RCS-900系列保护定值整定说明

RCS-900系列保护定值整定说明
RCS-900系列保护定值整定说明

RCS-900系列线路保护定值内容及整定说明

一、装置参数及整定说明

1.定值区号:保护定值有30套可供切换,装置参数不分区,只有一套定值;

2.通信地址:指后台通信管理机与本装置通信的地址;

3.串口1波特率、串口2波特率、打印波特率、调试波特率:只可在所列波

特率数值中选其一数值整定;

4.系统频率:为一次系统频率,请整定为50Hz;

5.电压一次额定值:为一次系统中电压互感器原边的额定相电压值;

6.电压二次额定值:为一次系统中电压互感器副边的额定相电压值;

7.电流一次额定值:为一次系统中电流互感器原边的额定电流值;

8.电流二次额定值:为一次系统中电流互感器副边的额定电流值;

9.厂站名称:可整定的12位汉字区位码,可整定为三个汉字或六个字母(或

数字),汉字和字母(或数字)也可混合整定,此定值仅用于报文打印。

10.自动打印:保护动作后需要自动打印动作报告时置为“1”,否则置为“0”;

11.网络打印:需要使用共享打印机时置为“1”,否则置为“0”。使用共享打

印机指的是多套保护装置共用一台打印机打印输出,这时打印口应设置为RS-485方式(参见4.6.5通信插件说明),经专用的打印控制器接入打印机;而使用本地打印机时,应设置为RS-232方式,直接接至打印机的串口。

12.规约类型:当采用IEC60870-5-103规约置为“0”,采用LFP规约置为“1”。

13.分脉冲对时:当采用分脉冲对时置为“1”,秒脉冲对时置为“0”,如采用

IRIGB码对时方式,此定值不必整定。

14. 可远方修改定值:允许后台修改装置的定值时置为“1”,否则置为“0”。 通讯传动投入:当需要做通讯传动试验时,将此控制字投入,此时装置闭锁,报“通讯传动投入报警”告警。保护正常运行情况下此控制字不投入。

二、RCS-900系列保护定值整定说明

1. 电流变化量起动值:按躲过正常负荷电流波动最大值整定,一般整定为

0.2In 。对于负荷变化剧烈的线路(如电气化铁路、轧钢、炼铝等),可以适当提高定值以免装置频繁起动,定值范围为0.1In ~0.5In 。

2. 零序起动电流:按躲过最大零序不平衡电流整定,定值范围为0.1In ~

0.5In 。

3. RCS-901系列中工频变化量阻抗:按全线路阻抗的0.8~0.85整定。工频

变化量阻抗保护受距离压板控制。

4. RCS-902系列中,纵联方向阻抗:按大于1.3倍线路阻抗整定。

5. RCS-901系列中,超范围变化量阻抗:可按最大运行方式下输电线路到对侧

电源的阻抗值整定;该定值只有在“弱电源侧”才有效。

6. RCS-902系列中, 距离反方向阻抗:按(1.5~2)×(对侧距离方向阻抗

-本线路阻抗)整定。该定值只有在“弱电源侧”才有效。

7. 纵联零序方向过流定值(RCS-901和RCS-902):纵联零序正方向过流定值,

应保证线路末端接地故障有足够的灵敏度。实际整定可以按躲过本线路区外故障最大零序电流整定。若本线路采用单重方式时,要按躲过本线路非全相运行时最大零序电流整定。

8. RCS-902A(P)(FZ)_SC 中,本侧纵联码、对侧纵联码:将本侧纵联码在0~

65535之间任意整定,注意一条线路两侧保护装置的本侧纵联码不要相同,对侧纵联码整定为对侧保护装置的纵联码。自环试验时将本侧纵联码和对侧纵联码整定为一致。建议一个电网内任意两套保护的纵联码不要重复。

9. 通道交换时间定值:当用于闭锁式通道时,本装置设有自动通道交换功能,

当实时时钟(12小时制)与定值一致时,自动启动通道交换,每天进行两次,通道交换完成后,保护自动复归收发信机的收发信信号继电器;该定值应按BCD 码整定,例08:30应整定为8.30;还需注意的是:线路两端的“通道交换时间定值”应不一致。

10. 零序补偿系数:L

L L Z Z Z K 1103-=,其中L Z 0和L Z 1分别为线路的零序和正序阻抗;建议采用实测值,如无实测值,则将计算值减去0.05作为整定值。对于具有零序互感的双回线路,零序补偿系数应按式:L m L L Z Z Z Z Z K 100

2103'-=

算。

式中 0m Z ——为双回线的零序互感阻抗;

0Z '——为相邻线路的零序阻抗。 11. 振荡闭锁过流:按躲过线路最大负荷电流整定。

12. 接地距离Ⅰ段定值整定:按全线路阻抗的0.8~0.85倍整定,对于有互感

的线路,应适当减小。

13. 相间距离Ⅰ段定值:按全线路阻抗的0.8~0.9倍整定。

14. 距离Ⅱ、Ⅲ段的阻抗和时间定值按段间配合的需要整定,对本线末端故障

有灵敏度;

15. 负荷限制电阻定值:按重负荷时的最小测量电阻整定。

16. 距离II 、III 段的时间定值按段间配合需要整定。

17. 正序灵敏角、零序灵敏角:分别按线路的正序、零序阻抗角整定。

18. 接地距离偏移角:为扩大测量过渡电阻能力,接地距离Ⅰ、Ⅱ段的特性圆

可向第一象限偏移,建议线路长度≥40kM 时取0°,≥10kM 时取15°,<10kM 时取30°。

19. 相间距离偏移角:为扩大测量过渡电阻能力,相间距离Ⅰ、Ⅱ段的特性圆

可向第一象限偏移,建议线路长度≥10kM 时取0°,≥2kM 时取15°,<2kM 时取30°;

