热工学笔记

热工学笔记
热工学笔记

砌体导热系数0.76W/(m·K) ,普通钢筋混凝土导热系数 1.74W/(m·K),导热系数0.1~0.3W/(m·K)

建筑遮阳设计的综合评价:

遮阳:夏季充分遮挡直射太阳,冬季不影响必需的日照,也即满足节能标准规范的要求采光:晴天防止眩光,阴天满足必需照度

通风:尽可能减少对自然通风的阻挡,最好有导风入室的作用

视野:不遮挡凭窗外眺的视野

防雨:最好兼作防雨构件

成本(初投资、维护):低

立面造型:协调、有趣、丰富、富有韵律感

你对本课程最感兴趣、最希望了解和学习的是:

基本原理和知识

新型建筑材料和构造

建筑遮阳技术与优秀设计案例

建筑自然通风技术与优秀设计案例

传统建筑的隔热技术

建筑节能、绿色建筑的现状和发展趋势

各种建筑物性能模拟软件

你希望本课程的授课方式是:

A.

以老师课堂讲解为主,加大信息量和讲课速度; B.

以师生间互动和启发式讲解为主,注重培养独立思考和判断能力; C.

增加实验室参观; D. 增加实地考察和体验;

λ:导热系数,单位W/(m ·K ),表示1m 长的材料在1K 温差作用下通过导热传递的热量,是衡量建筑材料导热能力的重要指标。金属与木头

R :导热热阻R =d/λ:表示厚度为d ,导热系数为λ的材料阻挡导热的能力。

在房间自然通风情况下,建筑物的屋顶和东、西外墙内表面最高温度低于35.6℃(广州地区)。

广州的外墙传热系数≤1.5 W/(m 2·K) 。

在保证室内环境质量的前提下,通过墙体、屋面和门窗的选型设计,减少建筑设备(空调采暖)耗能,以实现新建建筑节能50%的总体目标;

对于夏热冬暖地区,屋顶的传热系数要求≤0.9 W/(m 2·K) 。

重质屋顶(热惰性指标≥2.5)的传热系数≤1 W/(m 2·K)

轻质屋顶的传热系数≤0.5 W/(m 2·K)

断热铝合金门窗:穿条式:开齿、穿条、滚压,将条形隔热材料穿人铝合金型材; 浇注式:把液态隔热材料注人铝合金型材浇注槽内,固化后,切断金属连接。

外窗:85%传入室内。墙:25%传入室内

广州主导风:夏季东南风,全年北风;

热压通风:室内温度>室外温度时,较轻的热空气上升,较沉的冷空气下降,形成

风的循环; R T T T T d q 2

121)(-=-=λ

空间布局上:高大建筑的大面积风影区

沿主导风方向依次升高

高低错落

热压通风之营造:朝南屋面吸收太阳辐射,形成屋面附近高温区域,在温差和高差作用下形成热压通风;

风压通风之营造:屋面曲线型设计引导风的平滑流动,在顶部形成较大负压,驱动室内通风。

当建筑师“遭遇”建筑技术—如何学习应对?

李保峰:许多建筑系学生毕业后便忘了数理化,一涉及到建筑的生态技术领域,往往感到知识不够。您被公认为德国建筑界中为数不多的具有科学家头脑的建筑师之一,您认为一个关注生态的建筑师,其科学知识应该掌握到什么程度?

托马斯?赫尔佐格教授(德国):建筑师要掌握的知识太多,我们不可能样样精通,但概念理解非常重要,否则我们无法在前期构思时提出具有生态意义的想法,也难以与其他专业人员沟通。我们无法想像,外科医生在不了解循环系统的情况下会盲目地为病人做手术。建筑师相当于一个乐队指挥而非演奏员,他不必具备高超的演奏技巧,但他必须了解每种乐器的性能以充分发挥其潜力。我本人并不精通那些物理或力学计算,但我喜欢从整体上去把握它们之间的关系。实际上维特鲁威在2000年前便提出了这个问题。

?其实,遮阳所解决的光与热两大类问题,已经有很好的技术条件弥补。空调与灯光

也能够创造出令人满意的环境。因此,我觉得遮阳技术背后,关键的是建筑节能思想的传递。

尤其在住宅设计上,作为与人们日常生活关联最密切的建筑物,它在遮阳技术上的不断更新不仅体现着人们追求更舒适生活的目标,同时更应赋予的,是我们对于与自然契合的追

求、对资源合理利用的信条。

绿色建筑:绿色建筑的内涵非常丰富,不仅体现建筑全过程的节约,关注居住人的健康、舒适与安全而且强调对环境最少的干扰,是以节约能源、有效利用资源的方式来建造安全、健康、高效、舒适的环境空间,是人、环境与建筑共生共容、永续发展的新建筑模式。绿色建筑强调“四节二环保”。所谓“四节”,即节能、节地、节水、节材;所谓“二环保”,第一是对外部的生态环境保护,对大自然最低的干扰,第二是对室内环境保护,增进居住人的健康。

是,绿色建筑就是无数高技术新材料在建筑上的叠加吗?其实并不是。现在对绿色建筑的认识还存在几方面的误区:一、绿色建筑是昂贵的建筑。绿色建筑强调材料可循环使用和充分的本地化,从而有可能实现最低成本的节能。一般认为,绿色建筑不会比普通建筑的投入大很多,大概也就是10%。测算表明,绿色建筑比一般的建筑成本并没有提高,尽管有些绿色建筑采用了太阳能,并且鼓励全面进行材料的创新、技术的创新,但由于用了可循环的材料,总的成本折算起来还是比较低的。二、有绿化的建筑就是绿色建筑。这个概念被开发商所滥用,认为绿色建筑就是有绿化,这是完全错误的。绿色建筑是利用绿化进行节能和净化空气,达到节能和“两个环保”的要求。利用绿化节能,只是绿色建筑的一小部分功能。三、绿色建筑等于是高科技的建筑。绿色建筑的本质是一种气候适应性建筑,就是自动地利用外界的气候条件来进行能量的交换,是一种“会呼吸”的建筑。所采用的技术大都非常简单,有些在我国古代就已应用。另一方面,随着信息化社会时代的来临,信息技术的进步和日益廉价化,使得多用信息、少用能源成为可能。

热力学实验.

