焦炉煤气DDS脱硫技术

焦炉煤气DDS脱硫技术
焦炉煤气DDS脱硫技术

目录1、DDS脱硫技术简介

1.1 概述

1.2 DDS脱硫反应原理

1.3 工艺流程简介

2、DDS脱硫剂

2.1 主要组分及作用

2.2 DDS脱硫溶液

2.3 加入四种药品的原因

3、DDS脱硫过程中的注意事项

3.1 加药过程中需要注意的问题

3.2 DDS脱硫的再生时间和溶液的PH值3.3 细菌疲劳

3.4 细菌数量

3.5 副反应问题

4、DDS脱硫技术操控指标及效果

4.1 操控指标

4.2 脱硫效果

5、原料投入及运行成本分析

5.1 原料投入分析

5.2 运行成本分析

附DDS脱硫操作

焦炉煤气DDS脱硫技术

1、DDS脱硫技术简介

1.1 概述

DDS脱硫技术是“生化铁—碱溶液催化法气体脱硫方法”的简称,是一种全新的湿法生物化学脱硫技术,用含DDS脱硫催化剂和亲硫耗氧性耐热耐碱菌及有关辅助材料的碱性溶液吸收煤气中的无机硫、有机硫和极少量的二氧化碳,进行脱硫。其脱硫原理和概念与传统的湿法脱硫技术有所不同。

1.2 DDS脱硫反应原理

DDS脱硫剂是模仿人体正常血红蛋白的载氧性能研制出来的脱硫催化剂,它是含有铁的有机络合物的多聚合物。DDS催化剂既能脱除无机硫又能脱除少量有机硫。同时在吸收过程中会产生一些不溶性铁盐沉淀,好氧菌在DDS络合铁配体的协助下可以将这些不溶性铁盐瓦解,使之以活性铁离子的形式返回溶液中,保证溶液中各种形态铁离子的稳定存在。DDS脱硫液在酚类物质与铁离子的共同催化下,用空气氧化再生,副产硫膏,再生DDS脱硫液循环使用。由于DDS脱硫液进入系统后,首先会在所有设备内壁形成一层非常致密的氧化物保护膜,再者DDS脱硫液中含有较高浓度的Fe2+和Fe3+,可以有效降低单质铁被氧化成 Fe2+和Fe3+,即减缓溶液对设备的腐蚀速度,延长设备的使用寿命。

当DDS溶液和气体接触时,吸收气体中的无机硫、有机硫和二氧化碳.并转化为“富液”。“富液”是吸收了S 、H2S和CO2的含DDS

催化剂(的Na2CO3)的水溶液。

吸收反应可以简单归结如下为五类反应:

(1) H2S、CO2与碱及DDS铁离子的反应。

(2) CS2、COS的水解反应。

(3) R-SH、 SH 与DDS铁离子的反应。

(4) SO2与H2S的氧化还原反应。

(5) 少量DDS铁离子在碱性溶液中的降解反应。

通常情况下,“富液”经减压和加热后,溶解于其中的CO2逸出,再通入空气,在 DDS催化剂的催化作用下,“富液”中的 S2-被氧化成S,并以泡沫形式浮出,DDS溶液得以再生,再生后的DDS溶液循环使用。

再生反应可以简单归结为如下三类反应:

(1) NaHCO3与Na2CO3的转换过程

(2) DDS-Fe3+氧化溶液中的S2-及HS-离子自身被还原为DDS-Fe2+,DDS-Fe2+再被空气中的氧及醌类物质氧化为DDS-Fe3+的反应。

(3) 醌氧化溶液中的S2-、HS-及DDS-Fe2+离子自身被还原为酚,酚再被氧化为醌的酚醌转换的过程。

由于在吸收和再生过程中会产生Fe(OH)3、Fe(OH)2、Fe2O3、FeO、Fe2S3和FeS等不溶性铁盐,在DDS络合铁配体的协助下,好氧菌可以将生成的不溶性铁盐瓦解,使之返回DDS脱硫液中,保证溶液中各种形态铁离子的稳定存在,增大溶液中FeCO3的含量可以减少和防止DDS 催化剂的分解。

生物降解过程的降解反应可以简单归结为如下三类反应:

(1) 细菌与不溶性铁盐[氢氧化(亚)铁、碳酸(亚)铁、氧化(亚)铁、硫化(亚)铁]结合并返回到溶液中。

(2) 在DDS配体作用下瓦解不溶性铁,重新结合为DDS铁的形式。

(3) 载氧菌氧化溶液中的S2-及HS-离子。

1.3 工艺流程简介

来自上一工序的煤气进入预冷塔,将煤气温度降至30~35℃进入脱硫塔,在脱硫塔填料层中与脱硫液逆流接触,煤气中的H2S被溶液吸收后进入气液分离器,气液分离后的煤气进入下一道工序。

吸收了H2S的“富液”经脱硫循环泵进入再生塔,在催化剂的作用下经空气氧化再生后,“富液”转化为“贫液”,“贫液”经贫液泵打入脱硫塔,(对于高塔再生“贫液”经液位调节器进入脱硫塔)如此循环使用。氧化后的单质硫以泡沫的形式从再生槽中浮选出来去(压滤)熔硫。

其工艺流程图见图1。

2、DDS脱硫剂

简单地说,DDS催化剂的结构,主要由“氧柱”和“铁柱”组成,两者之间的间距是8~20A°这么近的距离很容易将吸附在其表面的粒子产生静电吸附而发生化学反应,同时“铁柱”将硫化物分解的能量迅速传递,使氧化还原反应进行很快。

T101预冷塔T102脱硫塔T103脱硫塔T104再生塔 R101换热器

R101换热器 R103熔硫釜 P101预冷循环泵 P102液下泵

P103脱硫循环泵 P104碱泵 P105硫泡沫泵 V101反应槽

V102液封槽V103地下槽 V104液封槽 V105反应槽 V106液封槽V107反应槽V108液位调节器 V109加药装置 V110空气缓冲罐

V111碱液槽V112泡沫槽BK101板框压滤机

图1 DDS煤气脱硫工艺流程图(高塔再生)

2.1主要组分及作用

DDS催化剂,DDS催化剂辅料, B型DDS催化剂辅料和活性FeCO3。

DDS催化剂: DDS铁、细菌的芽孢以及细菌生存所必需的一些物质。

催化剂辅料:多元酚类物质,细菌营养物质。

B型辅料:铁的无机、有机化合物(络合物)细菌培养基物质和活性载氧体。

活性FeCO3:分子结构比较蓬松,给催化剂提供反应空间,在辅

料、B辅及好氧菌的作用下,生成一种类似DDS铁的物质。

2.2 DDS脱硫溶液

DDS溶液是由DDS催化剂、DDS催化剂辅料、Na2CO3 (或氨水)和水组成。

以Na2CO3(或氨水)为碱源制备的脱硫液作为缓冲溶液,配以DDS 催化剂、DDS催化剂辅料,控制Na2CO3(或氨水)的加入量。药品的补入,尤其是辅料的加入,不可进行大幅度的加减量,以免引起溶液成分大幅度波动,造成脱硫液成分的恶化。

提高PH值,不宜单纯依靠加碱来增加总碱度 (碱量增加造成副盐增加,对再生系统影响比较大),而应通过调节NaHC03/Na2CO3比值来控制总碱度。尽量控制低比值,做到稀液脱硫。

DDS脱硫溶液组分的稳定对整个系统的长周期稳定运行至关重要。因为刚开始DDS脱硫效果特别好,煤气H2S几乎检测不到或很低,往往短期内不按要求进行加药,脱硫效果也很好。但是运行时间一长,溶液组分发生变化,脱硫效果会变差。

配料时应根据脱硫效果及H2S的变化情况对所加脱硫剂的数量给予适当的调整。

2.3加入四种药品的原因

主要目的是为了降低运行费用。由于DDS催化剂成本较高,因此价格相对也较高。加入DDS催化剂辅料、B型DDS催化剂辅料和活性碳酸亚铁后,以DDS 催化剂作为“模板”,在亲硫性耗氧菌的作用下可生成DDS催化剂,从而减少DDS催化剂的加入量;另外,由于DDS

催化剂对生存环境有严格要求,在亲硫性耗氧菌的作用下,加入DDS 催化剂辅料、B 型DDS催化剂辅料和活性碳酸亚铁后可以稳定溶液组分,给DDS催化剂的生存及保持高活性提供环境保障。

3、DDS脱硫过程中注意事项

DDS脱硫技术中的一大核心技术就是生物物质—细菌,正是由于细菌的参与使得DDS脱硫技术具有生化反应的特点。在脱硫的过程中除了无机反应和有机反应外,还存在细菌的繁殖、生长、成熟和死亡等过程。

DDS脱硫技术较之其它的脱硫方法对日常生产管理的要求更为严格,凡是能引起细菌数量减少、细菌中毒死亡和细菌疲劳的做法都是不允许的。

大量溶液损失是造成细菌数量减少的主要原因,虽然每天都补充DDS催化剂,但 DDS催化剂中只有细菌的芽孢,要使其成长为具有活性的细菌需要一定的时间,而随脱硫液损失掉的大部分细菌却是具有活性的成熟细菌。