20. 零序过流Ⅱ段定值:应保证本线路末端接地故障有足够的灵敏度,

21. 零序过流加速段:应保证线路末端接地故障有足够的灵敏度。

22. TV 断线相过流定值、TV 断线时零序过流定值:仅在TV 断线时自动投入。

23. 同期合闸角:检同期合闸方式时母线电压对线路电压的允许角度差。

24. 线路正序电抗、线路正序电阻、线路零序电抗、线路零序电阻:线路全长

的参数(二次值),用于测距计算。

25. 线路总长度:按实际线路长度整定,单位为公里,用于测距计算。

26. 线路编号:按实际线路编号整定,打印报告时用。

27. 对于阻抗定值,即使某一元件不投,仍应按整定原则和配合关系整定,如

Ⅲ段阻抗大于Ⅱ段阻抗,Ⅱ段阻抗大于Ⅰ段阻抗,Ⅱ段阻抗对本线末端故障有灵敏度;对于各零序电流定值,均应大于零序起动电流定值,零序过流Ⅰ段定值≥零序过流Ⅱ段定值≥零序过流Ⅲ段定值≥零序过流Ⅳ段定值(零序反时限定值)≥零序起动电流定值;对于起动元件(电流变化量起动和零序电流起动),线路两侧宜按一次电流定值相同折算至二次整定。

三、RCS-900系列线路保护运行方式控制字整定说明

1. “工频变化量阻抗”:对于短线路如整定阻抗小于1/In 欧时,可将该控制

字置“0”,即将工频变化量阻抗保护退出。

2. RCS-901中“投纵联变化量”、“投纵联零序保护”:建议运行时这两个控制

字都置“1”,要将纵联保护退出,可通过退出屏上的主保护压板实现。

3. RCS-902中“投纵联距离保护”、“投纵联零序方向”:建议运行时这两个控

制字都置“1”,要将纵联保护退出,可通过退出屏上的主保护压板实现。

4. RCS-901中“投方向补偿阻抗”:是为了在大电源长线路末端故障,母线电

压变化很小的情况下,提高方向保护灵敏度而设置的,可根据系统/线路阻抗比来确定,当最大运行方式时系统线路阻抗比5.0 L S Z Z 时该控制字置“0”。

5. “投载波允许式”:当载波纵联保护采用允许式时,该控制字置“1”,采

用闭锁式时,该控制字置“0”。

6. “专用光纤”、“内部时钟”:当采用保护装置的内部时钟时置1,采用外

部时钟时置0。一般建议置1。

7. “远跳经本侧起动”:当收到对侧的远跳信号时,若需本侧起动才开放跳闸

出口,则需将该控制字置“1”,否则该控制字置“0”。不使用远跳功能时,建议将该控制字置“1”。

8.“投负荷限制距离”:当用于长距离重负荷线路时,测量负荷阻抗可能会进

入Ⅰ、Ⅱ、Ⅲ段距离继电器时,该控制字置“1”。

9.“弱电源侧”:本侧为弱电源侧时投入。对于RCS902A(P)_SC型号装置,

仅可在弱电侧投入该控制字。对于RCS902APF(Z)_SC型号装置,工作在允许式时,可两侧同时投入“弱电源侧”控制字;工作在闭锁式时,仅可在弱电侧投入该控制字。

10.

11.“电压接线路TV”:当保护测量用的三相电压取自线路侧时(如3/2开关

情况),该控制字置“1”,取自母线时置“0”。

12.“投振荡闭锁元件”:当所保护的线路不会发生振荡时,该控制字置“0”,

否则置“1”。

13.“投Ⅰ段接地距离”、“投Ⅱ段接地距离”、“投Ⅲ段接地距离”、“投Ⅰ段相

间距离”、“投Ⅱ段相间距离”、“投Ⅲ段相间距离”:分别为三段接地距离和三段相间距离保护的投入控制字,置“1”时相应的距离保护投入,置“0”