工程热力学实验 一、热力设备认识 (时间:第7周周二3、4节;地点:工科D504) 一、实验目的 1. 了解热力设备的基本原理、主要结构及各部件的用途; 2. 认识热力设备在工程热力学中的重要地位、热功转换的一般规律以及热力设备与典型热力循环的联系。 二、热力设备在工程热力学课程中的重要地位 工程热力学主要是研究热能与机械能之间相互转换的规律和工质的热力性质的一门科学,这就必然要涉及一些基本的热力设备(或称热动力装置),如内燃机、制冷机、藩汽动力装置、燃气轮机等。了解这些热力设备的基本原理、主要结构、和各部件的功能,对正确理解工程热力学基本概念、基本定律十分必要。工程热力学中涉及的各循环都是通过热力设备来实现的,如活塞式内燃机有三种理想循环:定容加热循环、定压加热循环和混合加热循环;蒸汽动力装置有朗肯循环;燃气轮机有定压加热循环和回热循环;制冷设备有蒸汽压缩制冷循环、蒸汽喷射制冷循环等。卡诺循环则是由两个定温和两个绝热过程所组成的可逆循,具有最高的热效率,它指出了各种热力设备提高循环热效率的方向。因此,对这些热力设备的工作原理和基本特性有一个初步了解,对一些抽象概念有一个感性认识,能够加深对热力学基本定律的理解,掌握一些重要问题(如可逆和不可逆)的实质,有助于学好工程热力学这门课程。 三、各种热力设备的基本结构与原理 1.内燃机 内燃机包括柴油机和汽油机等,是-种重量轻、体积小、使用方便的动力机械。以二冲程柴油机为例,其基本结构如图1所示。

图1 内燃机结构图 内燃机的工质为燃料燃烧所生成的高温燃气。根据燃料开始燃烧的方式不同可分为点燃式和压燃式,点燃式是在气缸内的可燃气体压缩到一定压力后由电火花点燃燃烧;压燃式是气缸内的空气经压缩其温度升高到燃料自燃温度后,喷入适量燃料,燃料便会自发地燃烧。压燃式内燃机的工作过程分为吸气、压缩、燃烧、膨胀及排气几个阶段。吸气开始时进气门打开,活塞向下运动把空气吸入气缸。活塞到达下死点时进气门关闭而吸气过程结束。进气门和排气门同时关闭,活塞向上运动压缩气缸内空气,空气温度与压力不断升高,直到活塞到达上死点时,压缩过程结束。这时气缸内空气温度已超过燃料自燃温度,向气缸内喷入适量燃料,燃料便发生燃烧。燃烧过程进行的很快,接着是高温燃气发生膨胀,推动活塞向下运动带动曲轴作出机械功。活塞到达下死点时,排气门打开,气缸内的高温高压燃气通过排气门排至大气,活塞又向上运动将气缸内的剩余气体推出气缸,活塞到达上死点时排气过程结束,完成一个循环。当活塞再一次由上死点向下运动时重新开始一个循环。这样通过气缸实现了燃料的化学能变为热能,热能又变为机械能的过程。 汽油机的工作过程基本上与柴油机差不多,不同之处在于汽油机的汽油预先在化油器内蒸发汽化并和空气混合后一起吸入气缸,压缩过程结束后由电火花点燃燃烧。其它过程与柴油机完全相同。 内燃机是主要用在工程机械、船舶和航空等领域,以及海上采油平台用内燃机发电。 汽油机的总体构造分为基本机构和辅助系统,如图2所示。 基本机构包括: 曲柄连杆机构:气缸盖、气缸体、曲轴箱、活塞、连杆和曲轴,其功用是将燃料的热能

热工学原理期末复习

2013~2014学年度第二学期期末复习 热工学原理 第一章:基本概念 一、名词解释 1、热力系统(P9~10) (1)闭口系统(控制质量系统):与外界无物质交换的系统。 (2)开口系统(控制容积系统):与外界有物质交换的系统。 (3)绝热系统:与外界无热量交换的系统。 (4)孤立系统:与外界既无能量(功、热)交换又无物质交换的系统。 2、状态参数(P10~12) (1)状态参数:用于描述工质所处状态的宏观物理量。 (2)压力:单位面积上所受到的垂直作用力(即压强),A F p = 。 (3)温度:宏观上,温度是用来标志物体冷热程度的物理量;微观上,气体的温度是组成气体的大量分子平均移动动能的量度。t =T ﹣273.15K 。 (4)比体积:单位质量的工质所占有的体积,m V v =,单位:m 3/kg 。 (5)密度:单位体积工质的质量,V m = ρ,1=v ρ,单位:kg/m 3。 3、热力过程(P13) 系统由一个状态到达另一个状态的变化过程称为热力过程,简称过程。 4、可逆过程(P14) 如果系统完成了某一过程之后,再沿着原路径逆行而回到原来的状态,外界也随之回复到原来的状态而不留下任何变化,则这一过程称为可逆过程。 二、问答题 1、(1﹣2)表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变,问测量其压力的压力表或真空计的读数是否可能变化? 答:不能,因为表压力或真空度只是一个相对压力。若工质的压力不变,测量其压力的压力表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。 2、(1﹣3)当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小? 答:真空表指示数值愈大时,表明被测对象的实际压力愈小。 3、(1﹣4)准平衡过程与可逆过程有何区别? 答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。 第二章:热力学第一定律 一、名词解释 热力学第一定律的实质(P21) (1)热力学第一定律的实质就是热力过程中的能量守恒和转换定律。 (2)热力学第一定律的表述 ①在热能与其他形式能的互相转换过程中,能的总量始终不变。 ②不花费能量就可以产生功的第一类永动机是不可能造成功的。 二、计算题 (2﹣8)空气在某压气机中被压缩,压缩前空气的参数为p 1=0.1MPa ,

建筑热工学

建筑物理与建筑设备辅导之建筑热工学(1) 第一章建筑热工学 建筑热工学的主要任务是以热物理学、传热学和传质学作为理论基础,应用已揭示的传热、传质规律,通过规划和建筑设计上的手段有效地防护和利用室内、外气候因素,合理地解决建筑设计中围护结构的保温、隔热和防潮等方面的间题,以创造良好的室内气候条件,节约能源并提高围护结构的耐久性 第一节建筑热工学基本原理 一、传热方式 热量的传递称为传热。根据传热机理的不同,传热的基本方式分为导热、对流和辐射。 (一)导热(热传导) 导热是指温度不同的物体各部分或温度不同的两物体直接接触而发生的传热现象 1.傅立叶定律 导热基本定律,即傅立叶定律的数学表达式为: 式中 q——热流密度(热流强度),单位时间内,通过 等温面上单位面积的热量,单位为W/m2 ——温度梯度,温度差△t与沿法线方向两个等温面 之间距离△n的比值的极限,单位为K/m λ——材料的导热系数,单位为W/(m·K) 均质材料物体内各点的热流密度与温度梯度成正比,图1-1 等温面示意图 但指向温度降低的方向。式(1-1)中的负号表示热量的传递方向和温度梯度的方向相反。 2.导热系数