细菌中毒或死亡的原因主要是细菌的生存环境遭到破坏。重金属离子 (如 Co,Ni,Pb,Hg等)或其它杀菌物质的加入、操作条件的恶化等都可能引起细菌中毒甚至死亡。因此,最好不要往脱硫液中加入其它类型的脱硫催化剂。

细菌疲劳现象的直接原因是细菌的负载能力降低而且又长时问处于超负荷工作状态,从而最终疲惫失去脱硫能力。这时,脱硫效率会大幅度下降,整个脱硫和再生过程主要以无机或有机反应为主,生

化反应基本停止。

3.1加药过程中需要注意的问题

加料过程中最忌讳将DDS催化剂和活性FeCO3加热后加入脱硫液中,因为加热后会使DDS催化剂和活性FeCO3的分子结构遭到破坏。所以,应将DDS催化剂和活性FeCO3用脱硫液混合均匀后,直接加入反应槽。在反应槽中活化反应以后,DDS 催化剂转型稳定,活性FeCO3、DDS催化剂辅料和B型辅料形成稳定的“共同体”,此后,对DDS 脱硫液加热时,DDS催化剂和活性FeCO3就不会被破坏。但是,DDS催化剂辅料和B型DDS催化剂辅料需要加热溶解后送入反应槽。

3.2 DDS脱硫的再生时间和溶液PH值

DDS脱硫技术最关键的过程是再生过程,再生最佳停留时间为25min左右,最小停留时间也应大于10min。

溶液的PH值一般为8.2~9.0,其中最佳为8.8。主要是在这个PH值下DDS催化剂的活性最好,脱硫效果最佳,此外在此条件下,其它辅料合成DDS催化剂的反应也比较活跃。

3.3细菌疲劳

DDS脱硫技术是一种生物化学技术,在脱硫和再生过程中除了无机反应和有机反应外,还存在细菌的繁殖、生长、成熟、死亡的过程。因此DDS脱硫技术具有明显的生物特点,细菌疲劳就是生物特性其中之一。造成溶液生物疲劳的直接原因是细菌负载能力降低,而且又处于超负荷工作状态,从而最终疲惫失去脱硫能力。此时脱硫效率会大幅下降,溶液中不溶性铁盐含量增大,整个脱硫和再生过程主要以无

机或有机反应为主,生化反应基本停止。

造成溶液生物疲劳的根本原因有:

1)溶液配制初期(转型期)没有按照操作规程加药,加药量少,或转型期操作条件控制不严格,导致形成的脱硫液负载能力低,没有打好基础。

2)正常生产过程中加药量少或不加药。

3)使用过程中长时间负荷过大,如煤气量、进口H2S严重超过设计指标。

4)再生反应不完全,溶液长时间处于欠再生状态。

5)细菌数量少,活性低。一旦出现细菌疲劳现象仅加大催化剂投入量往往无济于事,唯一的办法是降低负荷,给细菌必要的休息时间,使之慢慢恢复活力。因此加强日常管理,严格执行操作规程是防止细菌疲劳的最有效办法。

3.4细菌数量

大量溶液损失是造成细菌减少的主要原因,虽然日常生产中每天补充催化剂,但催化剂中只有细菌芽胞,要使其成长为具有活性的细菌需一定时间,而随脱硫液损失的大部分细菌是具有活性的成熟细菌,因此日常生产中一定要避免带液和跑液现象的发生。

其次重金属离子(如Co、Ni、Pb、Hg等离子)、各种杂质或杀菌物质的加入、操作条件的恶化等都可以引起细菌中毒甚至死亡,因此最好不要往脱流液中加入其它物质,生产过程中也要避免各种杂质进入系统。

3.5副反应问题

3.5.1硫氢根与氧接触时,将生成硫代硫酸盐

此反应大部分在再生塔内发生,因塔内空气充足,液相中溶解氧含量高。当生产负荷较重而再生效果又较差时,贫液电位较低,被吸收下来的H2S未能在再生槽内全部氧化为单质硫,而有相当量的硫氢根被空气氧化为硫代硫酸盐。当溶液温度高于60℃、PH值大于9时,此副反应速度明显增加(一般溶液温度在40±2℃,PH值在8.5左右,故问题不大。)

3.5.2溶液中的悬浮硫也是发生副反应的原因之一

其反应程度将随硫颗粒的变小(硫颗粒小易带电荷、比表面积大,具有较高活性)悬浮硫量的增加以及溶液温度升高而加快。

3.5.3在高温熔硫时,硫与碱及其他物质反应较迅速,有大量副盐生成,其中以Na2S2O3及硫氧根副反应为主。

3.5.4副反应的影响和危害

1)因吸收H2S是靠Na2CO3来完成的,如果副反应严重,溶液中Na2CO3含量过低,将影响脱硫效率,并因溶液pH降低而使氧在再生溶液中溶解度降低造成吸氧差,对析硫不利。

2)若副反应严重,则碱耗剧增,有时虽大量补碱也难以维持碱度在指标之内,直接影响吸收与再生,造成生产被动和生产成本增加。

3)当Na2SO4盐增长至一定值时,溶液对设备的腐蚀加剧,同时由于Na2SO4溶解度低,天冷时易析出结晶,堵塞管路。

4)当溶液中副盐总量很高时,溶液粘度、比重增加,致使动力

消耗加大,且影响传质和传热,不利于吸收和再生。

5)溶液中副盐高还会加快硫代硫酸盐的生成,降低硫的回收率等。所以正常生产中一定要严格操作,控制好工艺指标,尽可能防止副反应的发生。

总之,DDS脱硫技术的脱硫过程中始终有生物物质 DDS催化剂(一种含铁的络合或螯合聚合物)及其相应的好氧菌参与,保证 DDS 催化剂及其相应的好氧菌处于最佳的活性状态是脱硫技术的关键。DDS催化剂具有较强的载氧能力;提高脱硫液的载氧和吸氧能力,以便将溶液中的S2-和 SO32-氧化成 S和SO42-,通过浮选出单质硫以达到脱硫之目的。

4、DDS脱硫技术操控指标及效果

4.1 操控指标

4.1.1 操作指标

脱硫塔入口气体温度≤5O℃

脱硫塔入口贫液温度 25~50℃

再生温度 35~55℃

脱硫液总碱度 (以Na2CO3计) ≥30g/l

脱硫贫液中Na2CO3质量浓度≥2.0g/L

脱硫贫液中Na2HCO3质量浓度≤40g/l

脱硫贫液中总铁离子质量浓度≥0.05g/l

脱硫贫液中对苯二酚质量浓度≥0.5g/l

脱硫贫液的PH 8.1~9.0

操作气液比≤200

空塔速度<2.0m/s

煤气在吸收塔中停留时间>15s

溶液在再生槽中的停留时间 18min

4.1.2 DDS脱硫液指标

(1)脱硫液总碱度(以NH4OH计) 0.4~0.6 mol/l

(2)脱硫液中总铁浓度 0.05g/l

(3)脱硫液中悬浮硫含量≤1g/l

(4)脱硫贫液中(NH4)2S2O3含量≤100 g/l

(5)脱硫贫液中(NH4)2SO4含量≤50 g/l

(6)脱硫贫液中NH4SCN含量≤100 g/l

(7)脱硫贫液PH 8.0~9.0

(8)游离氨≤5 g/l

4.2 脱硫效果

4.2.1 见效快

在原脱硫系统的基础上,加入DDS催化剂后1~2h脱硫效率即可大幅度提高,达到较理想的效果。

4.2.2 脱硫效率高

H2S脱除率≥99%。无机硫脱除率≥99%,可将硫含量降至1~5mg/m3(标态);有机硫脱除率约30%~50%。

DDS催化剂具有特殊的结构,被DDS催化剂吸附的H2S分子即使在再生过程中没有转化为单质硫,其在溶液中也不再表现游离S2-和

HS-的物化性质,因此,被DDS催化剂吸附的H2S与气相中的H2S之间不存在气液吸收平衡的问题,只有液相中极少量的游离的S2-和HS-会影响H2S的吸收。因此,可以将H2S脱至1 mg/Nm3以下。

4.2.3 气液比大,循环量低

在系统正常情况下,与传统湿法脱硫技术相比,溶液循环量可降低20%~50%,大大节省电耗。

4.2.4相同的熔硫釜单釜的硫磺产量高

DDS脱硫技术产生的硫颗粒较小,泡沫经预处理后形成的硫膏或硫饼中硫颗粒间的间隙较其它脱硫方法产生的硫膏或硫饼要小,硫膏或硫饼的密度大,因此,相同的熔硫釜单釜的硫磺产量要高;同时,硫磺颗粒小,排列紧密,传热系数提高,能有效缩短加热时间,节省蒸汽。采用DDS脱硫技术后,单釜硫磺产量提高约20%,单釜蒸汽消耗量下降20%~40%。