时退出。

14.“三重加速Ⅱ段距离”、“三重加速Ⅲ段距离”:当三相重合闸不可能出现系

统振荡时投入,则三重时分别加速不受振荡闭锁控制的Ⅱ段或Ⅲ段距离保护。若上述控制字均不投(置“0”)则加速受振荡闭锁控制的Ⅱ段距离。

15.“投Ⅰ段零序过流”、“投Ⅱ段零序过流”、“投Ⅲ段零序过流”、“投Ⅳ段零

序过流”:分别为四段零序过流保护的投入控制字,置“1”时相应的零序保护投入,置“0”时退出现。

16.“零序Ⅲ段经方向”、“零序Ⅳ段经方向”、“反时限经方向”:为零序过流Ⅲ、

Ⅳ段保护经零序功率方向闭锁投入控制字,置“1”时需经方向闭锁。17.“零Ⅲ跳闸后加速”、“零Ⅳ跳闸后加速”:为保护跳闸后是否要把零序过流

Ⅲ段保护时间缩短500ms,置“1”要缩短500ms,置“0”不缩短。

18.“反时限固定延时”:为零序反时限过流保护是否经100ms延时投入的控制

字,置“1”时零序反时限过流保护经100ms延时投入。

19.“投三相跳闸方式”:为三相跳闸方式投入控制字,置“1”时任何故障三

跳,但不闭锁重合闸。

20.“投重合闸”:为本装置重合闸投入控制字,当重合闸长期不投(如3/2开

关情况)时置“0”,一般应置“1”,参见重合闸逻辑部分。

21.“投检同期方式”、“投检无压方式”、“投重合闸不检”:为重合闸方式控制

字,重合闸不投时,这些控制字无效;投“检无压方式”时可同时“投检同期方式”。

22.“不对应起动重合”:为位置不对应起动重合闸投入控制字,重合闸不投时,

该控制字无效。

23.“相间距离Ⅱ闭重”、“接地距离Ⅱ闭重”:分别为相间距离Ⅱ段、接地距离

Ⅱ段保护动作三跳并闭锁重合闸投入控制字。

24.“零Ⅱ段三跳闭重”、“零Ⅲ段三跳闭重”:为选择零序方向过流Ⅱ段动作时

直接三跳并闭锁重合闸的控制字,置“0”时,零序方向过流Ⅱ段动作经选相跳闸。

25.“投选相无效闭重”:为选相无效三跳时是否闭锁重合闸的控制字,置“1”

时选相无效三跳时闭锁重合闸。

26.“非全相故障闭重”:为非全相运行再故障保护动作时是否闭锁重合闸的控

制字。

27.“投多相故障闭重”、“投三相故障闭重”:分别为多相故障和三相故障闭锁

重合闸投入控制字。

28.当重合闸方式在运行中不会改变时,用整定控制字比由重合闸切换把手经

光耦输入更为可靠,另外用整定控制字可实现远方重合闸方式的改变。“内重合把手有效”、“投单重方式”、“投三重方式”、“投综重方式”这4个控制字可完成上述功能;当“内重合把手有效”置“1”时,整定控制字确定重合闸方式,而不管外部重合闸切换把手处于什么位置。“内重合把手有效”

置“1”,而“投单重方式”、“投三重方式”、“投综重方式”均置“0”时等同于“投重合闸”置“0”,即本装置重合闸退出。当“内重合把手有效”

置“0”,则重合闸方式由切换把手确定(参见RCS-900系列超高压线路保护装置技术使用说明书硬件说明4.6.6),后面的三个控制字均无效。

四、 RCS-900系列线路保护压板定值整定说明

1.

字和屏上硬压板为“与”的关系,当需要利用软压板功能时,必须投上硬压板,当不需软压板功能时,必须将这三个控制字整定为“1”。

2.“投闭重三跳压板”和屏上硬压板为“或”的关系,“投闭重三跳压板”置

“1”时,任何故障三跳并闭锁重合闸,一般应置“0”。不管“投闭重三跳压板”置“1”还是“0”,外部闭重沟三输入总是有效。

五、 RCS-900系列线路保护地址

该定值用于以太网接口,当无以太网接口时,该定值可不整定。

注意:当无压板投入时(综合软硬压板),所有保护将退出。

如何计算线路保护的整定值

10kV配电线路保护的整定计算 10kV配电线路的特点10kV配电线路结构特点是一致性差,如有的为用户专线,只接带一、二个用户,类似于输电线路;有的呈放射状,几十台甚至上百台变压器T接于同一条线路的各个分支上;有的线路短到几百m,有的线路长到几十km;有的线路由35kV变电所出线,有的线路由110kV变电所出线;有的线路上的配电变压器很小,最大不过100kV A,有的线路上却有几千kV A的变压器;有的线路属于最末级保护,有的线路上设有开关站或有用户变电所等。2问题的提出对于输电线路,由于其比较规范,一般无T接负荷,至多有一、二个集中负荷的T接点。因此,利用规范的保护整定计算方法,各种情况均可一一计算,一般均可满足要求。对于配电线路,由于以上所述的特点,整定计算时需做一些具体的特殊的考虑,以满足保护"四性"的要求。3整定计算方案我国的10kV配电线路的保护,一般采用电流速断、过电流及三相一次重合闸构成。特殊线路结构或特殊负荷线路保护,不能满足要求时,可考虑增加其它保护(如:保护Ⅱ段、电压闭锁等)。下面的讨论,是针对一般保护配置而言的。(1)电流速断保护:由于10kV线路一般为保护的最末级,或最末级用户变电所保护的上一级保护。所以,在整定计算中,定值计算偏重灵敏性,对有用户变电所的线路,选择性靠重合闸来保证。在以下两种计算结果中选较大值作为速断整定值。①