表征材料导热能力大小的量是导热系数,单位是W/(m·K)。其数值是物体中单位温度降度(即1m厚的材料的两侧温度相差1oC时),单位时间内通过单位面积所传导的热量。 各种材料导热系数入的大致范围是: 气体: 0.006~0.6 W/(m·K) 液体: 0.07~0.7 W/(m·K) 金属: 2.2~420 W/(m·K) 建筑材料和绝热材料:0.025~3 W/(m·K) 空气在常温、常压下导热系数很小,所以围护结构空气层中静止的空气具有良好的保温能力。 材料的导热系数不但因物质的种类而异,而且还和材料的温度、湿度、压力和密度等因素有关。而影响导热系数主要因素是材料的密度和湿度。 (1)密度。一般情况下,密度小的材料导热系数就小,反之就大。但是对于一些密度较小的保温材料,特别是某些纤维状材料和发泡材料,当密度低于某个值以后,导热系数反而会增大。在最佳密度下,该材料的导热系数最小。 (2)湿度。建筑材料含水后,水或冰填充了材料孔隙中空气的位置,导热系数将显著增大,在建筑保温、隔热、防潮设计时,都必须考虑到这种影响。 (3)温度。大多数材料的导热系数随温度的升高而增大,工程计算中,导热系数常取使用温度范围内的算术平均值,并把它作为常数看待。 (4)热流方向。各向异性材料(如木材、玻璃纤维),平行于热流方向时,导热系数较大,垂直于热流方向时,导热系数较小。 (二)对流 对流传热只发生在流体(液体、气体)中,它是因温度不同的各部分流体之间发生相对运动,互相掺合而传热能的。 由于引起流体流动的动力不同,对流的类型可分为自然对流和受迫对流: (1)自然对流:由于温度的不同引起的对流换热。 (2)受迫对流:由外力作用形成的对流。受迫对流在传递热量的强度方面要大于自然对流。

高本《热工学基础》带答案

成人高本《热工基础》考试(A)卷 班级姓名学号成绩 一、填空题(每空1分,共20分) 1. 工程热力学主要研究(热能)和机械能及其它形式的能量之间相互转换的规律;传热学主要研究(热量)传递的规律。 2. 表压力是气体的(绝对压力)与(大气压力)的差值。 3. 理想气体的分子是完全弹性的,分子的(体积)可忽略不计,分子之间没有(相互作用力)。 4. 闭口系统是指与外界只发生(能量交换)而无物质交换的热力系统。 5. 工质的状态参数有压力、温度、比体积、比内能、比焓、比熵等,其中基本状态参数是压力、(温度)和(比体积)。 6. 卡诺循环由两个可逆定温过程和两个(可逆绝热过程)组成。 7. 湿空气是由(水蒸气)和(干空气)组成的混和体。 8. 四冲程柴油机工作循环包括进气冲程、(压缩冲程)、(动力冲程)和排气冲程。 9. 气体的热力过程有定容过程、定压过程、定温过程、(定熵过程)和多变过程。 10. 由热能转换为机械能的热力循环称为(正向循环)。 11. 蒸汽压缩式制冷系统由:制冷压缩机、(冷凝器)、(节流阀)、(蒸发器)四大部件组成。 12. 传热的基本方式有:热传导、热对流、(热辐射)三种。 二、选择题(每题2分,共20分) 1.下列单位中属于压力单位的是(C )。 A J; B N·m; C N/m2。 2.与外界既没有能量交换,也没有物质交换的热力系统称为(C )。 A 绝热系统; B 闭口系统; C 孤立系统。 3.在平衡状态下,( A )三者之间的关系称气体状态方程式。 A 压力、温度、比体积; B 压力、温度、比焓; C 温度、比体积、比熵。 4.同一理想气体在相同的温度下,定容线的斜率( A )定压线的斜率。 A 大于; B 等于; C 小于;5.温熵图上的( C )代表一个可逆过程。 A 一个点; B 两点的连线; C 一条曲线。 6. 定容过程方程式为(B )。 A P=常数; B v = 常数; C T=常数。 7. 对外界消耗一定的机械功,而使热量从低温热源传送到高温热源的循环,称为:(C )。 A 正向循环; B 正卡诺循环; C 逆向循环。 8.系统吸热,则熵的变化是( A )。 A 增加; B 减少; C 不变。 9.在一定温度下,空气的绝对湿度越大,则含湿量(C )。 A 越小; B 不变; C 越大。 10.蒸汽压缩制冷循环在压焓图上的一个点表示( A )。 A 表示该制冷剂的一种状态; B 表示一个制冷循环; C 表示制冷剂的一个单值参数。 三、判断题(每题1分,共15分) 1.开口系统是指与外界有热量交换的系统。(X ) 2.平衡状态是指工质的状态参数不随时间而变化的状态。(√) 3.比容、密度和温度都是工质的状态参数,它们是互相独立的。(×) 4.有摩擦存在的过程都是不可逆过程。(√) 5.热力过程进行的条件是工质与外界之间有压力差或温度差。(√) 6.工程热力学中规定:系统对外界做功的值为正,外界对系统做功的值为负。(√) 7.发电厂中所使用的高压水蒸气可视为理想气体。(X) 8.在温熵图上,点1与点2间可连接许多不同的曲线,它们代表许多不同的过程。(√)9.热力学第二定律可表述为:第一类永动机是不可能制造成功的。(×) 10.物质的运动是永恒的,不存在热力学能为零的状态。(√) 11.自发过程是可逆的。( X ) 12.对流可以在流体中产生,也可以在固体中产生。(×) 13.对于单层平壁,热流量与温差成反比,而与热阻成正比。(×) 14.影响对流换热的因素是:流动型态、流体的性质、换热表面的几何因素等。(√)15.强化传热过程的措施之一是增大传热热阻。(X ) 四、简答题(共21分)

热工学实践实验报告

2016年热工学实践实验内容 实验3 二氧化碳气体P-V-T 关系的测定 一、实验目的 1. 了解CO 2临界状态的观测方法,增强对临界状态概念的感性认识。 2. 巩固课堂讲授的实际气体状态变化规律的理论知识,加深对饱和状态、临界状态等基本概念的理解。 3. 掌握CO 2的P-V-T 间关系测定方法。观察二氧化碳气体的液化过程的状态变化,及经过临界状态时的气液突变现象,测定等温线和临界状态的参数。 二、实验任务 1.测定CO 2气体基本状态参数P-V-T 之间的关系,在P —V 图上绘制出t 为20℃、31.1 ℃、40℃三条等温曲线。 2.观察饱和状态,找出t 为20℃时,饱和液体的比容与饱和压力的对应关系。 3.观察临界状态,在临界点附近出现气液分界模糊的现象,测定临界状态参数。 4.根据实验数据结果,画出实际气体P-V-t 的关系图。 三、实验原理 1. 理想气体状态方程:PV = RT 实际气体:因为气体分子体积和分子之间存在相互的作用力,状态参数(压力、温度、比容)之间的关系不再遵循理想气体方程式了。考虑上述两方面的影响,1873年范德瓦尔对理想气体状态方程式进行了修正,提出如下修正方程: ()RT b v v a p =-??? ? ?+2 (3-1) 式中: a / v 2 是分子力的修正项; b 是分子体积的修正项。修正方程也可写成 : 0)(23 =-++-ab av v RT bp pv (3-2) 它是V 的三次方程。随着P 和T 的不同,V 可以有三种解:三个不等的实根;三个相等的实 根;一个实根、两个虚根。 1869年安德鲁用CO 2做试验说明了这个现象,他在各种温度下定温压缩CO 2并测定p 与v ,得到了P —V 图上一些等温线,如图2—1所示。从图中可见,当t >31.1℃时,对应每一个p ,可有一个v 值,相应于(1)方程具有一个实根、两个虚根;当t =31.1℃时,而p = p c 时,使曲线出现一个转折点C 即临界点,相应于方程解的三个相等的实根;当t <31.1℃时,实验测得的等温线中间有一段是水平线(气体凝结过程),这段曲线与按方程式描出的曲线不能完全吻合。这表明范德瓦尔方程不够完善之处,但是它反映了物质汽液两相的性质和两相转变的连续性。 2.简单可压缩系统工质处于平衡状态时,状态参数压力、温度和比容之间有确定的关系,可表示为: F (P ,V ,T )= 0