4.2.5 运行稳定,降低塔阻力

DDS煤气脱硫技术形成的硫颗粒细腻、圆滑,不易附着在填料及设备上,因而不易造成堵塔现象,保证了系统的安全稳定运行。

4.2.6 副盐生成量少

DDS煤气脱硫技术溶液中含有大量的细菌,能大量的分解溶液中的副盐成分,生成系统中的有效成分,提高了效率,降低了消耗,减少了置换外排量。

4.2.7 综合经济效益好

同样条件下DDS煤气脱硫技术运行费用是传统湿法脱硫技术的

2/3左右。因煤气中H2S造成的设备腐蚀、硫堵、消耗增加、触媒使用寿命缩短、产品质量下降、系统停产检修频率等问题将大大减少。同时减轻后工序如精脱硫等的负荷,综合运行费用大幅度降低,体现出显著的综合经济效益。用于高硫含量气体脱硫时经济效益更为显著。

5、原料投入及运行成本分析

5.1原料投入分析

5.1.1前期配液量

DDS脱硫技术所用药品分为4种,分别为DDS型催化剂,DDS催化剂辅料、DDS催化剂B型辅料及活性碳酸亚铁。

DDS脱硫技术是一种全新的生化湿法脱硫技术,脱硫液中的总铁含量(代表DDS催化剂含量)与气体中的总硫含量有一定的正比对应关系,使用前期需要大量加入药剂来迅速达到溶液组成;对于原来使用其它脱硫方法而在其基础上进行改造时,由于溶液中存在大量的非同类的其它催化剂,而DDS催化剂具有较强的排外性(生物化学特性),因此需要消耗部分DDS催化剂来中和这部分物质并排出系统,造成DDS催化剂及其各种辅料消耗量大。综上原因DDS脱硫技术前期的投资会偏高一些。

5.1.2 日常消耗

DDS脱硫技术溶液组分的稳定对整个系统的长周期稳定运行至关重要。日常生产中按一定配比要求调整好溶液,经过一段时间的运行摸索总结出一套合适稳定的加药方法,配料时根据脱硫效果及煤气中的H2S的变化情况对所加脱硫剂的数量给予适当的调整,以确保净化

后的H2S含量在控制范围内。

5.2运行成本分析

基于DDS脱硫具有脱硫效率高(无机硫脱除率≥99%)、降低溶液循环量(20%~50%)、提高单釜硫磺产量(约20%)、降低单釜蒸汽消耗量(20%~40%)、减少副盐生成量、减少设备腐蚀、减少设备停产检修频率等优点。因此,在同样操作条件下动力消耗等大幅度下降且脱硫效果提高,综合运行成本相对于其他脱硫工艺明显降低。

◆ DDS发明人魏雄辉博士简介

魏雄辉博士于1997年7月毕业于北京大学环境科学中心,获理学博士学位。现为北京大学化学与分子工程学院副教授、博士生导师,是内蒙古工业大学客座教授,为国家培养了30多位硕士研究生、5位博士研究生和十多位博士后。主要从事抗癌与致癌机理研究和天然抗癌药物的筛选、环境污染控制与“三废”治理的研究;申请和获得了二十多项国家发明专利,其中有一项专利获得世界上多个发达国家的国际发明专利(PCT)授权,有多项专利已经申请了国际发明专利(PCT),并在国内外学术刊物上发表论文一百多篇,其中被 EI 和SCI 所收录的论文有八十多篇。多项科研成果获省部级科技发明一等奖、优秀成果奖和北京大学“五2四”青年科学一等奖和二等奖等。

魏雄辉博士发明的工业原料气净化用的“DDS催化剂”、“DDS脱硫技术”在传统工业原料气净化领域产生了重要的影响,目前,已经广泛应用于合成氨、焦炉煤气、城市煤气、染料废气治理等行业中,产生了较大的经济效益、环境效益和社会效益,为国家的科学技术、经济和环保事业的发展做出了一定的贡献!

经过近三十年的研究,“DDS 烟道气除尘脱硫脱硝技术”于 2013 年底经中试和小型工业化试验获得成功,并于 2015 年初在实际工业烟道气净化处理运行中获得成功。预示着该技术将会产生极大的社会效益、环境效益和经济效益!

魏雄辉博士从事教研工作二十多年,并将自己的发明创造直接转

化为现实生产力,开辟了一条行之有效的产、学、研良性循环之路!附 DDS脱硫操作

1、DDS脱硫操作要点

1.1根据脱硫液成份分析,及时补加Na2CO3(氨水)和DDS催化剂、辅料,保证脱硫液成分符合工艺指标。

1.2稳定空气量,控制好再生温度,使富液氧化再生完全。保持正常泡沫溢流,降低脱硫液中的悬浮硫,保证脱硫液质量。

1.3控制好脱硫塔液位。

1.4保证煤气焦油含量≦ 30 mg/m3

1.5认真进行巡回检查,杜绝跑冒滴漏现象。

2、脱硫常见问题原因及处理

2.1脱硫塔出口H2S含量增高,超工艺指标

原因处理

1)负荷增大 1)联系调度调整负荷

2)塔入口H2S增高 2)联系调整入炉低硫煤比例

3)脱硫液循环量不足 3)增加脱硫液循环量至适宜

4)溶液组分偏低。 4)适量补充纯碱与辅料。

5)溶液中悬浮硫增高 5)加强硫回收操作

6)煤气温度或贫液温度高 6)调整溶液、煤气温度

7)溶液再生不好 7)调整液气比,加强再生

8)溶液中的盐类超标 8)消除回收副反应产物

2.2 脱硫溶液组份降低太快

原因处理

1)煤气负荷增大 1)联系调度调整负荷

2)煤气温度太高 2)联系调度进行处理

3)入塔煤气含水量高 3)联系调度调整

4)再生空气湿度太大 4)适当提高溶液温度

5)副反应加剧 5)优化操作温度减少副反应

6)溶液流失严重 6)加强溶液回收,消除设备的缺陷2.3 脱硫原料消耗高

原因

1)碱耗高,氧化再生差,溶液中HS-高,组份偏低,副反应快等。

2)总消耗高,硫膏中含液量大,煤气带液严重,回收差,跑冒滴漏严重。

处理

1)加强溶液再生,保证再生效率和再生时间,调整溶液组份至指标内。严格要求,尽可能控制副反应。

2)调整负荷加强溶液回收,消除设备缺陷,加强管理。

2.4再生效率低

原因

1)压缩空气量不足。

2)溶液在再生塔内停留时间短。

3)空气在再生塔内分布不均匀。

4)再生温度低或溶液中杂质太多。

5)溶液中的某些脱硫剂含量低,影响再生效率。

处理

1)提高压缩空气量。

2)延长再生时间,确保溶液在再生塔中停留时间。

3)调节再生塔中气体分布板,保证气液充分接触。

4)适当提高再生液温度,清除溶液中杂质。

5)将溶液中脱硫剂含量调至工艺指标内。

2.5常见堵塔问题

2.5.1堵塔的状况

填料脱硫塔运行中渐进式的塔阻增长是不可避免的正常现象。因此,如何减轻堵塔的程度,如何延缓堵塔的过程,并以此预防严重的恶性堵塔,才是需认真探讨并有效解决的行业性难题。

经风机加压后的煤气脱硫,塔阻力正常不超过1000Pa,一般对系统负荷、脱硫净化度要求、物料消耗、硫磺回收等不会造成什么影响,可视为一般性堵塔。

较严重的堵塔,通常是指塔阻力已升至影响系统的正常负荷,生产过程已出现“三高一低”的异常现象,即工艺违标率高,副盐生成率高,物料消耗高;硫磺回收率低。

若按填料段测定其压力降,在段高相当的情况下,其压力降依序自上而下递增。从已停产清塔过程可明显看到,上段堵塞物多为物理杂质,而下段则多为积硫积盐等混合物,且粘附积沉在填料的不同侧面、不同截面,往往下段较严重,填料段大多呈半干区,而局部的干

煤化工(焦化厂)焦炉煤气6大脱硫技术详解与脱硫工艺选择

煤化工(焦化厂)焦炉煤气 6大脱硫技术详解与脱硫工艺选择 1、焦炉煤气脱硫技术 焦炉煤气常用的脱硫方法从脱硫剂的形态上来分:包括干法脱硫技术和湿法脱硫技术。 1.1焦炉煤气干法脱硫技术 干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,同时脱除氰化物及焦油雾等杂质。 干法脱硫又分为中温脱硫、低温脱硫和高温脱硫。常用脱硫剂有铁系和锌系,氧化铁脱硫剂是一种传统的气体净化材料,适宜于对天然气、油气伴生气、城市煤气以及废气中硫化氢含量高的气体。 常温氧化铁脱硫原理是用水合氧化铁(Fe2O3·H2O)脱除 H2S,其反应包括脱硫反应与再生反应。 干法脱硫工艺多采用固定床原理,工艺简单,净化率高,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。 但由于气固吸附反应速度较慢,工艺运行所需设备一般比较庞大,而且脱硫剂不易再生,运行费用增高,劳动强度大,不能回收成品硫,废脱硫剂、废气、废水严重污染环境。

