用线性矩阵不等式方法求解控制理论问题_张怡

用线性矩阵不等式方法求解控制理论问题_张怡
用线性矩阵不等式方法求解控制理论问题_张怡

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

LMI(线性矩阵不等式)工具箱

LMI:Linear Matrix Inequality,就是线性矩阵不等式。 在Matlab当中,我们可以采用图形界面的lmiedit命令,来调用GUI接口,但是我认为采用程序的方式更方便(也因为我不懂这个lmiedit的GUI)。 对于LMI Lab,其中有三种求解器(solver):feasp,mincx和gevp。 每个求解器针对不同的问题: feasp:解决可行性问题(feasibility problem),例如:A(x)

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

线性矩阵不等式的LMI工具箱求解

一、线性矩阵不等式的LMI 工具箱求解 (一)可行性问题(LMIP ) 1、可行性问题描述 系统状态方程: []11223301000210-4014x x x x u x x ????????????????=-+????????????????-???????? &&& 在判断系统的稳定性时,根据线性定常系统的雅普诺夫稳定性判据,需要判断是否存在实对称矩阵P ,使得: T A P+PA=Q - 成立,其中Q 为正定矩阵。 那么判断系统稳定性的问题,可以转化为下面不等式是否存在解的问题: T A P+PA<0 这种不等式解是否存在的问题可以用MATLAB 的LMI 工具箱进行判断。 2、仿真所需要用到的命令 setlmis([]) :开始一个线性矩阵不等式系统的描述; X= lmivar(TYPE,STRUCT):定义一个新的矩阵变量; lmiterm(TERMID,A,B,FLAG):确定线性矩阵不等式的一个项的容; LMISYS = getlmis :结束一个线性矩阵不等式系统的描述,返回这个现行矩阵不等式系统的部表示向量LMISYS ;

X = dec2mat(LMISYS,DECV ARS,XID):由给定的决策变量得到相应的矩阵变量值。 [tmin,xfeas]=feasp(lmisys):可行性问题的求解器函数,tmin大于0时,表明LMI系统不可行,P阵无解,系统不稳定,tmin小于0时,便可以用dec2mat函数求解出P矩阵。 3、仿真结果 可以看到,仿真结果tmin<0,因此P阵存在,系统是稳定的。进一步用dec2mat函数求解出P矩阵。得:

第三章知识点总结 矩阵的初等变换与线性方程组

第三章矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?= 存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?= 存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使

矩阵分解与线性方程组求解

一、 用列主元素高斯削去法求解下述线性方程组: ?????? ?-=+--=++---=--+=--+36 15531495102210762133421342143214 3214321x x x x x x x x x x x x x x x 程序: function x=gaussa(a) m=size(a); n=m(1); x=zeros(n,1); for k=1:n-1 [c,i]=max(abs(a(k:n,k))); q=i+k-1; if q~=k d=a(q,:);a(q,:)=a(k,:);a(k,:)=d end for i=k+1:n a(i,:)=a(i,:)-a(k,:)*a(i,k)/a(k,k) end end for j=n:-1:1 x(j)=(a(j,n+1)-a(j,j+1:n)*x(j+1:n))/a(j,j) end 执行过程: >> a=[1 13 -2 -34 13;2 6 -7 -10 -22;-10 -1 5 9 14; -3 -5 0 15 -36] a = -10 -1 5 9 14 2 6 -7 -10 -22 1 13 -2 -34 13 -3 -5 0 15 -36 >> gaussa(a) a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 1.0000 13.0000 -2.0000 -34.0000 13.0000 -3.0000 -5.0000 0 15.0000 -36.0000 a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 0 12.9000 -1.5000 -33.1000 14.4000 -3.0000 -5.0000 0 15.0000 -36.0000 a = -10.0000 -1.0000 5.0000 9.0000 14.0000 0 5.8000 -6.0000 -8.2000 -19.2000 0 12.9000 -1.5000 -33.1000 14.4000 0 -4.7000 -1.5000 12.3000 -40.2000