第一章建筑热工学基本知识习题

第一章建筑热工学基本知识习题 自己收集整理的 错误在所难免 仅供参考交流 如有错误 请指正!谢谢 第一篇建筑热工学 第一章建筑热工学基本知识 习题 1-1、构成室内热环境的四项气候要素是什么?简述各个要素在冬(或夏)季 在居室内 是怎样影响人体热舒适感的 答:(1)室内空气温度:居住建筑冬季采暖设计温度为18℃ 托幼建筑采暖设计温度为20℃ 办公建筑夏季空调设计温度为24℃等 这些都是根据人体舒适度而定的要求

(2)空气湿度:根据卫生工作者的研究 对室内热环境而言 正常的湿度范围是30-60% 冬季 相对湿度较高的房间易出现结露现象 (3)气流速度:当室内温度相同 气流速度不同时 人们热感觉也不相同 如气流速度为0和3m/s时 3m/s的气流速度使人更感觉舒适 (4)环境辐射温度:人体与环境都有不断发生辐射换热的现象 1-2、为什么说 即使人们富裕了 也不应该把房子搞成完全的"人工空间"? 答:我们所生活的室外环境是一个不断变化的环境 它要求人有袍强的适应能力 而一个相对稳定而又级其舒适的室内环境 会导致人的生理功能的降低 使人逐渐丧失适应环境的能力

从而危害人的健康 1-3、传热与导热(热传导)有什么区别?本书所说的对流换热与单纯在流体内部的对流传热有什么不同? 答:导热是指同一物体内部或相接触的两物体之间由于分子热运动 热量由高温向低温处转换的现象 纯粹的导热现象只发生在密实的固体当中 围护结构的传热要经过三个过程:表面吸热、结构本身传热、表面放热严格地说 每一传热过程部是三种基本传热方式的综合过程 本书所说的对流换热即包括由空气流动所引起的对流传热过程 同时也包括空气分子间和接触的空气、空气分子与壁面分子之间的导热过程 对流换热是对流与导热的综合过程 而对流传热只发生在流体之中 它是因温度不同的各部分流体之间发生相对运动 互相掺合而传递热能的 1-4、表面的颜色、光滑程度

(整理)建筑热工学基础

第一章建筑热工学基础 一、传热的基本知识 二、平壁的稳定传热过程 三、封闭空气间层的传热 四、周期性不稳定传热 五、湿空气的概念及蒸汽渗透阻的概念第二章建筑热工设计 一、建筑热工设计中常用名词的解释 二、建筑热工设计中常用参数的计算第三章、建筑节能设计 一、建筑节能设计的意义 二、建筑节能设计的一般要求

第一章建筑热工学基本知识 一、传热的基本知识 1、为什么会传热? 传热现象的存在是因为有温度差。凡是有温度差存在的地方就会有热量转移现象的发生,热量总是由自发地由高温物体传向低温物体。 2、传热的三种基本方式及其区别 导热—指温度不同的物体直接接触时,靠物质微观粒子的热运动而引起的热能转移现象。它可以在固体、液体和气体中发生,但只有在密实的固体中才存在单纯的导热过程。 对流—指依靠流体的宏观相对位移,把热量由一处传递到另一处的现象。这是流体所特有的一种传热方式。工程上大量遇到的流体留过一个固体壁面时发生的热流交换过程,叫做对流换热。单纯的对流换热过程是不存在的,在对流的同时总是伴随着导热。 辐射—指依靠物体表面向外发射热射线(能显著产生热效应的电磁波)来传递能量的现象。参与辐射热换的两物体不需要直接接触,这是有别于导热和对流换热的地方。如太阳和地球。 实际上,传热过程往往是这三种传热方式的两种或三种的组合。 3、温度场的概念 实际的温度往往都是变化的,各点的温度因位置和时间的变化而变化,即温度是空间和时间的函数。在某一瞬间,物体内部所有各点温度的总计叫温度场。若温度是空间三个坐标的函数,这样的温度场叫三向温度场;当物体只沿一个方向或两个方向变化时,相应地称做一向或二向温度场。物体的温度随时间变化的温度场叫不稳定温度场,反之为稳定温度场。 二、平壁的稳定传热过程 室内、外热环境通过围护结构而进行的热量交换过程,包含导热、对流及辐

第1章 《工程热力学》实验(第四版)

第一章 《工程热力学》实验 §1-1 二氧化碳临界状态及P-V-T 关系实验 一、实验目的和任务 目的: 1.巩固工质热力学状态及实际气体状态变化规律的理论知识,掌握用实验研究的方法和技巧。 2.熟悉部分热工仪器的正确使用方法(如活塞式压力计、恒温水浴等),加深对饱和状态、临界状态等基本概念的理解,为今后研究新工质的状态变化规律奠定基础。 任务: 1.测定CO 2的t v p --关系,在v p -坐标中绘出几种等温曲线,与标准实验曲线及克拉贝龙方程和范得瓦尔方程的理论计算值相比较并分析差异原因。 2.观察临界状态,测定CO 2的临界参数(c c c t v p 、、),将实验所得的c v 值与理想气体状态方程及范得瓦尔方程的理论计算值作一比较,简述其差异原因。 3.测定CO 2在不同压力下饱和蒸气和饱和液体的比容(或密度)及饱和温度和饱和压力的对应关系。 4.观察凝结和汽化过程及临界状态附近汽液两相模糊的现象。 二、实验原理 1.实际气体在压力不太高、温度不太低时,可以近似地认为理想气体,并遵循理想气体状态方程: mRT pV = (1) 式中 p ―绝对压力(Pa ) V ―容积(m 3) T ―绝对温度(K) m ―气体质量(kg) R ―气体常数, 2CO R =8.314/44=0.1889(kJ/kg ·K) 实际气体中分子力和分子体积,在不同温度压力范围内,这两个因素所引起的相反作用按规定是不同的,因而,实际气体与不考虑分子力、分子的体积的理想气体有一定偏差。1873年范得瓦尔针对偏差原因提出了范得瓦尔方程式: (2) 或 0)(2 3=+++-b av v RT bp pv (3) 式中 a ―比例常数, c c p RT a ) (272 =; 2 /v a ―分子力的修正项; RT b v v a p =-+))((2