1.2焦炉煤气湿法脱硫技术 湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢和氰化氢。常用的方法有氨水法、单乙醇胺法、砷碱法、VASC脱硫法、改良 ADA法、TH 法、苦味酸法、对苯二酚法、HPF 法以及一些新兴的工艺方法等。 1.2.1 氨水法(AS法): 氨水法脱硫是利用焦炉煤气中的氨,在脱硫塔顶喷洒氨水溶液(利用洗氨溶液)吸收煤气中 H2S,富含 H2S 和 NH3的液体经脱酸蒸氨后再循环洗氨脱硫。 在脱硫塔内发生的氨水与硫化氢的反应是:H2S+2NH3·H2O →(NH4)2S+2H2O。 AS 循环脱硫工艺为粗脱硫,操作费用低,脱硫效率在 90 %以上,脱硫后煤气中的 H2S 在200~500 mg·m-3。 1.2.2 VASC法: VASC法脱硫过程是洗苯塔后的煤气进入脱硫塔,塔内填充聚丙烯填料,煤气自下而上流经各填料段与碳酸钾溶液逆流接触,再经塔顶捕雾器出塔。 煤气中的大部分 H2S 和 HCN 和部分 CO2被碱液吸收,碱液一般主要是 Na2CO3或 K2CO3溶液。 吸收了酸性气体的脱硫富液与来自再生塔底的热贫液换热后,由顶部进入再生塔再生,吸收塔、再生塔及大部分设备材质为碳钢,富液与再生塔底上升的水蒸汽接触使酸性气体解吸。

焦炉煤气湿法脱硫工艺设计(初稿)

河南城建学院 毕业设计 题目:焦炉煤气湿法脱硫工艺设计学生姓名:张炳麒 年级: 101209127 专业:化学工程与工艺 申报学位:学士学位 院系:化学与化学工程系 指导教师:李霞 完成日期:2011-05-15 2011年05月15日

摘要

目录 1﹒绪论 (1) 1.1概述 (1) 1.2焦炉煤气净化的现状 (1) 1.3栲胶的认识 (2) 1.4栲胶法脱硫的缺点 (3) 1.5设计任务的依据 (8) 2.生产流程及方案的确定·················································· 3.生产流程说明··························································3.1反应机理·························································· 3.2主要操作条件··························································3.3工艺流程·························································· 3.4主要设备介绍·························································· 4.工艺计算·························································· 4.1原始数据·························································· 4.2物料衡算·························································· 4.3热量衡算·························································· 5.主要设备的工艺计算和设备选型····································· 5.1主要设备的工艺尺寸··················································· 5.2辅助设备的选型··················································· 6 设备稳定性及机械强度校核计算············································6.1壁厚的计算··················································· 6.2 机械强度的校核···················································

MDEA天然气脱硫工艺流程

《仪陇天然气脱硫》项目书 目录 1总论 (3) 1.1项目名称、建设单位、企业性质 (3) 1.2编制依据 (3) 1.3项目背景和项目建设的必要性 (3) 1、4设计范围 (5) 1、5编制原则 (5) 1.6遵循的主要标准、规范 (8) 1.7 工艺路线 (8) 2 基础数据 (8) 2.1原料气和产品 (8) 2.2 建设规模 (9) 2.3 工艺流程简介 (9) 2.3.1醇胺法脱硫原则工艺流程: (9) 2.3.2直流法硫磺回收工艺流程: (10) 3 脱硫装置 (11) 3.1 脱硫工艺方法选择 (11) 3.1.1 脱硫的方法 (11) 3.1.2醇胺法脱硫的基本原理 (12) 3.2 常用醇胺溶液性能比较 (13) 3.1.2.1几种方法性质比较 (14) 3.2醇胺法脱硫的基本原理 (17) 3.3主要工艺设备 (18) 3.3.1主要设备作用 (18) 3.3.2运行参数 (19) 3.3.3操作要点 (20) 3.4乙醇胺降解产物的生成及其回收 (21) 3.5脱硫的开、停车及正常操作 (22) 3.5.1乙醇胺溶液脱硫的开车 (22) 3.5.2保证乙醇胺溶液脱硫的正常操作 (22) 3.6胺法的一般操作问题 (23) 3.6.1胺法存在的一般操作问题 (23) 3.6.2操作要点 (24) 3.7选择性脱硫工艺的发展 (25) 4 节能 (25) 4.1装置能耗 (25) 装置中主要的能量消耗是在闪蒸罐、换热器和再生塔。 (25)

4.2节能措施 (25) 5 环境保护 (26) 5.1建设地区的环境现状 (26) 5.2、主要污染源和污染物 (26) 5.3、污染控制 (26) 6 物料衡算与热量衡算 (28) 6.1天然气的处理量 (28) 7.天然气脱硫工艺主要设备的计算 (33) 7.1MDEA吸收塔的工艺设计 (33) 7.1.1选型 (33) 7.1.2塔板数 (33) 7.1.3塔径 (34) 7.1.4堰及降液管 (36) 7.1.5浮阀计算 (37) 7.1.6 塔板压降 (37) 7.1.7塔附件设计 (39) 7.1.8塔体总高度的设计 (40) 7.2解吸塔 (41) 7.2.1 计算依据 (41) 7.2.2塔板数的确定 (41) 7.2.3解吸塔的工艺条件及有关物性的计算 (42) 7.2.4解吸塔的塔体工艺尺寸计算 (43) 8参数校核 (44) 8.1浮阀塔的流体力学校核 (44) 8.1.1溢流液泛的校核 (44) 8.1.2液泛校核 (44) 8.1.3液沫夹带校核 (45) 8.2塔板负荷性能计算 (45) 8.2.1漏液线(气相负荷下限线) (45) 8.2.2 过量雾沫夹带线 (45) 8.2.3 液相负荷下限 (46) 8.2.4 液相负荷上限 (46) 8.2.5 液泛线 (46) 9 附属设备及主要附件的选型和计算 (47) 10.心得体会 (49) 11.参考文献 (50)

焦炉煤气脱硫方法的简介和比较

焦炉煤气脱硫方法的比较 1 煤气脱硫的概念及意义焦炉煤气由焦化企业炼焦生产时产生。从焦炉集气管流出的煤气称为荒煤气,其硫化氢含量与装炉煤料的全硫量有关。一般干煤全硫的质量分数为0.5 %? 1.2 %,其中有20%?45%转到荒煤气中,煤气中95%以上的硫以硫化氢形态存在,33干煤干煤气?3g/标m15g/m其他为有机硫。硫化氢在煤气中的质量浓度一般为气。煤气中所含的硫化氢是极为有害的物质,因而煤气脱硫就有十分重要的意义:一是可以防止设备的腐蚀,减少设备维修费用,降低生产成本,提高回收产品的质量和产量。二是提高焦炉煤气的品质,减少焦炉煤气燃烧后产生的污染。煤气脱硫可以有效降低煤气燃烧后产生的二氧化硫等有害物质,保护周围的环境。三是降低钢铁企业用煤气中硫化氢的含量可以使钢铁企业生产出优质钢材。四是回收后的硫磺可用于医药、化工等领域,随着行业的发展,需求量会进一步加大。 一、干法脱硫(姜崴,焦炉煤气脱硫方法的比较, 科技情报开发与经济, 第17卷第 15 期,2007 年,278-279) 干法脱硫主要是利用氢氧化铁与其他制剂合成的脱硫催化剂脱除煤气中的硫化氢,经过再生的脱硫剂可重新使用。干法脱硫主要用于气量较小的煤气脱硫或脱硫精度高的二次脱硫。 1.1 干法一次脱硫干法脱硫是将焦炉煤气通过含有氢氧化铁的脱硫剂,使氢氧化铁与硫化氢反应生成硫化铁或硫化亚铁,当饱和后,使脱硫剂与空气接触,在有水分存在时,空气中的氧将铁的硫化物转化成氢氧化物,脱硫剂再生连续使用。其原理如下:脱硫反应式,当碱性时: 2Fe(0H)+3HS=FeS+6HO233222Fe(0H)+HS=2Fe(OH)+S+2HO2223Fe(OH)+HS=FeS+2H0 222 再生反应式,当水分足量时: 2FeS+3O+6HO=4Fe(OH+6S224FeS+30-6HO=4Fe(OH)+4S223/ h8000 m 以下规模较小的焦化企业。干干法一次脱硫适用于荒煤气产量在法脱硫具有占地少、投资省的特点,脱硫效率高,合理控制操作指标可以满足城市煤气的需要。常用操作指标如下:脱硫箱(塔)操作温度为25C?3OC;操作压力为常压;脱硫剂阻力为2000Pa/ m 以下;脱硫剂pH值为8-9。 干法脱硫可采用箱式脱硫或塔式脱硫。箱式脱硫占地大、操作环境差、脱硫剂更 换简便、投资省;塔式脱硫操作环境好、占地小、投资稍大。在实际生产当中两者都有采用,但脱硫剂再生效果不好,废弃脱硫剂的处理困难,容易对环境造成二次污染。 1.2 干法二次脱硫 主要用于湿法一次脱硫的后续处理或对煤气中HS含量要求严格的场合。二2次脱硫的脱硫剂也与一次脱硫有所不同(多用活性炭吸附)。经二次脱硫后,HS含量可降至很低,此种煤气可用于甲醇的合成。 、国内外湿法脱硫工艺现状( 蔡颖,赫文秀, 焦炉煤气脱硫脱氰方法研究, 内蒙古石油化工, 2006 年第10 期,1-2. )国内焦炉煤气脱硫脱氰工艺不断进步和从上世纪八十代初迄今二十多年来,发展,新的工艺技术不断地用于工业生产,尤其是湿式氧化法脱硫工艺发展更快,在焦化行业应用极为广泛。湿法工艺是利用液体脱硫剂

