不会改变,直到数据值超过阀值,容量才开始减少,你必须得通过一些软件工具屏蔽坏道了,否则数据进了坏道就很难读出来了。而且如果(05)数值持续增加,你的硬盘离坏不远了,没多久就会超过阀值。 (C5)出现数值,这种情况比较多见。特别是当你的电脑遇到停电、死机、蓝屏的次数比较多时,这一项值出现的机率就较大了。这一项值的出现,会表现为,拷贝时出现CRC冗余校验错误。一旦你在使用硬盘时出现CRC冗余校验错误,速去查看hdtune的参数(C5)值,肯定不是0了。发生了这种情况,不必害怕,这是逻辑坏道,一般来说是可以修复的,如何修复,下回分解。如果不重视这个值,长期不修复的话,时间一长,系统会把它当作物理坏道看待,直接写到(05)值里,那这个坏道就变成了物理坏道,哭都来不及了。(C6)这项值比(C5)还重要,它是(C5)向(05)过渡的值。一旦出现这值,速速备份数据,如果保修期内,速速换盘;如果出保,低格硬盘,可能会消除(C5)数值而使C6值不再增加也不向05进数。

射频参数解析

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 射频参数 1.回波损耗 又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。 不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。 回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。 回波损耗= -10 lg [(反射功率)/(入射功率)] 2.反射系数 反射波和入射波电压之比 回波损耗= 20|lg(反射系数Γ)| 3.驻波比 全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比。驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去。 驻波比会随着频率而改变 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。 其它各点的振幅值则介于波腹与波谷之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比 驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果SWR 的值等于

1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。 如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温 驻波比反射率: 1.00.00% 1.10.23% 1.20.83% 1.3 1.70% 1.5 4.00% 1.7 6.72% 1.88.16% 2.011.11% 2.518.37% 3.025.00% 4.036.00% 5.044.44% 7.056.25% 1066.94% 1576.56% 2081.86% 4.天线增益 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。 增益与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。 表示天线增益的参数有dBd和dBi,dBi是相对于点源天线的增益,在各方向上的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同条件下,增益越高,电波传播的距离越远

(完整版)《射频电路理论与设计》习题参考答案

引言 0.3 解:利用公式l jZ Z in λπ 2tan 0=进行计算 (1)m n n l l jZ Z in 666 0102)12(32106)12(21062tan ?+=??+=∞=?=πππ 可见l 至少应该是1500Km (2)m n n l l jZ Z in 22 2 010)12(875.12105.72)12(105.72tan ---?+=??+=∞=?=πππ l 至少是1.875cm 。 0.4 解:利用公式C X L X C L ωω1,-==进行计算 (1)Hz f 40=所以ππω802==f 791051.210999.080--?=??=πL X 121210360.010 0111.0801?-=??-=-πC X (2)Hz f 9104?=,991081042?=??=ππω 3129991047.310 0111.0108109 .2510999.0108?-=???-==???=--ππC L X X 可见在低频时分布电感和分布电容可以忽略,但在射频时分布电感和分布电容却不能忽略。 0.5 解:集肤效应是指当频率升高时,电流只集中在导体的表面,导体内部的电流密度非常小。 而趋肤深度是用来描述集肤效应的程度的。 利用公式μσ πδf 1=来计算。 已知铜的磁导率m H /1047-?=πμ,电导率m S /108.57?=σ (1)m 00854.0108.5104601 77=?????=-ππδ

(2)m m μππδ21.110121.0108.51041031 5779=?=??????=-- 由计算数据可得,用铜线传输电能时,60Hz 时是不需要考虑集肤效应的,但是当传输射频信号时,3GHz 时需要考虑集肤效应。 0.6 解:利用公式DC RF R a R δ2≈,μσ πδf 1=计算 已知铜的磁导率m H /1047-?=πμ,电导率m S /108.57?=σ (1)m 57761000.3108.5104105001 --?=??????=ππδ 7.161000.321015 3=???≈--DC RF R R (2)m 67 791031.3108.51041041--?=??????=ππδ 1.1511031.321016 3=???≈--DC RF R R 通过计算数据结果说明在射频状况下,电阻损耗很大。 第一章 传输线理论 1.4解: 特性阻抗计算公式C L C j G L j R Z ≈++=ωω0 平行双导线,ln ,ln 222 2d d D D C d d D D L -+=-+=πεπμ 其中,105.10,101.223m D m d --?=?= 因为介质为空气,有m F m H /3610,/1049 07 0πεεπμμ--==?== 故而该平行双导线的特性阻抗为:

射频电路设计与仿真思路分析

射频电路设计与仿真思路分析 发表时间:2020-03-25T06:34:04.616Z 来源:《防护工程》2019年21期作者:曾鸣 [导读] ADS电子设计自动化主要有频域电路仿真、时域电路仿真、三维电磁仿真、通信系统仿真以及数字信号处理仿真设计等. 南宁富桂精密工业有限公司广西南宁 530000 摘要:当前通信技术不断发展,通信设备使用的频率也逐渐提高,射频以及微波电路等被广泛的使用在通信等系统中,高频电路设计在工业领域得到了广泛的关注和重视。新型的半导体器件使高速数字系统和高频模拟系统不断扩张。本文就射频电路设计与仿真进行分析和研究。 关键词:射频电路设计;仿真;思路分析 ADS是当前世界上比较流行的一种微波射频电路、通信系统、RFIC 设计软件,是由美国 Agilent 公司推出的,是微波电路与通信系统的一种仿真软件。这种软件具有丰富的仿真手段,能够实现时域和频域、数字和模拟、线性和非线性等多种仿真功能,科学对设计结果进行分析,促进电路设计频率的提升,是一种比较优秀的微波射频电路,也是当前射频工程人员必备的一种软件。 1 射频电路与ADC分析 1.1 射频电路 射频电路就是一种具有超高频率的无线电波,工作频率比较高的线路,人们一般称作“高频电路”、“微波电路”等。在工程上,一般指的是工作频段的波长为10m-1mm之间的电路,或者是频率为30MHz-300MHz的电路。 当频率不断升高达到射频频段时,一般使用欧姆定律、电压电流或者是基尔霍夫定律对DC和低频电路进行分析,但是已经不够精确。还需要注重分布参数的影响。如果使用电磁场理论方法,虽然能够对全波、分布参数等影响进行分析,但是很难接触到VCO、混频器或者是高频放大器等实用内容。因此射频电路的设计已经成为当前信息技术发展的重要技术。 1.2 ADS ADS电子设计自动化主要有频域电路仿真、时域电路仿真、三维电磁仿真、通信系统仿真以及数字信号处理仿真设计等,被应用通信以及航天中,是当前研究最多的射频电路仿真软件。 2 ADS电子设计自动化的仿真设计方法 ADS软件能够使电路设计者进行模拟、射频微波等电路和通信系统设计,仿真方法主要有时域仿真、频域仿真、系统以及电磁仿真等。 2.1 高频SPICE分析和卷积分析 高频SPICE分析能够对线性以及非线性电路的瞬态效应进行分析,在SPICE仿真器中,对于不能直接使用频域分析模型,比如说微带线带状线等,就可以使用高频SPICE仿真器,仿真过程中,如果高于高频SPICE仿真器,频域分析模型会被拉式变换,然后进入到瞬态分析,并不需要使用者转化。这种高频SPICE不仅能够对低频电路进行瞬态分析,还能够对高频电路的瞬态响应进行分析。此外,还能够进行瞬态噪声的分析,对电路的瞬态噪声进行仿真。卷积分析法是以 SPICE 高频仿真器为基础的一种高级的时域分析的方法,通过卷积分析法能够更加科学的使用时域分析法对频率元件的进行分析。 2.2 线性分析方法 线性分析是一种频域电路仿真分析法,可以对线性、非线性的射频微波电路进行分析,进行线性分析时,软件先对电路中的元件计算需要的线性参数,如电路阻抗、稳定系数、反射系数、噪声以及S、Z、Y参数等,进而对电路进行分析和仿真。 2.3 谐波平衡分析 这种分析方法是对频域、稳定性好,大型号的电路进行分析的仿真方法,能够对多频输入信号的非线性电路进行分析,明确非线性电路的响应,比如谐波失真、噪声等。相比于时域的SPICE 仿真分析反复,这种谐波平衡分析在分析非线性电路时能够提供更加有效并且快速的方法。 SPICE瞬态响应分析、线性S参数分析在分析多频输入信号非线性电路仿真中还存在着一定的不足,而谐波平衡分析方法的出现很好的弥补了这一不足,在当前的高频通信系统中,有很多混频电路结构,谐波平衡分析方法的使用次数也就逐渐增加,重要性也日渐凸显。并