热力学的基础知识

热力学的基础知识

热力学的基础知识 1、水和水蒸汽有哪些基本性质? 答:水和水蒸汽的基本物理性质有:比重、比容、汽化潜热、比热、粘度、温度、压力、焓、熵等。水的比重约等于1(t/m3、kg/dm3、g/cm3)蒸汽比容是比重的倒数,由压力与温度所决定。水的汽化潜热是指在一定压力或温度的饱和状态下,水转变成蒸汽所吸收的热量,或者蒸汽转化成水所放出的热量,单位是: KJ/Kg。水的比热是指单位质量的水每升高1℃所吸收的热量,单位是KJ/ Kg·℃,通常取4.18KJ。水蒸汽的比热概念与水相同,但不是常数,与温度、压力有关。 2、热水锅炉的出力如何表达? 答:热水锅炉的出力有三种表达方式,即大卡/小时(Kcal/h)、吨/小时(t/h)、兆瓦(MW)。 (1)大卡/小时是公制单位中的表达方式,它表示热水锅炉每小时供出的热量。 (2)"吨"或"蒸吨"是借用蒸汽锅炉的通

俗说法,它表示热水锅炉每小时供出的热量相当于把一定质量(通常以吨表示)的水从20℃加热并全部汽化成蒸汽所吸收的热量。 (3)兆瓦(MW)是国际单位制中功率的单位,基本单位为W (1MW=106W)。正式文件中应采用这种表达方式。 三种表达方式换算关系如下: 60万大卡/小时(60×104Kcal/h)≈1蒸吨/小时〔1t/h〕≈0.7MW 3、什么是热耗指标?如何规定? 答:一般称单位建筑面积的耗热量为热耗指标,简称热指标,单位w/m2,一般用qn表示,指每平方米供暖面积所需消耗的热量。黄河流域各种建筑物采暖热指标可参照表2-1

上表数据只是近似值,对不同建筑结构,材料、朝向、漏风量和地理位置均有不同,纬度越高的地区,热耗指标越高。 4、如何确定循环水量?如何定蒸汽量、热量和面积的关系? 答:对于热水供热系统,循环水流量由下式计算: G=[Q/c(tg-th)]× 3600=0.86Q/(tg-th)式中:G - 计算水流量,kg/h

建筑热工学习题(含答案)

《建筑物理》补充习题 (建筑热 工学 ) 1.太阳辐射的 可见光,其波长范围是( )微米。 A .0.28~3.0 (B) 0.38~ 0.76 (C) 0.5~1.0 (D) 0.5~2.0 2.下列的 叙述,( )不是属于太阳的 短波辐射。 (A)天空和云层的 散射 (B)混凝土对太阳辐射的 反射 (D)建筑物之间通常传递的 辐射能 )。 (C)水面、玻璃对太阳辐射的 反射 3.避免或减弱热岛现象的 措施,描述错误是( (A)在城市中增加水面设置 (B)扩大绿化面积 (C)采用方形、圆形城市面积的 设计 4.对于影响室外气温的 主要因素的 叙述中, (A)空气温度取决于地球表面温度 (C)室外气温与空气气流状况有关 (D)多采用带形城市设计 ()是不正确的 。 (B)室外气温与太阳辐射照度有关 (D)室外气温与地面覆盖情况及地形无关 5.在热量的 传递过程中,物体温度不同部分相邻分子发生碰撞和自由电子迁移所引起的 能 量传递称为( )。 (A)辐射 (B)对流 (C)导热 (D)传热 6.把下列材料的 导热系数从低到高顺序排列, 哪一组是正确的 ( B )?Ⅰ、钢筋混凝土; Ⅱ、水泥膨胀珍珠岩;Ⅲ、平板玻璃;Ⅳ、重沙浆砌筑粘土砖砌体;Ⅴ、胶合板 (A)Ⅱ、Ⅴ、Ⅰ、Ⅳ、Ⅲ (C)Ⅰ、Ⅳ、Ⅲ、Ⅱ、Ⅴ (B)Ⅴ、Ⅱ、Ⅲ、Ⅳ、Ⅰ (D)Ⅴ、Ⅱ、Ⅳ、Ⅲ、Ⅰ 7.人感觉最适宜的 相对湿度应为( ) (A) 30~70 % (B) 50~60% (C) 40~70% (D) 40~50% 8.下列陈述哪些是不正确的 ( A.铝箔的 反射率大、黑度小 ) B.玻璃是透明体 C.浅色物体的 吸收率不一定小于深颜色物体的 吸收率 D.光滑平整物体的 反射率大于粗糙凹凸物体的 反射率 9.白色物体表面与黑色物体表面对于长波热辐射的 吸收能力( )。 A.白色物体表面比黑色物体表面弱 C.相差极大 B.白色物体表面比黑色物体表面强 D.相差极小 2 1m 截 10.在稳定传热状态下当材料厚度为 1m 两表面的 温差为 1℃时,在一小时内通过 面积的 导热量,称为( )。 A.热流密度 B.热流强度 C.传热量 D.导热系数 11.下面列出的 传热实例,( )不属于基本传热方式。 A.热量从砖墙的 内表面传递到外表面 B.热空气流过墙面将热量传递给墙面

工程热力学实验报告

水的饱和蒸汽压力和温度关系 实验报告

水的饱和蒸汽压力和温度关系 一、实验目的 1、通过水的饱和蒸汽压力和温度关系实验,加深对饱和状态的理解。 2、通过对实验数据的整理,掌握饱和蒸汽P-t关系图表的编制方法。 3、学会压力表和调压器等仪表的使用方法。 二、实验设备与原理 456 7 1. 开关 2. 可视玻璃 3. 保温棉(硅酸铝) 4. 真空压力表(-0.1~1.5MPa) 5. 测温管 6. 电压指示 7. 温度指示8. 蒸汽发生器9. 电加热器10. 水蒸汽11.蒸馏水12. 调压器 图1 实验系统图 物质由液态转变为蒸汽的过程称为汽化过程。汽化过程总是伴随着分子回到液体中的凝结过程。到一定程度时,虽然汽化和凝结都在进行,但汽化的分子数与凝结的分子数处于动态平衡,这种状态称为饱和态,在这一状态下的温度称为饱和温度。此时蒸汽分子动能和分子总数保持不变,因此压力也确定不变,称为饱和压力。饱和温度和饱和压力的关系一一对应。 二、实验方法与步骤 1、熟悉实验装置及使用仪表的工作原理和性能。 2、将调压器指针调至零位,接通电源。 3、将调压器输出电压调至200V,待蒸汽压力升至一定值时,将电压降至30-50V保温(保温电压需要随蒸汽压力升高而升高),待工况稳定后迅速记录水蒸汽的压力和温度。 4、重复步骤3,在0~4MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 5、实验完毕后,将调压器指针旋回至零位,断开电源。 6、记录室温和大气压力。