焦化煤气PDS法脱硫

煤气中的硫绝大部分以H2S的形式存在,而H2S随煤气燃烧后转化成SO2,空气中SO2含量超标会形成局域性酸雨,危害人们的生存环境,我国对燃烧发生炉煤气炉窑规定其SO2的最高排放浓度为900mg/m3;另一方面,SO2对诸如陶瓷、高岭土等行业的最终产品质量影响较大,鉴于以上因素,发生炉煤气中H2S的脱除程度业已成为其洁净度的一个重要指标。 1、煤气脱硫方法 发生炉煤气中的硫来源于气化用煤,主要以H2S形式存在,气化用煤中的硫约有80%转化成H2S进入煤气,假如,气化用煤的含硫量为1%,气化后转入煤气中形成H2S大约2-3g/Nm3左右,而陶瓷、高岭土等行业对煤气含硫量要求为20-50mg/Nm3;假如煤气中的H2S燃烧后全部转化成SO2为2.6g/m3左右,比国家规定的SO2的最高排放浓度指标高出许多。所以,无论从环保达标排放,还是从保证企业最终产品质量而言,煤气中这部分 H2S都是必须要脱除的。 煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。 冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。 2、干法脱硫技术 煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。 2.1氧化铁脱硫技术 最早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。现在TF型脱硫剂应用较广,该种脱硫剂脱硫效率较高,并可以进行塔内再生。 氧化铁脱硫和再生反应过程如下: (1)脱硫过程 2Fe(OH)3+3H2SFe2S3+6H2O Fe(OH)3+H2S2Fe(OH)2+S+2H2O Fe(OH)2+H2SFeS+2H2O (2)再生过程 2Fe2S2+3O2+6H2O4Fe(OH)3+6S 4FeS+3O2+6H2O4Fe(OH)2+4S

我国焦炉煤气脱硫技术现状

我国焦炉煤气脱硫技术现状 1、概述 焦炉煤气是重要的中高热值气体燃料,既可用于钢铁生产,也可供城市居民使用,还可作为原料气用于生产合成氨、甲醇等产品,不论采用何种方式利用焦炉煤气,其硫含量都必须降低到一定程度。炼焦煤料中含有0.5%~l.2%的硫,其中有20%~45%的硫以硫化物形式进入荒煤气中形成硫化氢气体,另外还有相当数量的氰化氢。焦炉产生的粗煤气中含有多种杂质,需要进行净化。焦炉煤气中一般含硫化氢4~8g/m3,含氨4~9g/m3,含氰化氢0.5~1.5g/m3。硫化氢(H2S)及其燃烧产物二氧化硫(SO2)对人体均有毒性,氰化氢的毒性更强。氰化氢和氨在燃烧时生成氮氧化物(NOX),二氧化硫与氮氧化物都是形成酸雨的主要物质,煤气的脱硫脱氰洗氨主要是基于环境保护的需要。此外,对轧制高质量钢材所用燃气的含硫量也有较高的要求,煤气中H2S的存在,不仅会腐蚀粗苯系统设备,而且还会使吸收粗苯的洗油和水形成乳化物,影响油水分离。因此,脱除硫化氢对减轻大气和水质的污染、加强环境保护以及减轻设备腐蚀均有重要意义。 2、焦炉煤气脱硫方法 近几年,钢铁企业的快速发展带动了焦化行业的发展,其中随着世界环保意识的加强,国内外焦炉煤气脱硫脱氰技术得以迅速开发和改良,先后出现了干式氢氧化铁法、湿式碱法、改良ADA法等脱硫方法。总的来说,煤气的脱硫方法按吸收剂的形态,可分为干法和湿法两大类。 2.1 焦炉煤气干法脱硫技术 干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,多采用固定床原理,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。但是由于气固吸附反应速度较慢,因此该工艺运行的设备一般比较庞大,再者由于吸附剂硫容的限制,脱硫剂更换频繁,消耗量大,而且脱硫剂不易再生,致使运行费用增高,劳动强度大,同时不能回收成品硫,废脱硫剂、废气、废水严重污染环境,因此,在大型焦化和钢铁行业,如果焦炉煤气不进行深加工(如焦炉煤气制甲醇),一般不考虑干法脱硫;中小型焦化厂主要采用干法工艺。 目前,干法使用的脱硫剂为氧化铁、氧化锌、氧化铜、氧化钙、氧化锰、活性炭、分子筛以及复合氧化物,甚至还有近年来出现的第二代脱硫剂氧化铈等,其中最常用的是铁系和锌系脱硫剂。 2.1.1铁系脱硫剂 铁系脱硫剂主要是以氧化铁为主的脱硫剂统称,因为氧化铁具有价廉易得、资源丰富、脱硫速率高、硫容高等特点,成为开发最早、应用最广泛的煤气脱硫剂。国内常用的铁系脱硫剂主要有天然沼铁矿、合成氧化铁、颜料厂及硫酸厂下脚铁泥、硫铁矿灰成型剂、炼钢转炉赤泥及其成型剂等。 近年来,很多机构将铁氧化物与其它金属化合物复合,研究新的铁基复合氧化物脱硫剂。其中湖北化学研究所的铁系脱硫剂:EF型多功能氧化铁精脱硫剂(CN1174810),由氧化铁载体和负载的金属化合物组成。该脱硫剂在有氧和无氧条件下均能精脱H2S、COS、CS2、RSH、RSR、RSSR、噻吩等硫化物;耐缺氧复合型金属水合氧化物精脱硫剂(CN1287875),用水合氧化铁Fe2O3?H2O与其它金属元素Ti、Co、Ni、Mo、Zn、Cd、Cr、Hg、Cu、Ag、Sn、Pb、Bi中任一种或一种以上的化合物和/或碱土金属元素Ca、Mg的化合物组成;由酸性废液制备的脱硫剂(CN1060226),该脱硫剂先用含铁或不含铁废酸液制成所需浓度的含铁溶液,再用碱性物质除酸,经氧化、分离、混合成型、干燥而制成;复合型精脱硫剂(CN1127555C)由Fe2O3、ZnO、CaO、MnO2等组成。 煤炭科学研究总院研制的一种无定形脱硫剂(CN1616139),以一种天然富含铁、锰、

HPF脱硫工艺流程图

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400 ℃) 和高温(> 400 ℃)脱硫剂。 干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。 湿法脱硫又分为“湿式氧化法”和“胺法”。湿式氧化法是溶液吸收H2S后,将H2S直接转化为单质硫,分离后溶液循环使用。目前我国已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH法、FRC法、ADA法和HPF法。胺法是将吸收的H2S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS法和氨硫联合洗涤法。湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。 HPF法脱硫工艺流程: 来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至2 3℃~28℃后进入塔顶循环喷洒。来自冷凝工段的部分剩余氨水进行补充更新循环液。多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气进入下道工序进行脱氨脱苯。 脱硫基本反应如下: H2S+NH4OH→NH4HS+H2O 2NH4OH+H2S→(NH4)2S+2H2O NH4OH+HCN→NH4CN+H2O NH4OH+CO2→NH4HCO3 NH4OH+NH4HCO3→(NH4)2CO3+ H2O 吸收了H2S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。 再生塔内的基本反应如下: NH4HS+1/2O2→NH4OH+S (NH4)2S+1/2O2+ H2O→ 2NH4OH+S (NH4)2Sx+1/2O2+ H2O→2NH4OH+Sx 除上述反应外,还进行以下副反应: 2NH4HS+2O2→(NH4)2S2O3+ H2O 2(NH4)2S2O3+O2→2(NH4)2SO4+2S 从再生塔A、B顶部浮选出的硫泡沫,自流入硫泡沫槽,在此经搅拌,沉降分离,排出清液返回反应槽,硫泡沫经泡