线性方程组与矩阵

高代小练习 专业课研究部 一、填空题 1.设n 元齐次线性方程组的系数矩阵的秩r < n ,则方程组的基础解系由_n-r__个解向量组成. 2.向量组123,,ααα线性无关,则122331(,,)rank αααααα+++=__3____. 3.设向量组12,,,r βββ 可以由向量组12,,,s ααα 线性表出.如果向量组12,,,r βββ 线性无关,则r __<=___s (填大小关系). 4.在数域K 上的4维向量空间K 4内,给定向量组α1 =(1,-3,0,2)α2 =(-2,1,1,1)α3 =(-1,-2, 1,3),则此向量组的秩是_2____. 5.若V={(a+bi ,c+di)|a,b,c,d 属于R},则V 对于通常的加法和数乘,在复数域上是__2____维的,而在实数域上是__4_____维的. 6.设线性方程组AX=0的解都是线性方程组BX=0的解,则秩A ?>=??秩B. 7.设t ηηη,,,21 及t t ηληληλ+++ 2211都是)0(≠=b b AX 的解向量,则 =+++t λλλ 21______。 8.设任意一个n维向量都是齐次线性方程組0=AX 的解向量,则=)(A r ______。 9.已知321,,ααα是齐次方程组0=AX 的基础解系,那么基础解系还可以是______. (A) 332211αααk k k ++ (B) 133221,,αααααα+++ (C) 3221,αααα-- (D) 233211,,αααααα-+- 10.在三维几何空间中,用V 1表示通过原点的直线,V 2表示通过原点且与V 1垂直的平面,试求 21V V ?=_原点____,和21V V ?=_整个空间R 3 ____。 二.解答题 1.在4维向量空间中, (1)求基 到基 的过渡矩阵。

线性代数习题第三章 矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1、用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形、 2、用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵、 3、设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =、 4、设A就是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B、 (1) 证明B可逆(2)求1 AB-、

习题 3-2 矩阵的秩 1、求矩阵的秩: (1)310211211344A ????=--????-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????L L L L L L L 01,2,,i i a b i n ≠????=?? L 2、设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =、

3、 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系就是 、 .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4、 矩阵???? ??????-------815073*********的秩R= 、 a 、1; b 、 2; c 、 3; d 、 4、 5、 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = 、 a 、 1; b 、 n -11; c 、 –1; d 、 1 1-n 、 6、设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

线性方程组和矩阵知识总结.doc

线性方程组和矩阵知识总结 吴荣魁 2013201363 线性方程组的基本概念 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量它满足:当每个方中的未知数xi 都用ki 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解 b1=b2=…=bm=0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. 线性方程组的解法 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 (1)、写出线性方程组的增广矩阵。 (2)、用初等行变换把增广矩阵化为阶梯形矩阵。 (3)、看阶梯形矩阵的最后一个非零行的首非零元是否在最后一列。如果是,则方程组无解;反之方程组有解。 (4)、在有解的情况下,找出阶梯形矩阵中非零行的个数r 。如果r=n ,则方程组有唯一解;如果r

线性方程组的矩阵求法.

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++ = 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

矩阵与线性方程组

第1 章矩阵与线性方程组 矩阵是描述和求解线性方程组最基本和最有用的工具。本章涉及向量和矩阵的基本 概念,归纳了向量和矩阵的基本运算。 1.1 主要理论与方法 1.1.1 矩阵的基本运算 一、矩阵与向量 a11x1 + a12x2 + ¢ ¢ ¢+ a1n x n = b1 a21x1 + a22x2 + ¢ ¢ ¢+ a2n x n = b2 ... a m1x1 + a m2x2 + ¢ ¢ ¢+ a mn x n = b m 9> >>>=>>>>; (1.1) 它使用m个方程描述n个未知量之间的线性关系。这一线性方程组很容易用矩阵||向量 形式简记为 Ax = b (1.2) 式中 A =26664 a11 a12 ¢ ¢ ¢ a1n a21 a22 ¢ ¢ ¢ a2n ... ... ... a m1 a m2 ¢ ¢ ¢ a mn 37775 (1.3) 称为m £ n矩阵,是一个按照长方阵列排列的复数或实数集合;而 x =26664 x1 x2 ... x n 37775 ; b =26664 b1 b2 ... b m 37775 (1.4) 分别为n £1向量和m£1向量,是按照列方式排列的复数或实数集合,统称列向量。类似地,按照行方式排列的复数或实数集合称为行向量,例如 a = [a1; a2; ¢ ¢ ¢ ; a n] (1.5) 是1 £ n向量。 二、矩阵的基本运算 1. 共轭转置:若A = [a ij ]是一个m£ n矩阵,则A的转置记作A T,是一个n £m矩阵, 定义为[A T]ij = a ji;矩阵A的复数共轭A¤定义为[A¤]ij = a¤ji;复共轭转置记作A H,定义 为 A H =26664 a¤11 a¤21 ¢ ¢ ¢ a¤m1 a¤12 a¤22 ¢ ¢ ¢ a¤m2 ...