四、数据记录 五、实验总结 1. 绘制P-t关系曲线将实验结果绘在坐标纸上,清除偏离点,绘制曲线。

热工学原理期末复习解读

2013?2014学年度第二学期期末复 习 热工学原理 第一章:基本概念 、名词解释 (3) 绝热系统:与外界无热量交换的系统。 (4) 孤立系统:与外界既无能量(功、热)交换又无物质交换的系统。 2、状态参数(P10?12) (1 )状态参数:用于描述工质所处状态的宏观物理量。 (2) 压力:单位面积上所受到的垂直作用力(即压强) ,p —。 A (3) 温度:宏观上,温度是用来标志物体冷热程度的物理量;微观上,气体的温度是组成 气体的大量分子平均移动动能的量度。 t =T - 273.15K 。 (4)比体积:单位质量的工质所占有的体积, V 、 3 v ,单位:m /kg 。 m (5)密度:单位体积工质的质量, m , V 3、热力过程(P13) v 1,单位:kg/m 3。 系统由一个状态到达另一个状态的变化过程称为热力过程,简称过程。 4、可逆过程(P14) 如果系统完成了某一过程之后, 再沿着原路径逆行而回到原来的状态, 外界也随之回复 到原来的状态而不留下任何变化,则这一过程称为可逆过程。 二、问答题 1、( 1-2)表压力或真空度能否作为状态参数进行热力计算?若工质的压力不变, 问测量其 压力的压力表或真空计的读数是否可能变化? 答:不能,因为表压力或真空度只是一个相对压力。若工质的压力不变,测量其压力的压力 表或真空计的读数可能变化,因为测量所处的环境压力可能发生变化。 2、 ( 1-3)当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小? 答:真空表指示数值愈大时,表明被测对象的实际压力愈小。 3、 ( 1-4)准平衡过程与可逆过程有何区别? 答:无耗散的准平衡过程才是可逆过程, 所以可逆过程一定是准平衡过程, 而准平衡过程不 一定是可逆过程。 第二章:热力学第一定律 一、 名词解释 热力学第一定律的实质(P21) (1 )热力学第一定律的实质就是热力过程中的能量守恒和转换定律。 (2 )热力学第一定律的表述 ① 在热能与其他形式能的互相转换过程中,能的总量始终不变。 ② 不花费能量就可以产生功的第一类永动机是不可能造成功的。 二、 计算题 (2- 8)空气在某压气机中被压缩,压缩前空气的参数为 p 1=0.1MPa , w=0.845m 3/kg ; 1、热力系统(P9?10) (1 )闭口系统(控制质量系统) (2 )开口系统(控制容积系统) :与外界无物质交换的系统。 :与外界有物质交换的系统。

2011年热工学实践实验内容34解析

2012年热工学实践实验内容 实验3 二氧化碳气体P-V-T 关系的测定 一、实验目的 1. 了解CO 2临界状态的观测方法,增强对临界状态概念的感性认识。 2. 巩固课堂讲授的实际气体状态变化规律的理论知识,加深对饱和状态、临界状态等基本概念的理解。 3. 掌握CO 2的P-V-T 间关系测定方法。观察二氧化碳气体的液化过程的状态变化,及经过临界状态时的气液突变现象,测定等温线和临界状态的参数。 二、实验任务 1.测定CO 2气体基本状态参数P-V-T 之间的关系,在P —V 图上绘制出t 为20℃、31.1 ℃、40℃三条等温曲线。 2.观察饱和状态,找出t 为20℃时,饱和液体的比容与饱和压力的对应关系。 3.观察临界状态,在临界点附近出现气液分界模糊的现象,测定临界状态参数。 4.根据实验数据结果,画出实际气体P-V-t 的关系图。 三、实验原理 1. 理想气体状态方程:PV = RT 实际气体:因为气体分子体积和分子之间存在相互的作用力,状态参数(压力、温度、比容)之间的关系不再遵循理想气体方程式了。考虑上述两方面的影响,1873年范德瓦尔对理想气体状态方程式进行了修正,提出如下修正方程: ()RT b v v a p =-??? ? ?+2 (3-1) 式中: a / v 2 是分子力的修正项; b 是分子体积的修正项。修正方程也可写成 : 0)(23 =-++-ab av v RT bp pv (3-2) 它是V 的三次方程。随着P 和T 的不同,V 可以有三种解:三个不等的实根;三个相等的实 根;一个实根、两个虚根。 1869年安德鲁用CO 2做试验说明了这个现象,他在各种温度下定温压缩CO 2并测定p 与v ,得到了P —V 图上一些等温线,如图2—1所示。从图中可见,当t >31.1℃时,对应每一个p ,可有一个v 值,相应于(1)方程具有一个实根、两个虚根;当t =31.1℃时,而p = p c 时,使曲线出现一个转折点C 即临界点,相应于方程解的三个相等的实根;当t <31.1℃时,实验测得的等温线中间有一段是水平线(气体凝结过程),这段曲线与按方程式描出的曲线不能完全吻合。这表明范德瓦尔方程不够完善之处,但是它反映了物质汽液两相的性质和两相转变的连续性。 2.简单可压缩系统工质处于平衡状态时,状态参数压力、温度和比容之间有确定的关系,可表示为: F (P ,V ,T )= 0

工程热力学实验一

工程热力学实验一 二氧化碳临界状态观测及p-v-t关系测定实验 [实验目的] 1、了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。 2、增加对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解。 3、掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 4、学会活塞式压力计,恒温器等热工仪器的正确使用方法。 [实验设备及原理] 整个实验装置由压力台、恒温器和实验台本体及其防护罩等三大部分组成(如图一所示)。 图一试验台系统图 试验台本体如图二所示。其中:1—高压容器;2 —玻璃杯;3—压力机;4—水银;5—密封填料;6 —填料压盖;7—恒温水套;8—承压玻璃杯;9—CO2 空间;10—温度计。 对简单可压缩热力系统,当工质处于平衡状态 时,其状态参数p、v、t之间有: F(p,v,t)=0 或t=f(p,v) (1) 本实验就是根据式(1),采用定温方法来测定 CO2的p-v-t关系,从而找出CO2的p-v-t关系。 实验中,压力台油缸送来的压力由压力油传入高 压容器和玻璃杯上半部,迫使水银进入预先装了CO2 气体的承压玻璃管容器,CO2被压缩,其压力通过压 力台上的活塞杆的进、退来调节。温度由恒温器供给 的水套里的水温来调节。 实验工质二氧化碳的压力值,由装在压力台上的 压力表读出。温度由插在恒温水套中的温度计读出。 比容首先由承压玻璃管内二氧化碳柱的高度来测量, 而后再根据承压玻璃管内径截面不变等条件来换算 图二实验台本体 得出。 [实验内容] 1、测定CO2的p-v-t关系。在p-v坐标系中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=50℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析其差异原因。 2、测定CO2在低于临界温度(t=20℃、27℃)饱和温度和饱和压力之间的对应关系,