焦炉煤气净化技术现状

焦炉煤气净化技术现状 在2004年国家公布的《焦化准入条件》中,明确规定新建或改造焦炉要同步配套建设煤气净化设施。至2006年底,经国家发改委核准的厂家仅108家,这些家的产能之合仅占当年焦炭总产能的30%左右。还有大量企业未被核准,其主要原因之一就是煤气净化设施配套不完善。煤气净化设施主要包括冷凝鼓风装置、脱硫脱氰装置、氨回收装置及苯回收装置。所谓配套不完善,是指缺某个或某些装置,特别是缺脱硫脱氰装置。 主流工艺技术 我国焦炉煤气净化工艺通过不断引进国外先进技术和创新发展,已经步入世界先进行列;煤气净化工艺已基本涵盖了当今世界上较为先进的各种工艺流程。目前,年产焦炭100万t以上的大型焦化厂全部设有煤气净化系统,对来自炼焦炉的荒煤气进行净化处理,脱除其中的硫化氢、氰化氢、氨、焦油及萘等各种杂质,使之达到国家或行业标准,供给工业或民用用户使用;同时,对化工副产品进行回收利用。 煤气净化工艺采用的主要技术包括:焦炉煤气的冷凝冷却及排送、焦油氨水分离、焦油、萘、硫化氢、氰化氢、氨等杂质的脱除以及粗苯的回收等。 焦炉煤气的冷凝冷却 焦炉煤气的冷凝冷却,即初步冷却,普遍采用了高效横管间冷工艺。其特点是:煤气冷却效率高,除萘效果好;当煤气温度冷却至20~22℃,煤气出口含萘可降至0.5g/m3,不需另设脱萘装置即可满足后续工艺操作需要。 高效横管间冷工艺通常分为二段式或三段式初冷工艺。当上段采用循环冷却水,下段采用低温冷却水对煤气进行冷却时,称为二段式初冷工艺。为回收利用荒煤气的余热,通常在初冷器上部设置余热回收段,即构成三段初冷工艺。采用三段初冷工艺,回收的热量用作冬季采暖或其它工艺装置所需的热源,不仅可以回收利用荒煤气的余热,同时也可节省大量循环冷却水,节能效果显著,应大力倡导采用。 除上述普遍采用的横管间冷工艺外,焦炉煤气的冷凝冷却也可采取先间冷,

焦炉煤气制氢新工艺

焦炉煤气变压吸附制氢新工艺的开发与应用焦炉煤气变压吸附(PSA)制氢工艺利用焦化公司富余放散的焦炉煤气,从杂质极多、难提纯的气体中长周期、稳定、连续地提取纯氢,不仅解决了焦化公司富余煤气放散燃烧对大气的污染问题;而且还减少了大量焦炭能源的耗用及废水、废气、废渣的排污问题;是一个综合利用、变废为宝的环保型项目;同时也是一个低投入、高产出、多方受益的科技创新项目。该装置首次采用先进可靠的新工艺,其经济效益、社会效益可观,对推进国内PSA技术进步也有重大意义。 1942年德国发表了第一篇无热吸附净化空气的文献、20世纪60年代初,美国联合碳化物(Union Carbide)公司首次实现了变压吸附四床工艺技术工业化,进入20世纪70年代后,变压吸附技术获得了迅速的发展。装置数量剧增,装置规模不断扩大,使用范围越来越广,主要应用于石油化工、冶金、轻工及环保等领域。本套大规模、低成木提纯氢气装罝,是用难以净化的焦炉煤气为原料,国内还没有同类型的装置,并且走在了世界同行业的前列。 1、焦炉煤气PSA制氢新工艺。 传统的焦炉煤气制氢工艺按照正常的净化分离步骤是: 焦炉煤气首先经过焦化系统的预处理,脱除大部分烃类物质;经初步净化后的原料气再经过湿法脱硫、干法脱萘、压缩机、精脱萘、精脱硫和变温吸附(TSA)系统,最后利用PSA制氢工艺提纯氢气,整个系统设备投资大、工业处理难度大、环境污染严重、操作不易控制、生产成本高、废物排放量大,因此用焦炉煤气PSA制氢在某种程度上受到一定的限制,所以没有被大规模的应用到工业生产当中。 本装置釆用的生产工艺是目前国内焦炉煤气PSA制氢工艺中较先进的生产工艺,它生产成本低、效率高,能解决焦炉煤气制氢过程中杂质难分离的问题,从而推动了焦炉煤气PSA制氢的发展。该工艺的特点是: 焦炉煤气压缩采用分步压缩法、冷冻净化及二段脱硫法等新工艺技术。 1.1工艺流程。 PSA制氢新工艺如图1所示。

煤气脱硫的几种方法

煤气脱硫的几种方法 2006-07-06 前言:能源是人类赖以生存和发展的基础,随着人们环境保护和保证企业最终产品质量意识的提高,人们对能源的洁净利用开始日趋重视。发生炉煤气作为我国主要能源之一煤炭的一种洁净利用方式,在我国的玻璃、建材、化工、机械、耐火材料等行业被广泛的应用,近年,人们对煤气净化程度的认识已经不止是煤气中的含尘量、含焦油量和含水量等的概念,人们开始更加重视煤气中的含硫量。 煤气中的硫绝大部分以H2S的形式存在,而H2S随煤气燃烧后转化成SO2,空气中SO2含量超标会形成局域性酸雨,危害人们的生存环境,我国对燃烧发生炉煤气炉窑规定其SO2的最高排放浓度为900mg/m3;另一方面,SO2对诸如陶瓷、高岭土等行业的最终产品质量影响较大,鉴于以上因素,发生炉煤气中H2S的脱除程度业已成为其洁净度的一个重要指标。 1、煤气脱硫方法 发生炉煤气中的硫来源于气化用煤,主要以H2S形式存在,气化用煤中的硫约有80%转化成H2S进入煤气,假如,气化用煤的含硫量为1%,气化后转入煤气中形成H2S大约2-3g/Nm3左右,而陶瓷、高岭土等行业对煤气含硫量要求为20-50 mg/Nm3;假如煤气中的H2S燃烧后全部转化成SO2为2.6g/m3左右,比国家规定的SO2的最高排放浓度指标高出许多。所以,无论从环保达标排放,还是从保证企业最终产品质量而言,煤气中这部分H2S都是必须要脱除的。 煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。 冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。 2、干法脱硫技术 煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。 2.1氧化铁脱硫技术 最早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。现在TF型脱硫剂应用较广,该种脱硫剂脱硫效率较高,并可以进行塔内再生。 氧化铁脱硫和再生反应过程如下: (1)脱硫过程 2Fe(OH)3+3H2S Fe2S3+6H2O Fe(OH)3 + H2S 2Fe(OH)2+S+2H2O Fe(OH)2 + H2S FeS+2H2O (2)再生过程 2Fe2S2+3O2+6H2O 4Fe(OH)3+6S 4FeS+3O2+6H2O 4Fe(OH)2+4S 氧化铁脱硫剂再生是一个放热过程,如果再生过快,放热剧烈,脱硫剂容易起火燃烧,这种火灾现象曾在多个企业发生。 活性氧化铁脱硫工艺流程如图1 2.2活性炭脱硫技术 活性炭脱硫主要是利用活性炭的催化和吸附作用,活性炭的催化活性很强,煤气中的H2S在活性炭的催化作用下,

焦炉荒煤气净化工艺

焦炉荒煤气净化工艺 焦炉荒煤气中一般含硫化氢为4~8 g/m3、含氨为4~9 g/m3、含氰化氢为0.5~1.5 g/m3。硫化氢(H2S)及其燃烧产物二氧化硫(SO2)对人身均有毒性,氰化氢的毒性更强。氰化氢和氨在燃烧时生成氮氧化物(NOx)。二氧化硫(SO2)与氮氧化物(NOx)都是形成酸雨的主要物质,煤气的脱硫脱氰洗氨主要是基于环境保护的需要。此外在冶金工厂,高质量钢材的轧制,对其使用的燃气含硫也有较高的要求。随着科学技术的进步和焦化工业的发展,产生了众多各具特色的煤气脱硫洗氨净化工艺。 HPF 法脱硫属湿式催化氧化法脱硫工艺,是PDS 脱硫工艺的改进工艺,两者的区别在于所使用的催化剂略有差异:前者使用对苯二酚加PDS 及硫酸亚铁的复合催化剂(HPF),后者使用PDS 催化剂。HPF 催化剂在脱硫和再生过程中均有催化作用,是利用焦炉煤气中的氨做吸收剂,以HPF 为催化剂的湿式氧化脱硫。煤气中的H2S 等酸性组分由气相进入液相与氨反应,转化为硫氢化铵等酸性铵盐,再在空气中氧的氧化下转化为硫。HPF 法脱硫选择使用HPF(醌钴铁类)复合型催化剂,可使焦炉煤气的脱硫效率达到99%左右。 HPF 法脱硫工艺置于喷淋式饱和器法生产硫铵的工艺之后。从鼓风冷凝工段来的温度约55 ℃的煤气,首先进入直接式预冷塔与塔顶喷洒的循环冷却水逆向接触,被冷至30~35 ℃;然后进入脱硫塔。 工艺特点 (1)以氨为碱源、HPF 为催化剂的焦炉煤气脱硫脱氰新工艺,具有较高的脱硫脱氰效率(脱硫效率99%,脱氰效率80%),而且流程短,不需外加碱,催化剂用量小,脱硫废液处理简单,操作费用低,一次性投资省。 (2)硫磺收率一般为60%,硫损失约为40%,其废液量约为300~500 kg/(103m3·h),废液回兑至配煤中,对焦碳的质量有一定的影响。 (3)硫膏产品质量不理想,外观多为暗灰色,纯度90%左右,产品销售难度大。若后续能再配置硫膏生产硫酸的工艺,硫酸用于硫铵生产,则HPF工艺不失为一种完善的工艺。