按躲过线路上配电变压器二次侧最大短路电流整定。实际计算时,可按距保护安装处较近的线路最大变压器低压侧故障整定。Idzl=Kk×Id2max 式中Idzl-速断一次值Kk-可靠系数,取1.5 Id2max-线路上最大配变二次侧最大短路电流②当保护安装处变电所主变过流保护为一般过流保护时(复合电压闭锁过流、低压闭锁过流除外),线路速断定值与主变过流定值相配合。Ik=Kn×(Igl-Ie) 式中Idzl-速断一次值Kn-主变电压比,对于35/10降压变压器为3.33 Igl-变电所中各主变的最小过流值(一次值) Ie-为相应主变的额定电流一次值③特殊线路的处理:a.线路很短,最小方式时无保护区;或下一级为重要的用户变电所时,可将速断保护改为时限速断保护。动作电流与下级保护速断配合(即取1.1倍的下级保护最大速断值),动作时限较下级速断大一个时间级差(此种情况在城区较常见,在新建变电所或改造变电所时,建议保护配置用全面的微机保护,这样改变保护方式就很容易了)。在无法采用其它保护的情况下,可靠重合闸来保证选择性。b.当保护安装处主变过流保护为复压闭锁过流或低压闭锁过流时,不能与主变过流配合。c.当线路较长且较规则,线路上用户较少,可采用躲过线路末端最大短路电流整定,可靠系数取1.3~1.5。此种情况一般能同时保证选择性与灵敏性。d.当速断定值较小或与负荷电流相差不大时,应校验速断定值躲过励磁涌流的能力,且必须躲过励磁涌流。④灵敏度校验。按最小运行方式下,线路保护范围不小于线路长度的15%整定。允许速断保护保护线路全长。Idmim(15%)/Idzl≥1

煤矿保护定值整定分解析

第一章保护定值整定分析1.1. 定值项目解释 ZBT-11高开综合保护器配置了如下保护: 1)三段式过流保护; 2)反时限过流保护; 3)过电压保护; 4)低电压保护; 5)零序过压保护; 6)两段式零序过流保护(漏电保护); 7)电缆绝缘监视保护; 8)风电闭锁保护; 9)瓦斯闭锁保护; 10)保护信号未复归闭锁合闸。 定值表示以如下:

1.1.1. 三段式过流保护 三段式过流保护包括电流速断保护、限时速断保护、过载保护。电流速断也称作过流I 段,限时速断也称作过流II段,过载保护也称作过流III段。一般来说,过流I段用作短路保护,过流II段用作后备保护,过流III段用作过载保护。一般来说,终端线路只投入短路保护(过流I段)和过载保护(过流III段),而电源进出线,需要上下级配合,以防止越级跳闸,需要投短路保护(过流I段)和后备保护(过流II段),而一般不投过载保护(过流III段)。 在定值表中,保护投入意思是该保护动作后不但要发保护动作信号,还要出口跳闸,保护不投入,则该保护动作后只发保护动作信号,不出口跳闸。 在保护器上,控制字为保护投入/退出的设置,“Y”表示投入,“N”表示退出。 在后台机定值表中,实心圆表示投入,空心圆表示退出。 过流I段中,投入小延时选项,主要是防止空载投入大型变压器时产生的励磁涌流冲击,使速断保护误动,导致投不上变压器的情况发生。小延时固定为50MS。一般来说,变压器容量在600KV A以上时,过流I段就要投入小延时。 该保护信号未复归将闭锁合闸。 1.1. 2. 反时限过流保护 有些负载允许过电流通过的时间与其电流大小成反比,即过电流值越大,允许通过的时间越短,而过电流值越小,允许通过的时间越长,这就是反时限特性。对于这些负载采用反时限过流保护将优于定时限的过流保护。一般来说,电动机的过载保护宜采用反时限过流保 护。 Zbt-11保护器的反时限过流保护符合IEC标准,可通过整定选择IEC A(一般反时限)、 IEC B(非常反时限)、IEC C T p---定值表中的时间常数,一般设为1秒,或根据具体电动机的特性曲线选择; I p---定值表中的启动电流,一般设为电动机的额定电流; I---曲线上某点的电流值;t---曲线上某点对应的时间值。

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6 .04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?= = (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 (2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+= (4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为 3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;

N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、η wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103?= = (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。 ② 干线。干线是指控制2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流ca I ,取2台电动机额定电流之和,即 21N N ca I I I += (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流ca I ,用下式计算 wm N N de ca U P K I ?cos 3103?∑= (4-21) 式中 ca I —干线电缆长时最大工作电流,A ; N P ∑—由干线所带电动机额定功率之和,kW ; N U —额定电压,V ;

电厂保护定值整定计算书

电厂保护定值整定计算书

甘肃大唐白龙江发电有限公司苗家坝水电站 发电机、变压器继电保护装置 整定计算报告 二○一二年十月

目录 第一章编制依据 (1) 1.1 编制原则 (1) 1.2 编制说明 (1) 第二章系统概况及相关参数计算 (3) 2.1 系统接入简介 (3) 2.2 系统运行方式及归算阻抗 (3) 2.3 发电机、变压器主要参数 (6) 第三章保护配置及出口方式 (12) 3.1保护跳闸出口方式 (12) 3.2 保护配置 (13) 第四章发电机、励磁变保护定值整定计算 (16) 4.1 发电机比率差动保护 (16) 4.2 发电机单元件横差保护 (16) 4.3 发电机复合电压过流保护 (17) 4.4 发电机定子接地保护 (18) 4.5 发电机转子接地保护 (18) 4.6 发电机定子对称过负荷 (19) 4.7 发电机定子负序过负荷 (19) 4.8 发电机过电压保护 (20)

4.9 发电机低频累加保护 (21) 4.10 发电机低励失磁保护 (21) 4.11 励磁变电流速断保护 (25) 4.12 励磁变过流保护 (25) 第五章变压器、厂高变保护定值整定计算 (27) 5.1 主变差动保护 (27) 5.2 变压器过激磁保护 (29) 5.3 主变高压侧电抗器零序过流保护 (29) 5.4 变压器高压侧零序过流保护 (30) 5.5 主变高压侧复压方向过流保护 (32) 5.6 主变高压侧过负荷、启动风冷保护 (34) 5.7 主变重瓦斯保护 (34) 5.8 厂高变速断过流保护 (34) 5.9 厂高变过流、过负荷保护 (35) 5.10 厂高变重瓦斯保护 (36)