制冷循环的热力学原理概要

第一节制冷循环的热力学原理 一、常用术语 1、物质 具有一定质量并占据空间的任何物体称为物质。 物质通常以固、液、气三态存在。 蒸气压缩式制冷机都依靠内部循环流动的工作物质来实现制冷过程。制冷机中的工作物质称为制冷剂。制冷装置中用来传递冷量的工作物质称为载冷剂。 2、温度 温度是物体冷热程度的量度。它是物质分子热运动剧烈程度的标志尺度。 常用的温度度量单位有摄氏温标t和开氏温标T(绝对温标)。

T(k)=t(℃)+273.15 图2-1 两种常用温标的比较 3、热量 物体在热过程中所放出或吸收的能量称为热量。 生产中常用制冷能力来衡量设备产冷量大小。 制冷能力:制冷设备单位时间内从冷库取走的热量。 4、比热(specific heat) 比热是一个物性参数,意为单位度量的物质温度变化1k时所吸进或放出的热量。 体积比热Cv(J/m3.k) 摩尔比热Cp(J/mol.k) 5、显热和潜热 不改变物质的形态而引起其温度变化的热量称为显热。 不改变物质的温度而引起其形态变化的热量称为潜热。 制冷剂的汽化潜热有何要求? 表1-1 几种制冷物质的汽化潜热(kJ/kg) 物质水氨R12 R22 氯甲 烷 二氧 化硫 R114 R502 汽化热2256.8 1369 167.5 234.5 427.1 397.8 137.9 6 150.0 2 6、压力 垂直作用在单位面积上的力称为压力p(压强)。p是确定物质状态的基本参数之一。1bar=105Pa,饱和压力Ps与饱和温度ts 的对应

关系。 7、比容v和密度 比容:每千克物质所占有的容积。v是基本状态参数。v=1 8、导热系数 表示材料传导热量的能力,是一个物性参数。数值上等于:1m 厚的材料两边温差1k时在1小时内通过1m2表面积所传导的热量。单位:w/m.k 9、压-焓图(lgp-h) 物质的热力状态性质可以绘制成曲线图的形式。制冷剂性质曲线图有多种形式。行业中最常用的是lgp-h图。 lgp-h图的构成可以总结为一个临界点、二条饱和线、三个状态区、六组等值线。

建筑物理复习(建筑热工学)

第一篇 建筑热工学 第1章 建筑热工学基础知识 1.室内热环境构成要素: 室内空气温度、空气湿度、气流速度和环境辐射温度构成。 2.人体的热舒适 ①热舒适的必要条件:人体内产生的热量=向环境散发的热量。 m q ——人体新陈代谢产热量 e q ——人体蒸发散热量 r q ——人体与环境辐射换热量 c q ——人体与环境对流换热量 ②充分条件:所谓按正常比例散热,指的是对流换热约占总散热量的25-30% ,辐射散热约为45-50%,呼吸和无感觉蒸发散热约占 25-30%。处于舒适状况的热平衡,可称之为“正常热平衡”。 (注意与“负热平衡区分”) ③影响人体热舒适感觉的因素: 1.温度;2.湿度;3.速度;4.平均辐射温度;5.人体新陈代谢产热率;6.人体衣着状况。 3.湿空气的物理性质 ①湿空气组成:干空气+水蒸气=湿空气 ②水蒸气分压力:指一定温度下湿空气中水蒸气部分所产生的压力。 ⑴未饱和湿空气的总压力: w P ——湿空气的总压力(Pa ) d P ——干空气的分压力(Pa) P ——水蒸气的分压力(Pa) ⑵饱和状态湿空气中水蒸气分压力:s P ——饱和水蒸气分压力 注:标准大气压下,s P 随着温度的升高而变大(见本篇附录2)。表明在一定的大气压下,湿空气温度越高,其一定容积中所能容纳的水蒸气越少,因而水蒸气呈现出的压力越大。 ③空气湿度:表明空气的干湿程度,有绝对湿度和相对湿度两种不同的表示方法。 ⑴绝对湿度:单位体积空气所含水蒸气的重量,用f 表示(g/m 3 )。 饱和状态下的绝对湿度则用饱和水蒸气量max f (g/m 3 )表示。 ⑵相对湿度:一定温度,一定大气压力下,湿空气的绝对湿度 f ,与同温同压下饱和水蒸气量max f 的百分比: ⑶同一温度(T)下,, 因此,相对湿度又可表示为空气中水 : P ——空气的实际水蒸气分压力 (Ps P ——同温下的饱和水蒸气分压力 (Pa)。 (注:研究表明,对室内热湿环境而言,正常湿度范围大概在30%~60%。)

热工学实验指导书

《热工学》实验指导书 高寿云编 南京工业大学城建学院 2011年10月5日

实验一、气体定压比热测定实验 气体定压比热的测定是工程热力学的基本实验之一。实验中涉及温度、压力、热量(电功)、流量等基本量的测量;计算中用到比热及混合气体(湿空气)方面的基本知识。本实验的目的是增加热物性实验研究方面的感性认识,促进理论联系实际,以利于培养分析问题和解决问题的能力。 一、实验目的 1)了解气体比热测定基本原理和构思。 2)熟悉本实验中的测温、测压、测热、测流量的方法。 3)掌握由基本数据计算出比热值和比热公式的方法。 4)分析本实验产生误差的原因及减小误差的可能途径。 二、实验装置 1)整个装置由风机、流量计、比热仪本体、电功率调节及测量系统共四部分组成,如图一所示。 2)比热仪本体如图二所示。其中1一进口温度计;2一多层杜瓦瓶;3一电热器;4一均流网;5一绝缘垫;6一旋流片;7一混流网;8一出口温度计。 3)空气(也可以是其它气体)由风机经流量计送人比热仪本体,经加热、均流、旋流、混流、测温后流出。气体流量由节流阀控制,气体出口温度由输入电热器的电压调节。 4)该比热仪可测300℃以下气体的定压比热。 三、测量与计算 1)接通电源及测量仪表,选择所需的出口温度计插入混流网的凹槽中。 2)摘下流量计上的温度计,开动风机,调节节流阀,使流量保持在额定值附近。测出流量计出口空气的干球温度( o t)和湿球温度(w t)。 3)将温度计插回流量计,调节流量,使它保持在额定值附近。逐渐提高电压,使出口温 度升高至予计温度C可以根据下式予先估计所需电功率: τt E ? ≈12。式中W为电功率(瓦); t?为进出口温度差(℃);τ为每流过10升空气所需时间(秒))。 4)待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏,即可视为稳定),读出下列数据:每10升气体通过流量计所需时间(τ,秒);比热仪进口温度(t1,℃)和出口温度(t。,℃);当时应大气压力(B,毫米汞柱)和流量计出口处的表压(h ?,毫米水柱)。