焦炉煤气脱硫效率分析及工艺选择

焦炉煤气脱硫效率分析及工艺选择 煤气中的硫来自原料煤中,存在形式主要是 H2S,亦有少量有机硫(主要是COS)。H2S 不仅会造成环境的污染,还会腐蚀设备,使催化剂中毒,对生产造成很多不良影响,所以必须要脱去煤气中的硫。煤气脱硫即采用一定的技术手段将H2S、HCN 等有害物质从焦炉煤气中脱除,采用的工艺方法一般分为湿法和干法。 1 焦炉煤气脱硫技术 焦炉煤气常用的脱硫方法从脱硫剂的形态上来分包括干法脱硫技术和湿法脱硫技术。 1.1焦炉煤气干法脱硫技术 干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,同时脱除氰化物及焦油雾等杂质。干法脱硫又分为中温脱硫、低温脱硫和高温脱硫。常用脱硫剂有铁系和锌系,氧化铁脱硫剂是一种传统的气体净化材料,适宜于对天然气、油气伴生气、城市煤气以及废气中硫化氢含量高的气体。常温氧化铁脱硫原理是用水合氧化铁(Fe2O3·H2O)脱除 H2S,其反应包括脱硫反应与再生反应。 干法脱硫工艺多采用固定床原理,工艺简单,净化率高,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。但由于气固吸附反应速度较慢,工艺运行所需设备一般比较庞大,而且脱硫剂不易再生,运行费用增高,劳动强度大,不能回收成品硫,废脱硫剂、废气、废水严重污染环境。 1.2焦炉煤气湿法脱硫技术 湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢和氰化氢。常用的方法有氨水法、vasc法、单乙醇胺法、砷碱法、改良 ADA法、TH 法、苦味酸法、对苯二酚法、HPF 法以及一些新兴的工艺方法等。 1.2.1氨水法(AS 法) 氨水法脱硫是利用焦炉煤气中的氨,在脱硫塔顶喷洒氨水溶液(利用洗氨溶液)吸收煤气中 H2S,富含 H2S 和 NH3的液体经脱酸蒸氨后再循环洗氨脱硫。在脱硫塔内发生的氨水与硫化氢的反应是:H2S+2NH3·H2O→(NH4)2S+2H2O。AS 循环脱硫工艺为粗脱硫,操作费用低,脱硫效率在 90 %以上,脱硫后煤气中的 H2S 在200~500 mg·m-3。 1.2.2VASC 法 VASC 法脱硫过程是洗苯塔后的煤气进入脱硫塔,塔内填充聚丙烯填料,煤气自下而上流经各填料段与碳酸钾溶液逆流接触,再经塔顶捕雾器出塔。煤气中的大部分 H2S 和 HCN 和部分 CO2被碱液吸收,碱液一般主要是 Na2CO3或K2CO3溶液。吸收了酸性气体的脱硫富液与来自再生塔底的热贫液换热后,由顶部进入再生塔再生,吸收塔、再生塔及大部分设备材质为碳钢,富液与再生塔底

焦炉煤气脱硫脱氰净化工艺综述

焦炉煤气脱硫脱氰净化工艺综述 1.1引言 随着化学工业及城市煤气事业的迅速发展,炼焦制气厂也迅速发展起来,这样的处理煤气中硫化氢、氰化氢的问题就提到议事日程一来了。国际上对含有硫化氢、氰化氢的煤气的燃烧与使用有着严格的要求,且已有一系列的脱硫脱氰工艺投入生产。我国虽然在脱硫脱氰的工艺技术上也有很大的发展,但仍落后于需要,为了满足冶金工业对焦炉煤气中硫化氢、氰化氢的要求,减少焦炉煤气燃烧后对大气的污染,防止含硫化氢、氰化氢的废水污染水质,降低煤气中的硫化氢、氰化氢对仪表、设备等的腐蚀,综合利用硫化氢、氰化氢,使它变害为宝,必须大力发展脱硫脱氰的工艺。 在炼焦过程产生的焦炉煤气中含有硫化氢(H2S)、氰化氢(HCN)有害气体。H2S 含量一般为5-7g/m3,HCN含量为1-2g/m3。若不事先脱除,不但严重腐蚀气系统的设备和管道,所产生的废气和废水污染环境,危害人的身体健康。车间内允许的H2S浓度应小于10mg/m3,HCN浓度应低于0.3mg/m3,当H2S浓度达到700-1000mg/m3时,人立即昏迷,当人吸入50mgHCN,可瞬间死亡。 我国规定车间内二氧化硫(SO2)的最高允许浓度为15 mg/m3,二氧化氮(NO2)为5 mg/m3,含有H2S和HCN的煤气作燃料燃烧时,生成SO2和NO2,按65孔焦炉每座焦炉所产生的煤气量计算,每天向大气排放5吨SO2,严重污染大气。 随着环保规定的日趋严格,焦炉煤气脱硫脱氰技术有了很大发展,到目前为止,脱硫脱氰方法及其废液(气)处理已有数十种,本文主要介绍PDS法、HPF 法、FRC法、DDS法、改良ADA法及TH法焦炉煤气脱硫脱氰的方法以及他们之间的比较。 1.2煤气净化技术发展概况 焦炉煤气净化是焦化厂中重要的工艺过程。20世纪50年代初,我国各焦化厂大部分是沿用由前苏联引入焦炉炉型相配套的初冷—洗氨—终冷—洗苯的煤气净化(或称煤气回收) 工艺。自20世纪50年代末起,我国焦化工作者冲破旧的工艺模式,创造性地开发和设计了与我国自行设计的58型焦炉和其他炉型相适应的焦

焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析 (冶金工业规划研究院; Email:dengdpan@https://www.360docs.net/doc/807670169.html,) 潘登 摘要:简述了几种具有代表性的脱硫、脱氰工艺,分析了不同工艺特点。介绍 了常用的几种硫回收工艺,并总结了脱硫工艺组合硫回收工艺的原则和方法,为企业选择焦炉煤气净化工艺提供参考依据。 关键词:焦炉煤气,脱硫,硫回收,工艺分析 一.前言 炼焦煤在干馏过程中,煤中全硫的20~45%会转到荒煤气中,荒煤气中的硫 以有机硫和无机硫两种形态存在,有机硫主要有二硫化碳、噻吩、硫醇等,煤气 中95%以上的硫以H2S无机硫形态存在,由于荒煤气中的有机硫含量很少而且在煤气净化洗涤过程中大部分会被除去,因此焦炉煤气的脱硫主要是脱除煤气中的H2S,同时除去同为酸性的HCN。据生产统计焦炉炼焦生产的荒煤气中H2S 含量为2~15g/m3,HCN含量为1~2.5 g/m3。荒煤气中H2S在煤气处理和输送过程中,会腐蚀设备和管道危害生产安全,未经脱硫的煤气作为燃料燃烧时,会生成大量SO2,造成严重的大气污染,同时H2S含量较高的焦炉煤气用在冶炼,将严重影响钢材产品质量,制约高附加值优质钢材品种的开发。出于生产安全,环保要求及煤气有效利用方面考虑,那种五、六十年代老焦化厂采用荒煤气→冷凝鼓风工段→硫铵工段→粗苯工段的无脱硫工段老三段模式与绿色环保的现代生产理念相悖,这样焦炉煤气脱硫已经成为煤气净化不可或缺的重要组成部分。焦炉煤气脱硫,不但环保,而且还可以回收硫磺及硫酸等化学品,产生一定的经济效益。在淘汰落后产能以及清洁生产政策下,对煤气脱硫的要求是越来越高,《焦化行业准入条件》已明确要求焦炉煤气必须脱硫,脱硫后煤气作为工业或其它用时H2S含量应不超过250 mg/Nm3,若用作城市煤气,H2S含量应不超过20mg/Nm3。本文将对焦炉煤气常用脱硫工艺进行介绍,分析不同工艺的特点,同时对硫回收工艺作简要说明。 二.工艺概述 近年来,焦炉煤气脱硫技术经不断发展与完善已日益成熟和广泛应用,脱硫 产品以生产硫磺和硫酸工艺为主。煤气脱硫主要有干法脱硫和湿法脱硫两大类,