风电整定计算说明

风电场整定计算说明 风电场一般由进线、升压变、35kV母线、集电线路、接地变、SVG无功补偿装置、站用变、箱变、风机发电机。所涉及到的电压风机一般有主变高压侧(220kV、110kV),主变低压侧(35kV),SVG连接变低压侧(10kV),箱变低压侧(690V),站用变低压侧(0.4kV)。 一般风电场一次接线图如下所示: 整定计算依据: DL/T 684-2012《大型发电机变压器继电保护整定计算导则》 DL/T 584-2007《3kV~110kV电网继电保护装置运行整定规范》 GB 14285-2006《继电保护和安全自动装置技术规程》 保护装置厂家说明书、设备参数和电气设计图纸 整定计算参考资料: 《大型发电机组继电保护整定计算与运行技术》高春如 《发电厂继电保护整定计算及其运行技术》许正亚 《宁夏电网2015年继电保护整定方案及运行说明》 关于风电场继电保护整定计算与核算,由于目前风电机组短路电流计算模型尚不成熟,现阶段在保护定值计算中都将将风电场当做负荷对待。随着风电、光伏对系统的影响越来越大,因此在电网设备选择、校验和继电保护配置整定时,应该考虑风电对故障时短路电流的影响,为此特制定以下原则: 1风电场输电线保护整定原则:

风电场输电线:指系统与风电场升压变压器高压侧母线连接的输电线路 1.1配置:风电场输电线应为光差保护配置。 整定原则:与其它同电压等级的常规输电线路保护整定原则相同。 1.2 主保护: 两侧主保护正常投入; 1.3 后备保护: 1.3.1 系统侧: 后备保护均投入并带方向;方向由母线指向线路,整定原则按照相应规程执行。 1.3.2 风电场侧110kV 及以上线路: 单回线零序电流保护、距离后备保护考虑与系统侧其它110kV 馈线适当配合后可投入运行,零序I段退出运行,距离I 段可投入,整定原则按照相应规程执行。双馈式异步发电机的暂态波形含有非工频的衰减交流分量,导致距离元件、相突变量方向元件及选相元件等工作不正常,使距离I 段保护会超范围动作,建议以双馈式异步发电机为主的风电场送出线路距离I 段退出运行。 双回线整定原则同系统双回并列短线路负荷侧后备保护整定原则,零序I 段退出。 1.3.3 风电场侧35kV 线路: 速断保护退出;投入限时速断及过电流保护,不带方向,按与风电场升压变高压侧过流保护配合。 1.4 重合闸: 两侧均投入。一侧无电压检定,另一侧同期检定。对未配置线路抽取PT 的,尽快完善设备,以实现有条件重合闸方式。没完善前可暂时退出重合闸。 2 风电场升压变保护整定原则: 风电场升压变:指接入各台风机组的汇集线与系统之间配置的两卷或三卷变压器 2.1 配置: 变压器差动保护;两段式过电流保护,可带方向。 2.1.1 主保护整定原则: 差动保护整定原则按照整定规程整定; 2.1.2 高压侧后备保护: 一段带方向,方向由高压母线指向变压器,考虑与变压器低压侧带方向段过流配合;一段不带方向,作为变压器的总后备,考虑与高压侧出线、低压侧不带方向过流配合,保证升压变低压母线故障时灵敏度≥1.2; 零序保护应作为系统的后备保护,由调度下发。根据《3kV~110kV电网继电保护装置运行规程》DLT584-2007;对于风电等新能源中的主变等与电网配合有关的电力变压器,中性点直接接地的变压器零序电流保护主要作为变压器内部、接地系统母线和线路接地故障的后备保护,一般由两段零序电流保护组成。 变压器零序电流保护中,应有对本侧母线接地故障灵敏度系数不小于1.5的保护段。 对于单侧中性点直接接地变压器的零序电流I段电流定值,按保母线有1.5灵敏度系数整定,动作时间与线路零序电流I段或II段配合,动作后跳母联断路器,如有第二时间,则可跳本侧断路器。 零序电流II段电流和时间定值应与线路零序电流保护最末一段配合,动作后跳变压器各侧断路器,如有两段时间,动作后以较短时间跳本侧(或母联断路器),以较长时间跳变压器各侧断路器。 2.1.3 低压侧后备保护: 一段带方向,方向由变压器指向低压母线,考虑与低压侧出线的速断或限时速断配合,

(完整word版)继电保护定值整定计算书

桂林变电站35kV及400V设备继电保护定值整定计算书 批准: 审核: 校核: 计算: 超高压输电公司柳州局 二〇一三年十一月六日

计算依据: 一、 规程依据 DL/T 584-2007 3~110kV 电网继电保护装置运行整定规程 Q/CSG-EHV431002-2013 超高压输电公司继电保护整定业务指导书 2013年广西电网继电保护整定方案 二、 短路阻抗 广西中调所提供2013年桂林站35kV 母线最大短路容量、短路电流:三相短路 2165MVA/33783A ; 由此计算35kV 母线短路阻抗 正序阻抗 Z1= () () 63.0337833216532 2 =?= A MVA I S Ω