硬盘SMART检测参数详解

要说Linux用户最不愿意看到的事情,莫过于在毫无警告的情况下发现硬盘崩溃了。诸如RAID的备份和存储技术可以在任何时候帮用户恢复数据,但为预防硬件崩溃造成数据丢失所花费的代价却是相当可观的,特别是在用户从来没有提前考虑过在这些情况下的应对措施时。 硬盘的故障一般分为两种:可预测的(predictable)和不可预测的(unpredictable)。后者偶而会发生,也没有办法去预防它,例如芯片突然失效,机械撞击等。但像电机轴承磨损、盘片磁介质性能下降等都属于可预测的情况,可以在在几天甚至几星期前就发现这种不正常的现象。 对于可预测的情况,如果能通过磁盘监控技术,通过测量硬盘的几个重要的安全参数和评估他们的情况,然后由监控软件得出两种结果:“硬盘安全”或“不久后 会发生故障”。那么在发生故障前,至少有足够的时间让使用者把重要资料转移到 其它储存设备上。 最早期的硬盘监控技术起源于1992年,IBM在AS/400计算机的IBM 0662 SCSI 2代硬盘驱动器中使用了后来被命名为Predictive Failure Analysis(故障预警分析技术)的监控技术,它是通过在固件中测量几个重要的硬盘安全参数和评估他们的情况,然后由监控软件得出两种结果:“硬盘安全”或“不久后会发生故障”。 不久,当时的微机制造商康柏和硬盘制造商希捷、昆腾以及康纳共同提出了名为IntelliSafe的类似技术。通过该技术,硬盘可以测量自身的的健康指标并将参量值

传送给操作系统和用户的监控软件中,每个硬盘生产商有权决定哪些指标需要被监控以及设定它们的安全阈值。 1995年,康柏公司将该技术方案提交到Small Form Factor(SFF)委员会进行标准化,该方案得到IBM、希捷、昆腾、康纳和西部数据的支持,1996年6月进行了1.3版的修正,正式更名为S.M.A.R.T.(Self-Monitoring Analysis And Reporting Technology),全称就是“自我检测分析与报告技术”,成为一种自动监控硬盘驱动器完好状况和报告潜在问题的技术标准。 SMART的目的是监控硬盘的可靠性、预测磁盘故障和执行各种类型的磁盘自检。如今大部分的ATA/SATA、SCSI/SAS和固态硬盘都搭载内置的SMART系统。作为行业规范,SMART规定了硬盘制造厂商应遵循的标准,满足SMART标准的条件主要包括: 1)在设备制造期间完成SMART需要的各项参数、属性的设定; 2)在特定系统平台下,能够正常使用SMART;通过BIOS检测,能够识别设备是否支持SMART并可显示相关信息,而且能辨别有效和失效的SMART信息;3)允许用户自由开启和关闭SMART功能; 4)在用户使用过程中,能提供SMART的各项有效信息,确定设备的工作状态,并能发出相应的修正指令或警告。在硬盘及操作系统都支持SMART技术并且开启的情况下,若硬盘状态不良,SMART功能会在开机时响起警报,SMART技术能够在屏幕上显示英文警告信息:“WARNING IMMEDIATLY BACKUP YOUR DATA AND REPLACE YOUR HARD DISK DRIVE,A FAILURE MAY BE IMMINENT.”(警告:立刻备份你的数据并更换硬盘,硬盘可能失效。)

相关文档
最新文档