【建筑工程管理】工程热力学实验指导书

《工程热力学》实验指导书 喷管特性实验 一、实验目的 1、验证并进一步加深对喷管中气流基本规律的理解,树立临界压力、临界流速和最大流量等喷管临界参数的概念; 2、比较熟练地掌握用热工仪表测量压力(负压)、压差及流量的方法; 3、明确在渐缩喷管中,其出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量。 二、实验装置 喷管实验台 1.进气管 2.空气吸气口 3.孔板流量计 4.U形管压差计 5.喷管 6.支架 7.测压探压针 8.可移动真空表 9.手轮螺杆机构10.背压真空表11.背压用调节阀12.真空罐13.软管接头 渐缩喷管 三、实验原理 1、喷管中气流的基本规律

,来流速度,喷管为渐缩喷管. 2、气流动的临界概念 当某一截面的流速达到当地音速(亦称临界速度)时,该截面上的压力称为临界压力()。临界压力与喷管初压()之比称为临界压力比,有: 当渐缩喷管出口处气流速度达到音速,通过喷管的气体流量便达到了最大值(),或称为临界流量。可由下式确定: 式中:—最小截面积(本实验台的最小截面积为:19.625 mm2)。 3、气体在喷管中的流动 渐缩喷管因受几何条件的限制,气体流速只能等于或低于音速();出口截面的压力只能高于或等于临界压力();通过喷管的流量只能等于或小于最大流量()。根据不同的背压(),渐缩喷管可分为三种工况: A—亚临界工况(),此时m<, B—临界工况(),此时m=, C—超临界工况(),此时m, 四、操作步骤

1、用“坐标校准器”调好“位移坐标板”的基准位置; 2、打开罐前的调节阀,将真空泵的飞轮盘车一至二圈。一切正常后,全开罐后调节阀,打开冷却水阀门。而后启动真空泵; 3、测量轴向压力分布:用罐前调节阀调节背压至一定值(见真空表读数),并记录;然后转动手轮,使测压探针向出口方向移动。每移动5mm便停顿下来,记录该点的位置及相应的压力值,一直测至喷管出口之外; 4、流量的测量:把测压探针的引压孔移至出口截面之外,打开罐后调节阀,关闭罐前调节阀,启动真空泵,然后用罐前调节阀调节背压,每次改变50mmHg柱,稳定后记录背压值和U形管差压计的读数。当背压升高到某一值时,U形管差压计的液柱便不再变化(即流量达到了最大值),此后尽管不断提高背压,但U形管差压计的液柱仍保持不变; 5、打开罐前调节阀,关闭罐后调节阀,让真空罐充气;3分钟后停真空泵并立即打开罐后调节阀,让真空泵充气(目的是防止回油),最后关闭冷却水阀门。

热工学实验

实验十 渐缩(缩放)喷管内压力分布和流量测定 一、实验目的 1.验证并加深对喷管中的气流基本规律的理解,树立临界压力,临界流速,最大流量等喷管临界参数的概念,把理性认识和感性认识结合起来。 2.对喷管中气流的实际复杂过程有概略的了解。 3.通过渐缩喷管气流特性的观测,要明确:在渐缩喷管中压力不可能低于临界压力,流速不可能高于音速,流量仍不能大于最大流量。 4.根据实验条件,计算喷管(最大)流量的理论值,并与实侧值进行对比。 二、实验设备 本设备由2x 型真空泵,PG -Ⅲ型喷管(见图10-1)和计算机(控制与显示设备)构成。由于真空泵的抽吸,空气自吸气口2进入进气管1,流过孔板流量计3,流量的大小可以从U 型管压差计4读出。喷管5用有机玻璃制成,有渐缩、缩放两种型式(见图10-2、10-3),可根据实验要求,松开夹持法兰上的螺丝,向右推开进气管的三轮支架6,更换所需的喷管。喷管各截面上的压力是由插在其中,外径0.2mm 的测压探针连至可移动真空表8测得,探针的顶封死,中段开有测压小孔,摇动手轮——螺杆机构9,即可移动探针,从而改变测压小孔在喷管中的位置,实现对喷管不同截面的压力测量。在喷管的排气管上装有背压真空表10,排气管的下方为真空罐12,起稳定背压的作用,背压的高低用调节阀11调节。罐前的调节阀用作急速调节,罐后的调节阀作缓慢调节,为减少震动,真空罐与真空泵之间用软管13连接。 在实验中必须观测四个变量:(1)测压孔所在截面至喷管进口的距离x ;(2)气流在该截面上压力P ;(3)背压P b ;(4)流量m 。这些变量除可分别用位移指针的位置、移动真空表,背压真空表及 U 形管压差计的读数来显示读出外,还可分别用位移电位器、负压传感器、压差传感器把它们转换为电信号,由计算机显示并绘出实验曲线。位移电位器将在螺杆之旁,它实际上是一只滑杆变阻器。负压传感器和压差传感器分别装在真空表和U 形管压差计附近,其内部结构为一直流电桥,压力和压差改变时将改变电桥中两臂的电阻,从而获得电桥的不平衡电压输出。为了使这些传感器可靠而稳定地工作,都由直流稳压电源供电。 三、实验原理 1.喷管中气流的基本规律 气流在喷管中稳定流动后,喷管任何截面上的质量流量m 均相等,有连续性方程: M= 2 2 21 1 1C A C A AC υυυ = = =定值,[kg/s] (10-1) 式中:A —— 截面积[m 2] C —— 气体流速[m/ s] υ —— 气体比容[m 3/kg] 下标1—— 喷管进口 下标2——喷管出口 气体在喷管中作绝热膨胀,C 1<C 2,工质为理想流体时,喷管的理论流量可按下式计算: ])()[(121 1 22 12112 2 2 2k k k p p p p p k k A C A m +-?-== υυ (10-2) 式中: k —— 绝热指数,对于空气k=1.4 P 1 —— 喷管进口压力(初压) [N/ m 2] P 2 —— 喷管出口压力 [N/ m 2] 喷管中气体状态参数P 、υ和流动参数C 的变化规律和流通截面积A 的变化以及喷管

相关文档
最新文档