第一部分 #1站用变保护 一、参数计算 已知容量:S T1=800kVA,电压:35/0.4kV,接线:D/Y11,短路阻抗:U K=6.72% 计算如下表: 注:高压侧额定电流:Ie= S T1/( 3Ue)= 800/( 3×35)=13.2A 高压侧额定电流二次值:Ie2=13.2/40=0.33 A 低压侧额定电流:Ie’=S T1/( 3Ue)= 800/( 3×0.4)=1154.7A 低压侧额定电流二次值:Ie2’=1154.7/300=3.85A 短路阻抗:Xk=(Ue2×U K)/ S T1=(35k2×0.0672)/800k=103Ω保护装置为南瑞继保RCS-9621C型站用电保护装置,安装在35kV保护小室。 二、定值计算 1、过流I段(速断段)

1)按躲过站用变低压侧故障整定: 计算站用变低压侧出口三相短路的一次电流 I k(3).max= Ue /(3×Xk )=37000/(3×103)=207.4A 计算站用变低压侧出口三相短路的二次电流 Ik= I k(3).max /Nct=207.4/40=5.19A 计算按躲过站用变低压侧故障整定的过流I 段整定值 Izd=k K ×Ik k K 为可靠系数,按照整定规程取k K =1.5 =1.5×5.19=7.8A 2)校验最小方式时低压侧出口两相短路时灵敏系数lm K ≥1.5 计算站用变低压侧出口两相短路的一次电流 min ).2(Ik = Ue /〔2×(Z1 +Xk )〕 =37000/〔2×(0.63 +103)〕=178.52A 式中:Z1为35kV 母线短路的短路阻抗。 计算站用变低压侧出口两相短路的二次电流 Ik.min= min ).2(Ik =178.52/40=4.46A 校验最小方式时低压侧出口两相短路时灵敏系数 Klm= Izd Ik min .=4.46/7.8=0.57<1.5 不满足要求 3)按满足最小方式时低压侧出口短路时灵敏系数lm K ≥1.5整定 I1= lm K Ik min .=4.46/1.5=2.97A 取3.0A 综上,过流I 段定值取3.0A T=0s ,跳#1站变高低压两侧断路器。 2、 过流II 、III 段(过流)

现场定值误整定原因分析及对策(一)

现场定值误整定原因分析及对策(一) 摘要:对广东省几个地区继电保护定值检查中发现的问题进行了分析和总结。归纳出了12种典型的现场定值误整定现象,并对其原因进行了剖析,进而提出了相应的对策。 关键词:定值检查现场误整定原因对策 Abstract:insomeregionsofGuangdongProvinceareanalyzedandsummarized.Twelvetypicalsettingmi stakesonthespotandtheirreasonsareanalyzed,furthermorethecorrespondingcountermeasuresarep utforward. Keywords:settinginspection,missettingonsite,reason,countermeasures 正确的整定计算及执行是保护正确动作的两个重要条件。由于专业的分工不同,保护的整定计算及执行通常由不同的人员在不同的地点进行,由于种种主、客观方面的原因,现场人员在执行定值单时常常出现错误,因此而引起的电网事故及电网事故扩大化的现象时有发生。1998年,笔者曾先后到粤东、粤中、粤西3个地区检查和核对定值,共检查了220kV站47个(占广东省220kV站总数的41.2%),500kV站2个(占广东省500kV站25%),检查和校对范围为省电力中心调度所计算内容。220kV站线路保护、母差及失灵保护、主变压器零序保护;500kV站线路保护、母差及失灵保护、主变压器保护等。检查形式为:由广东省电力中心调度所计算人员会同各地保护专责及变电人员到现场逐个装置进行。现将检查中发现的比较普遍存在问题(现象)进行了归纳、总结,并对其原因进行了分析,进而提出了相应的对策。1微机保护1.1线路保护保护类型为微机WXB-11(或WXH-11)、WXB-15、WXH-25。 现象1:上述保护均由4个CPU组成,每个CPU由不同的软件分别构成了高频(CPU1)、距离(CPU2)、零序(CPU3)、重合闸(CPU4)4个保护。在CPU1、CPU3、CPU4中的XDZ值应取与距离Ⅲ段相同的值。在CPU1、CPU2中的3I0、I04应分别与CPU2中的零序Ⅲ、Ⅳ段定值相同。当电网发生变化时,保护计算人员通常只对距离、零序保护的定值进行校验,并据此下达距离(CPU2)、零序保护(CPU3)的定值单,在距离(CPU2)单中的备注一栏中注明“其它CPU的XDZ 作相应更改,”在零序(CPU3)单的备注一栏中注明“其它CPU的3I0、I04作相应更改”。现场人员在执行新的距离、零序单时往往只改了CPU2、CPU3的定值,而漏改了其它CPU中的XDZ或3I0、I04定值。 原因:现场定值更改人员通常是由变电人员执行,他们普遍对整定计算不甚了解,对上述保护4个CPU中相关连的值(如XDZ、3I0、I04)不太清楚。 对策:加强变电人员和计算人员的相互学习和交流。定值更改人员应对常见的微机保护的定值单有一定的了解,特别是对多CPU的微机保护的相关连情况应十分熟悉。1.2旁路保护保护类型为11型或902型保护。 现象2:线路定值更改后,旁路定值未作相应更改(线路保护与旁路保护同类型时)。 现象3:对11型微机保护存在与现象1类似的问题。 现象4:因线路保护种类较多,旁路保护也不统一,因而旁路保护代线路保护的形式繁多。当旁路保护与线路保护类型不同时,有些厂(站)旁路保护定值未作相应折算(修改)。 原因:旁路保护代路时间较短(通常只有几天),1年中的大多数时间旁路保护均处于备用状态,因而很多地方对于旁路保护的定值不甚重视。 对策:尽管对单个变电站而言,旁路代路时间较短,但对整个电网而言,1年中很多天内常有旁路保护在代路(只是代路的旁路保护不同而已),如旁路保护定值不正确,则意味着很多时间内均有局部电网的定值不正确。因此,应象对待线路保护定值那样重视旁路保护。应形成这样的制度:在更改线路保护定值的同时,必须更改相应的旁路保护定值。如代路保护与旁路保护类型不同,应将相应的值进行更改(或折算)。2“四统一”保护广东省220kV系统内仍有少数线路(旁路)保护为传统的“四统一”保护。他们大部分将在近期内更换成为微机保护,少数已运到现场,其余均已订货。