MEA法煤气脱硫工艺

SULFIBAN法煤气脱硫工艺 SULFIBAN法即索尔菲班法脱硫工艺,酸性气体制取硫酸,简称MEA法 1 工艺流程和技术特点 1.1 工艺流程 SULFIBAN工艺由脱硫脱氰和硫酸制造两部分组成。脱硫脱氰部分用15%的 单乙醇胺(MEA)作为脱硫剂,在低温条件下吸收焦炉煤气中的H 2S、HCN和CO 2 , 再用蒸汽解析出溶液中的酸性气体,酸性气体作为制硫酸原料。为减少脱硫液中 的副产物和杂质含量,需将一定量的脱硫液引入再生器中加热再生,所得固体残渣经沉降分离后排出系统外。 从解析塔逸出的酸性气体在燃烧炉内与空气混合,在煤气助燃条件下燃烧生成SO 2 。高温的燃烧废气经废热锅炉回收余热后送入酸冷却塔,用12%~13%的 稀硫酸冷却。然后在脱湿器中用3~7℃的冷冻水间接冷却,以除去SO 2 气体中的水分。再经电除酸器除去酸雾后进入干燥塔,在此用95%的浓硫酸进一步除去 SO 2 气体中的水分。最后,经转化和吸收工序后生产98%浓硫酸。从硫酸吸收塔顶逸出的尾气进入第一除害塔,用pH=6~6.7的氨水洗涤后送入第二除害塔,废气经清循环水洗涤后排入大气。 1.2 技术特点 (1) SULFIBAN法是以MEA为脱硫剂的脱硫脱氰工艺,可将煤气中的H 2 S脱除到200mg/m3以下,基本可满足钢铁企业对煤气的质量要求。 (2)煤气中的CO 2、COS、CS 2 等杂质与脱硫液中的MEA易生成不能再生的聚 合物,故MEA的耗量较高。解析时所需的蒸汽量也较大。另外,为过滤去除富液中>10μm、贫液中>5μm的悬浮粒子,还需消耗一定量的纤维滤芯。 (3) 硫酸装置燃烧炉的炉体结构简单,操作和维护方便。在SO 2 气体净化时, 采用了低温冷却和电除酸雾工艺。用V 2O 5 作为SO 2 转化成SO 3 的催化剂,其转化 效率≥97% 。 SO 3 的吸收效率≥99.5%,硫酸制造工艺成熟。但在装置出现故障时,酸性气体无其他出路,虽可将酸性气体引入一期脱硫装置的脱硫塔中,但对脱硫操作有一定影响。 (4) 煤气中的苯类物质易使MEA溶液发泡,造成系统恶化。大量的氨被吸收 到溶液中后,NH 3可以与CO 2 、H 2 S反应生成(NH 2 ) 2 CS(硫尿),硫尿在热态下又

氨水法焦炉煤气脱硫的基本原理

范守谦(鞍山立信焦耐工程技术有限公司) 1 气体在液体中的溶解度——亨利定律 任何气体在一定温度和压力下与液体接触时,气体会逐渐溶解于液体中。经过相当长的时间,气相和液相的表观浓度不再发生变化,即处于平衡状态。这时,对于不同气体,如果组分在气相中的分压(对单组分气体即为总压)保持定值,则不同气体在液体中的浓度称为气体在液体中的溶解度。该组分在气相中的分压称为气相平衡分压,表示了气相的平衡浓度。 很多气体的液相平衡浓度X与气体的平衡分压P*有定量关系。如:二氧化碳为直线关系,硫化氢和氨只有在较大浓度范围时不呈直线关系,在浓度较小时,可视为直线关系。因此,在一定温度下,对于接近于理想溶液的稀溶液,在气相压力不大时,气液平衡后气体组分在液相中的浓度与它在气相中的分压成正比,即亨利定律。 P* =EX 式中的P* 为气体组分在气相中的分压,大气压;X为气体组分在液相中的浓度,分子分数; E 为亨利系数(与温度有关)。 上式经浓度单位换算后可改写为: C =HP* 式中的P*为气体组分在气相中的分压,mmHg;C 为气体组分在液相中的浓度,gmol;H为亨利系数,gmol/mmHg。

注:①亨利定律是一个稀溶液定律,它只适用于微溶气体; ②只适用于气相和液相中分子状态相同的组分。如: NH3(气态)? NH3(溶解态) NH3(溶解态)+H2O ? NH4OH ? NH+4 + OH- 用亨利定律时,应把NH+4的量减去,才能得到水溶液中氨的浓度C氨C氨=H0P *氨 式中的H0为氨在纯水中的亨利系数,kgmol/(m3·mmHg)。 温度,℃H0 20 0.099 40 0.0395 60 0.017 80 0.0079 90 0.0058 在氨水脱硫过程中 C氨=H氨·P *氨

焦炉煤气脱硫技术路线

焦炉煤气脱硫技术路线、现状及五种工艺对比 焦炉煤气中的硫化物是一种有害物质,若不对其进行脱除,不仅会腐蚀生产设备,而且会带来环境污染,因此焦炉煤气在使用前必须进行脱硫处理。本文对目前国内应用较多的焦炉煤气脱硫技术方案进行介绍,包括PDS法、HPF法、改良ADA法等。通过对这些脱硫工艺在脱硫效果、碱源、成本等方面进行比较,发现PDS法和HPF法因其脱硫效率高、不需要外加碱源、生产流程简洁,被大多数企业所青睐,综合效益最佳。 引言 煤在炼焦生产时一般72%~78%转化为焦炭,22%~28%转化为荒煤气,干煤中含有质量分数为0.5%~1.2%的硫,其中有20%~30%的硫转到荒煤气中,形成有机和无机硫化物。而焦炉煤气中,硫化氢的含硫量占总含硫量的90%以上。焦炉煤气中的硫化氢是一种有害物质,它会对化学产品回收设备和煤气输送管道产生腐蚀。硫化氢含量高的焦炉煤气用于炼钢,会导致钢的质量下降; 用于合成氨生产,会导致催化剂中毒失效和管道设备等腐蚀;用于工业和民用燃料,其燃烧所排放废气中的硫化物会污染环境,对人体健康造成危害。 因此,焦炉煤气不论是用作工业原料还是城市燃气都需要对其进行脱硫净化。煤气脱硫不仅可以改善煤气质量,减轻设备腐蚀,还可以提高经济效益。本文对目前企业中常用的焦炉煤气脱硫方法进行分类介绍,主要对常用的一些湿式氧化脱硫法,包括PDS法、HPF法、改良ADA法等进行分析对比,说明各种工艺的优缺点。 1 焦炉煤气脱硫方法 焦炉煤气脱硫工艺发展至今已经有50余种。虽然工艺数量众多,但是根据反应的接触条件以及催化剂的种类的不同,总体上可以分为两大类: 一类是干法脱硫; 另一类是湿法脱硫。 1.1 干法脱硫 干法脱硫是利用固体吸附剂,例如活性炭、氢氧化铁等脱除煤气中的硫化氢,使煤气中硫化氢的含量达到1~2mg/m3。该工艺在脱硫反应中无液体存在,脱硫

荒煤气脱硫系统

荒煤气脱硫系统 作者:来源:发表时间:2014-8-3 点击:14 工程概述 本项目为新疆金盛镁业镁合金循环经济工业园兰炭项目兰炭尾气(低温干馏煤气) 脱硫工程,工艺技术方案的选择是本着保证产品质量的前提下力求技术水平适度先进合 理、稳妥可靠,降低劳动强度,节约投资,合理布局,减少工程造价,实现环境污染总 量控制,做好洁净生产,以减少对环境污染。本工程设备的选型及设计遵照技术先进、 稳妥可靠、操作方便节能降耗的原则。 脱硫及硫回收 工艺技术方案的选择 脱硫分干法脱硫和湿法脱硫两种,干法脱硫主要以氧化铁、活性炭为主。湿法脱硫主要以栲胶法、改良ADA法、PDS法、HPF法、KCA法及几种催化剂复合法。 干法脱硫的工艺简单,脱硫精度高,当要求煤气净化度较高或煤气处理量较小时采用,但设备笨重,脱硫效率不稳定,随着催化剂使用时间的延长,脱硫能力不断降低,脱硫剂用量大,二次处理困难,对于失效(硫饱和)的脱硫剂,再生成本高,操作难度大,废弃处理,会造成二次污染;脱硫剂更换频繁,劳动强度大,并且容易造成煤气中毒;占地面积大。湿法脱硫具有处理能力大,操作弹性大,脱硫与再生都能连续化,劳动强度小,能回收硫膏(硫磺)等优点,但工艺较复杂,操作费用较高,由于本工程处理煤气量较大,故选用湿法脱硫工艺。 本方案选用以碱源脱除兰炭尾气中的硫化氢的湿式氧化喷射再生脱硫工艺。湿式氧化喷射再生脱硫工艺,是焦化工业目前推行的焦化煤气脱硫新工艺,具有节约能源、工艺顺畅、脱硫效率高、操作平稳等特点。湿法脱硫的催化剂多种多样,各有优缺点,本方案选用我公司研发生产的ISS-J焦炉煤气专用脱硫剂,与我公司的脱硫装置相配套,该催化剂不但能脱除H2S,还能脱除HCN和部分有机硫,具有脱硫效率高、副盐生成少,硫磺回收率高、废液排放量小,不堵塔、脱硫液对设备腐蚀小等优点,得到了广大用户的认可。

相关文档
最新文档