矩阵的初等变换与线性方程组习题含答案

第三章 矩阵的初等变换与线性方程组 3.4.1 基础练习 1.已知121011251-?? ? = ? ?-??A ,求()R A . 2.已知3210 1032 100000200000-?? ?- ? = ?- ? ?? ?B ,求()R B . 3.若矩阵,,A B C 满足=A BC ,则( ). (A)()()R R =A B (B) ()()R R =A C (C)()()R R ≤A B (D) ()max{(),()}R R R ≥A B C 4. 设矩阵X 满足关系2=+AX A X ,其中423110123?? ? = ? ?-??A ,求X . 5. 设矩阵101210325?? ?= ? ?--?? A ,求1 ()--E A . 6.A 是m n ?矩阵,齐次线性方程组0=Ax 有非零解的充要条件是 . 7.若非齐次线性方程组=Ax b 中方程个数少于未知数个数,那么( ). (A) =Ax b 必有无穷多解; (B) 0=Ax 必有非零解; (C) 0=Ax 仅有零解; (D) 0=Ax 一定无解. 8. 求解线性方程组 (1)12312312312333332x x x x x x x x x +-=??+-=??-+=?, (2)72315 532151011536 x y z x y z x y z ++=?? -+=??-+=? (3)123412341 23420 202220 x x x x x x x x x x x x ++-=?? ++-=??+++=?

9.若方程组 12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-?? -=-??-=--+-? 有无穷多解,则λ= . 10.若12(1,0,2),(0,1,1)T T ==-αα都是线性方程组0=Ax 的解,则=A ( ). (A)()2,1,1- (B)201011-?????? (C)102011-????-?? (D)011422010-?? ??--?? ???? 3.4.2 提高练习 1.设A 为5阶方阵,且()3R =A ,则* ()R A = . 2.设矩阵12332354445037a a -????=-?? ??-?? A ,以下结论正确的是( ). (A)5a =时,()2R =A (B) 0a =时,()4R =A (C)1a =时,()5R =A (D) 2a =时,()1R =A 3.设A 是43?矩阵,且()2R =A ,而102020103?? ? = ? ?-??B ,则()R =AB . 4.设12243311t -?? ? = ? ?-??A ,B 为3阶非零矩阵,且0=AB ,则t = . 5.设12312323k k k -?? ? =-- ? ?-?? A , 问k 为何值,可使 (1)()1R =A (2)()2R =A (3)()3R =A . 6.设矩阵111111111111k k k k ?? ? ? = ? ? ??? A ,且()3R =A ,则k = .