发电机保护整定计算技术规范

发电机保护整定计算技术规范

定子绕组内部故障主保护 一、纵差保护 1 固定斜率的比率制动式纵差保护 1)、比率差动起动电流I op.0:I op.0= K rel K er I gn /n a 或 I op.0= K rel I unb.0 一般取I op.0=(0.1~0.3) I gn /n a ,推荐取I op.0=0.2 I gn /n a 。 2)、制动特性的拐点电流I res.0 拐点电流宜取I res.0=(0.8~1.0)I gn /n a ,一般取I res.0=0.8I gn /n a 。 3)、比率制动特性的斜率S : 0 .r max .r 0.op max .op I I I I S es es --= ① 计算最大不平衡电流I unb.max : I unb.max =K ap K cc K er I k.max / n a 式中:K a p ——非周期分量系数,取 1.5~2.0; K cc — —互感器同型系数,取0.5; K er ——互感器比误差系数,取0.1; I k.max ——最大外 部三相短路电流周期分量。 ② 差动保护的最大动作电流I op.max 按躲最大外部短路时产生的最大暂态不平衡电流计 算: I op.max =K rel I unb.max 式中:K rel ——可靠系数,取1.3~1.5。 ③ 比率制动特性的斜率S

一般I res.max =I k.max /n a ,则 0 .r a max .k 0.op unb.max rel 0 .r max .r 0.op max .op I n /I I I K I I I I S es es es --= --≥ 2、变斜率的比率制动式纵差保护 1)、比率差动起动电流I op.0:同4.1.1.1“比率差动起动电流”的 整定。 2)、制动特性的拐点电流I res.1: 对于发电机保护,装置固定取 I res.1=4I gn /n a 。 对于发电机变压器组保护,装置固定取 I res.1=6I gn /n a 。 3) 、比率制动特性的起始斜率S 1 S 1=K rel K cc K er 式中:K rel ——可靠系数,取1.5;K cc ——互感器的同型系数,取0.5; K er ——互感器比误差系数,取0.1; 一般取S 1=0.1 4) 、比率制动特性的最大斜率S 2: ① 计算最大不平衡电流I unb.max : I unb.max =K ap K cc K er I k.max /n a 式中:K a p ——非周期分量系数,取 1.5~2.0; K cc ——互 感器同型系数,取0.5; K er ——互感器比误差系数,取0.1; I k.max ——最大外部三 相短路电流周期分量, 若I k.max 小于I res.1(最大斜率时的拐点电流)时,取 I k.max =I res.1 。 ② 比率制动特性的斜率S : a gn a max .k a gn 10.op max .u 2n /I 2n /I n /I 2I I S ---≥ S nb

保护定值详细计算

一、说明:甘河变2#主变保护为国电南瑞NSR600R,主变从 齐齐哈尔带出方式。 二、基本参数: 主变型号:SF7—12500/110 额定电压:110±2×2.5%/10.5KV 额定电流:65.6099/687.34A 短路阻抗:Ud% = 10.27 变压器电抗:10.27÷12.5=0.8216 系统阻抗归算至拉哈110KV母线(王志华提供): 大方式:j0.1118 小方式:j0.2366 拉哈至尼尔基110线路:LGJ-120/36, 阻抗36×0.409/132.25=0.1113 尼尔基至甘河110线路:LGJ-150/112, 阻抗112×0.403/132.25=0.3413 则系统阻抗归算至甘河110KV母线: 大方式:0.1118+0.1113+0.3413=0.5644 小方式:0.2366+0.1113+0.3413=0.6892 CT变比: 差动、过流高压侧低压侧间隙、零序 1#主变2×75/5 750/5 150/5 三、阻抗图 四、保护计算: (一)主保护(NSR691R)75/5

1.高压侧过流定值 按躲变压器额定电流整定 I dz.j =1.2×65.6099/0.85×15=6.1750A 校验:变压器10KV 侧母线故障灵敏度 I (2)d.min =0.866×502/(0.6892+0.8216)=287.7495A Klm=287.7495/6.2×15=3.0941>1.25 满足要求! 整定:6.2A 2.桥侧过流定值 整定:100A 3.中压侧过流定值 整定:100A 4.低压侧过流定值 按躲变压器额定电流整定 I dz.j =1.2×687.34/0.85×150=6.4690A 校验:变压器10KV 侧母线故障灵敏度 I (2)d.min =0.866×5500/(0.6892+0.8216)=3152.6344A Klm=3152.6344/6.5×150=3.2335>1.5 满足要求! 整定:6.5A 5.CT 断线定值. 整定范围0.1~0.3Ie (P167) 312500 8.66003112311065.60995 CTh K SN Ie A UL N IL N I N ??= = =??÷??÷ 取0.1Ie =8.6600×0.1=0.866A 整定:0.8A 6.差动速断定值 躲变压器励磁涌流整定