线性方程组的矩阵求解算法

线性方程组的矩阵求解算法 摘要 线性方程组的矩阵求解算法,只需在约当消元法的基础上,再对方程组的 增广矩阵的行最简形进行行(列)删除和增加行,交换行等运算即可得到方程组的解,并且这种方法既可求解有唯一解的方程组.因而算法简单,易于实现. 关键词 线性方程组;解向量;解法;约当消元法 1 矩阵求解算法 设有线性方程组m n A X b ?=,其增广矩阵())(1,m n A A b ?+=,算法的步骤如下: 第一步:利用约当消元法,把增广矩阵A 化为行最简形,设行最简形为()1m n B ?+.若()t i (),r A r =则方程组无解;否则设(),r A R =并执行以下步骤; 第二步:删除B 中的所有零行和每一行第一个非零元素(这个非零元素一定是1)所在的列,得到矩阵()1,r n r D ?-+并记录每行的第一个非零元所在的列标,放在一维数组()1, ,t r 中,如第i 行的第一个非零元在第j 列,则()t i j =; 第三步:构造矩阵() 1m n r D H F ?-+?? = ? ??,其中 ()() 1100001 0000 1 0n r n r F -?-+-?? ?- ? = ? ? -? ? 第四步:对矩阵H 中的行作交换运算:把H 中的第i 行(,1,1,i r r =-即从第r 行开始直到第一行)依次与其下一行交换,使之成为第()t i 行,交换运算结果后的矩阵记为G ,则G 中的前n r -个n 维列向量即为方程组的一个基础解系,最后一列向量即为方程组的一个特解; 第五步:写出方程组的通解. 2 算法证明 先证一个特殊情形,增广矩阵A 的行最简形矩阵B 的左上角为一r 阶的单位矩阵,即第i 行的第一个非零元的列标为i ,即()()1t i i i r =≤≤,所以设B 为

线性代数习题矩阵的初等变换与线性方程组讲课讲稿

线性代数习题[第三章]矩阵的初等变换与线 性方程组

习题3-1矩阵的初等变换及初等矩阵 3 2 1 3 1 5的逆矩阵. 3 2 3 4.设A 是n 阶可逆矩阵 将A 的第i 行与第j 行对换后得矩阵B . (1)证明B 可逆 ⑵求AB 1. 1?用初等行变换化矩阵A 1 0 2 1 2 0 3 1 为仃取简形 3 0 4 3 4 1 2 1 3 2 2 1 ,B= 2 2 ,求X 使AX B 3 1 1 3 1 3.设A 2?用初等变换求方阵A

习题3-2矩阵的秩1?求矩阵的秩: (1)A 1 2 3k 2.设A 1 2k 3问k为何值,可使 k 2 3 (1)R(A) 1 ; ⑵R(A) 2; ⑶ R(A) 3 qb o i 1,2, |||,n &1 b| &1 b? a? b| a?b? Ill III a n E a n b 2 a2b n III a n b n

3.从矩阵A中划去一行,得矩阵B,则R(A)与R(B)的关系是_______ a. R(A) R(B) b. R(A) R(B); c. R(B) R(A) 1 ; d. R(A) R(B) R(A) 1. 3 2 1 3 1 4.矩阵2 1 3 1 3 的秩R= 7 0 5 1 8 a.1; b. 2; c.: 3; d. 4. 1 a a a 5.设n(n 3)阶方阵 a A 1 a a 的秩R(A)=n-1,则 a a a a 1 a. 1; b. 1 ; c.—; d . 1 1 n n 1 6.设A为n阶方阵,且A2A,试证: R(A) R(A E) n

线性方程组的几何意义与矩阵之间的关系

线性方程组的几何意义与矩阵之间的关系 数学系数052 蒋春 摘要:通过对二元线性方程组,三元线性方程组,四元线性方程组有关系数矩阵,增广矩阵的秩的分析,对其列,行向量的线性相关性分析,初步得出如何用矩阵的方式讨论线性方程组的几何意义。 关键词:线性方程组 空间直线 系数矩阵 增广矩阵 矩阵秩 线性相关性 引言:判断空间中平面与平面、直线与直线及直线与平面的位子关系是代数知识在空间解析几何上的应用,体现了几何与代数的完美结合,虽在解析中给出了两条判定定理,但在实际应用中这两条定理是不够用的,本文用方程组系数矩阵,增广矩阵的秩,对其列,行向量的线性相关性作出系统研究,并给出了一些非常有用的结论。 1:二元线性方程组几何意义与矩阵之间的关系 设线性方程组:1111 2 222a x b y c l a x b y c l +=?????????+=???????? 因为i i i a x b y c +=表示平面内一条直线i l 根据解析几何知1l 与2l 的几何关系: ○1:相交的充分必要条件是(不重合): ()11 22 1a b a b ≠??????? ○2平行的充分必要条件是: ()111 222 2a b c a b c =≠??????? ○3重合的充分必要条件是: ()111222 3a b c a b c ==??????? 设线性方程组系数矩阵和增广矩阵分别为 1122a b A a b ??=????,111222a b c B a b c ??=???? 现记线性方程组增广矩阵的列向量 112a a α??=????,122b b α??=????,132c c α?? =???? 则

Matlab中LMI(线性矩阵不等式)工具箱使用教程

博客首页 注册 建议与交流 排行榜 加入友情链接 推荐 投诉 搜索: 帮助 https://www.360docs.net/doc/808161232.html, 管理博客 发表文章留言收藏夹博客圈音乐相册文章首页

项(Terms):项是常量或者变量(Terms are either constant or variable)。 常项(Constant Terms)是确定的矩阵。可变项(Variable Terms)是哪些含有矩阵变 量的项,例如:X*A, X*C'。如果是X*A + X*C',那么记得要把它当成两项来处理。 好了废话不说了,让我们来看个例子吧(下面是一线性时滞系统)。 针对这个式子,如果存在满足如下LMI的正矩阵(positive-define)的Q,S1,S2和矩阵M,那么我们就称作 该系统为H-inf渐进稳定的,并且gammar是上限。 该论文的地址为:论文原文地址 该论文的算例为: 我们要实现的就利用LMI进行求解,验证论文结果。 首先我们要用setlmis([])命令初始化一个LMI系统。 接下来,我们就要设定矩阵变量了。采用函数为lmivar 语法:X = lmivar(type,struct)

type=1: 定义块对角的对称矩阵。 每一个对角块或者是全矩阵<任意对称矩阵>,标量<单位矩阵的乘积>,或者是零阵。 如果X有R个对角块,那么后面这个struct就应该是一个Rx2阶的的矩阵,在此矩阵中,struct(r,1)表示第r个块的大小,struct(r,2) 表示第r个块的类型<1--全矩阵,0--标量,-1--零阵)。 比如一个矩阵有两个对角块,其中一个是2x2的全对称矩阵,第二个是1x1的一个标量,那么该矩阵变量应该表示为X = lmivar(1, [2 1; 1 0]) 。 type=2: mxn阶的矩阵,只需要写作struct = [m,n]即可。 type=3: 其它类型。针对类型3,X的每一个条目(each entry of X)被定义为0或者是+(-)xn,此处xn代表了第n个决策变量。 那么针对我们的例子,我们如此定义变量: % Q is a symmetric matrix, has a block size of 2 and this block is symmetric Q = lmivar(1, [2 1]); % S1 a symmeric matrix, size 2 S1 = lmivar(1, [2 1]); % S2 is 1 by 1 matrix S2 = lmivar(1, [1 0]); % Type of 2, size 1 by 2 M = lmivar(2, [1 2]); 定义完成变量之后,我们就该用lmiterm来描述LMI中的每一个项了。Matlab的官方文档提示我们,如果要描述一个LMI只需要描述上三角或者下三角元素就可以了,否则会描述成另一个LMI。 When describing an LMI with several blocks, remember to specify only the terms in the blocks on or below the diagonal (or equivalently, only the terms in blocks on or above the diagonal). 语法为:lmiterm(termID,A,B,flag) termID是一个四维整数向量,来表示该项的位置和包含了哪些矩阵变量。 termID(1)可以为+p或者-p,+p代表了这个项位于第p个线性矩阵不等式的左边,-p代表了这个项位于第p个线性矩阵不等式的右边。注意:按照惯例来讲,左边通常指较小的那边。 termID(2:3): 1、对于外部变量来说,取值为[0,0]; 2、对于左边或者右边的内部变量来说,如果该项在(i,j)位置,取值[i,j] termID(4): 1、对于外部变量,取值为0 2、对于A*X*B,取值X 3、对于A*X'*B,取值-X flag(可选,值为s): 因为:(A*X*B) + (A*X*B)T = A*X*B + B'*X'*A',所以采用s来进行简写。 比如:针对A*X + X'*A' 我们采用笨方法: lmiterm([1 1 1 X],A,1) lmiterm([1 1 1 -X],1,A') 那么简写就是lmiterm([1 1 1 X],A,1,'s')

矩阵与线性方程

矩阵与线性方程

————————————————————————————————作者:————————————————————————————————日期: 2

1 第一章 矩阵与线性方程组 在中学已经学习了有关两个未知量、两个方程的二元一次方程组的基本知识。一次方程又称为线性方程。在自然科学、社会科学和许多工程技术问题中,常常需要处理几十、几百甚至成千上万个未知量的线性方程组,未知量的个数和方程的个数也不一定完全一致,这就要求我们把关于二元一次方程组的知识推广到有n 个未知量和m 个方程的线性方程组上去。矩阵是解决这类问题的重要工具之一。 1.1 矩阵及其运算 1.1.1 线性方程组及其矩阵表示 线性方程组(system of linear equations )的一般形式为 ???????=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112 222212********* (1.1) 显见,二元一次方程组是其特款。方程组(1.1)中有m 个 方程、n 个未知量。a ij 代表第i 个方程中未知量x j 的系数,b i 是 第i 个方程的常数项。当常数项b 1 ,b 2 ,…,b m 全为零时,式(1.1)称为齐次线性方程组;当常数项不全为零时,式(1.1)称为非齐次线性方程组。 当m 、n 较大时,方程组(1.1)的书写需重复许多次未知量以及“+”、“=”运算符号,如用计算机进行处理,则浪费很多存储空间。因此,我们将方程组(1.1)中未知量的系数简化

线性矩阵不等式的LMI工具箱求解

一、线性矩阵不等式的LMI 工具箱求解 (一)可行性问题(LMIP ) 1、可行性问题描述 系统状态方程: []11 223 3 1000210-4 14x x x x u x x ???? ???? ???????? =-+????????????????-???? ???? 在判断系统的稳定性时,根据线性定常系统的李雅普诺夫稳定性判据,需要判断是否存在实对称矩阵P ,使得: T A P +P A =Q - 成立,其中Q 为正定矩阵。 那么判断系统稳定性的问题,可以转化为下面不等式是否存在解的问题: T A P +P A <0 这种不等式解是否存在的问题可以用MATLAB 的LMI 工具箱进行判断。 2、仿真所需要用到的命令 setlmis([]) :开始一个线性矩阵不等式系统的描述; X= lmivar(TYPE,STRUCT):定义一个新的矩阵变量; lmiterm(TERMID,A,B,FLAG):确定线性矩阵不等式的一个项的内容; LMISYS = getlmis :结束一个线性矩阵不等式系统的描述,返回这个现行矩阵不等式系统的内部表示向量LMISYS ; X = dec2mat(LMISYS,DECV ARS,XID):由给定的决策变量得到相应的矩阵变量值。 [tmin,xfeas]=feasp(lmisys):可行性问题的求解器函数,tmin 大于0时,表明LMI 系统不可行,P 阵无解,系统不稳定,tmin 小于0时,便可以用dec2mat 函

数求解出P矩阵。 3、仿真结果 可以看到,仿真结果tmin<0,因此P阵存在,系统是稳定的。进一步用dec2mat函数求解出P矩阵。得:

线性方程组与矩阵

第一章 线性方程组与矩阵 课程教案 授课题目:第二节 矩阵概念与矩阵的初等变换 教学目的:1.掌握高斯消元法求解线性方程组. 2.理解矩阵的概念、运算及其性质,掌握矩阵的初等行变换. 教学重点:本章以课堂教学为主,使学生掌握矩阵的初等行变换,提高学生的逻 辑思维能力和计算能力. 教学难点: 初等行变换的运用. 课时安排:2学时. 授课方式:多媒体与板书结合. 教学基本内容: §1.2 矩阵概念与矩阵的初等变换 1. 概念 对线性方程组 ?????? ?=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112 222212*********ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ (1) 其系数可用?????? ? ??mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211表示. 定义1 m n ?个数排列成m 行(横向)、n 列(纵向)的矩形数表: 1112 12122212 n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L L L L L L 称为m n ?矩阵,简记为()ij m n A a ?=,其中ij a 为A 中第i 行第j 列的元素.如 ???? ??????-5162120710903 是3行4列的矩阵.这里,3×4是个记号,表明矩阵有3行4列的事实而不能取乘积“12”. 2. 一些特殊的矩阵 1) 行矩阵——只有一行的矩阵. 例(12 5)A =.

2) 列矩阵——只有一列的矩阵. 例312B ????=-?????? . 3) 零矩阵——所有元素都等于0的矩阵.例000000C ?? =? ???. 4) 同型矩阵——行数相同、列数也相同.例235176D ?? =? ? ?? 与C 同型. 5) 当m n =时称 ()ij n n A a ?=为n 阶方阵;1122,,,nn a a a L 所在的对角线称为方阵的主对角线. 6) 主对角线下(上)方的元素全为零的方阵称为上(下)三角阵.例???? ??????500230704为上三角阵;???? ? ?????5613035004为下三角阵. 7) 主对角线以外的元素全为零的方阵称为对角阵,记为????? ?? ?? ???=n d d d D Λ M M M Λ Λ 00000021,简记为),,,(21n d d d diag D Λ=. 8) 数量阵——对角阵中(1)i d d i n =≤≤. 例300030003A ????=??????. 9) 单位阵——数量阵中1d =,记以I 或E .例100010001E ????=?????? . 注 (1) 只有1列或1行的矩阵分别称为列矩阵或行矩阵,也被称为列向量或行向量.这 样,它们就有了矩阵和向量的双重“身份”. 作为向量,常用小写黑体字母a 、b 、……等标记之,向量的元也称为分量,一个向量 所含分量的个数称为维(是个数),如???? ??????-213是个3维列向量,其实就是由3个数组成的一个有序数组.

线性矩阵不等式求解实例-待分析

在求解如下凸优化问题中遇到了问题: 1.不知道如何编程得到最优的γ2 2.求解提示为没有可行解 是否是我退出的不等式有问题或者其他方面有问题 A=[0,1,0,-1;-882,-28.4,0,28.4;0,0,0,1;1696.15,54.62,-657.12,-2680.39;]; B=[0,0,0,-0.039]'; Bw=[0,0,-1,2625.77]'; C1=[-882,-28.4,0,28.4]; C2=[0,0,10,0]; Ea=[0,0,-65.71,262.58] %Eb=0 L=[0,0,0,1]' I=eye(1) gam=4.2; %γ=gam a=0.01; %ρ=a b=0.1; %ε=b c=inv(b); umax=3000 setlmis([]); X=lmivar(1,[4 1]); %定义决策变量 Z=lmivar(2,[1 4]);

lmiterm([1 1 1 X],A,1,'s'); lmiterm([1 1 1 Z],B,1,'s'); lmiterm([1 1 2 0],L); lmiterm([1 1 3 X],1,Ea'); %Ea→Ea' lmiterm([1 1 4 0],Bw); lmiterm([1 1 5 X],1,C1'); lmiterm([1 2 2 0],-c); lmiterm([1 3 3 0],-b); lmiterm([1 4 4 0],-gam^2); lmiterm([1 5 5 0],-1); lmiterm([-2 1 1 X],1,1); lmiterm([3 1 1 0],-1); lmiterm([3 1 2 Z],0.95,1); lmiterm([3 2 2 X],-3000,1); lmiterm([4 1 1 0],-1); lmiterm([4 1 2 X],C2,0.95); lmiterm([4 2 2 X],-1,1); lmisys=getlmis; %完成LTI框架的设设置 [tmin,xfeas]=feasp(lmisys); %求解可行解问题 X=dec2mat(lmisys,xfeas,X); %提取解矩阵把决策变量转化为矩阵形式Z=dec2mat(lmisys,xfeas,Z); P=inv(X); K=Z*P

相关文档
最新文档