微机保护整定计算举例(DOC)

微机继电保护整定计算举例

珠海市恒瑞电力科技有限公司 目录 变压器差动保护的整定与计算 (3) 线路保护整定实例 (6) 10KV变压器保护整定实例 (9) 电容器保护整定实例 (13) 电动机保护整定计算实例 (16) 电动机差动保护整定计算实例 (19)

变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH 、UM 、UL(KV),各侧二次电流分别为IH 、IM 、IL(A),各侧电流互感器变比分别为n H 、n M 、n L 。 一、 平衡系数的计算 电流平衡系数Km 、Kl 其中:Uhe,Ume,Ule 分别为高中低压侧额定电压(铭牌值) Kcth,Kctm,Kctl 分别为高中低压侧电流互感器变比 二、 差动电流速断保护 差动电流速断保护的动作电流应避越变压器空载投入时的励磁涌流和外部故障的最大不平衡电流来整定。根据实际经验一般取: Isd =(4-12)Ieb /nLH 。 式中:Ieb ――变压器的额定电流; nLH ――变压器电流互感器的电流变比。 三、 比率差动保护 比率差动动作电流Icd 应大于额定负载时的不平衡电流,即 Icd =Kk [ktx × fwc +ΔU +Δfph ]Ieb /nLH 式中:Kk ――可靠系数,取(1.3~2.0) ΔU ――变压器相对于额定电压抽头向上(或下)电压调整范围,取ΔU =5%。 Ktx ――电流互感器同型系数;当各侧电流互感器型号相同时取0.5,不同时取1 Fwc ――电流互感器的允许误差;取0.1 Δfph ――电流互感器的变比(包括保护装置)不平衡所产生的相对误差取0.1; 一般 Icd =(0.2~0.6)Ieb /nLH 。 四、 谐波制动比 根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护被闭锁。 五、 制动特性拐点 Is1=Ieb /nLH Is2=(1~3)eb /nLH Is1,Is2可整定为同一点。 kcth Uhe Kctm Ume Km **= 3**?=kcth Uhe Kctl Ule Kl

如何看懂保护定值单

如何识读继电保护定值通知单 继电保护装置是电网安全运行的保障,也是电网安全稳定“三道防线”(第一道防线:由性能良好的继电保护装置构成,确保快速、正确地切除电力系统的故障元件。第二道防线:由电力系统安全稳定控制系统及切机、切负荷等稳定控制措施构成,确保电力系统安全稳定运行。第三道防线:由失步解列、频率及电压紧急控制装置构成,采取解列、切负荷、切机等控制等措施,防止系统崩溃,避免出现大面积停电。)中的第一道防线,所以说确保继电保护定值的正确性及保护装置的可靠性是电网安全的重要任务。作为一名电网调度员(用户运行值班人员)在本电网运行操作管理中无疑要求对本电网内继电保护装置的运行情况相当了解,除了要熟知本电网继电保护装置的配备及运行情况外,还要会看懂本电网继电保护定值通知单,了解现场设备保护压板执行情况,并且在电网事故开关跳闸时还要学会进行基本的保护动作行为的分析与动作正确性的判断等。 为了让大家对微机继电保护装置有一个基本了解,我们将按照微机保护装置插件组成(实物图)、微机保护定值单的识读、现场保护压板设置及保护动作后的简单行为分析的顺序,与大家一起学习交流。 一、电网微机保护装置的使用情况 目前,微机继电保护装置在电网中也得到广泛使用,农网110KV及以上主要设备(含主变压器)微机保护装置型号相对比较统一,主要有:南京南瑞RSC系列、东方电子DF3200系列、国电南自PSC600系列、北京四方CSC系列、美国SEL-311C系列等,农网35KV及以下设备微机保护装置

型号很杂,大都为小厂家。虽然保护厂家很多,保护装置不近相同,但保护原理、插件配置组成、保护压板的设置等基本相同。 微机继电保护装置定值通知单与常规继电器保护定值通知单不同,常规保护定值单整定项目简单,一台主变主、后备保护整定项目1张通知单就完了,而微机保护定值通知单整定项目相对很多、很细,一台主变压器保护整定项目就达10张通知单之多,保护整定项目多和细,使得保护的选择投、停用更加灵活。 二、主变、线路及电容器保护装置介绍 现以东方电子DF3200系列保护装置为例,介绍主变压器、线路、电容器等设备保护装置插件配置情况、保护定值单的识读及现场保护压板的执行等。 (一)主变压器保护装置 (一)、保护装置组成 微机保护装置的配置是很灵活的,一般保护厂家根据用户要求提供多个保护插件供现场设备保护需要。 东方电子DF3200系列三圈主变压器微机保护装置由:DF3230(主变差动保护装置)+ DF3231A(主变高后备保护装置)+ DF3231B(主变中后备保护装置)+ DF3231B(主变低后备保护装置)+ DF3232(主变本体保护装置)+ DF3280(主变高压开关操作箱)+ DF3280(主变中压开关操作箱)+ DF3280(主变低压开关操作箱)+综合测控装置组成。从实物图中可以看出,主变主、后备保护及高、中、低侧后备保护插件相互分开、并且高、中、低三侧有独立的操作箱,这样的好处是单个保护插件及操作箱因故障时,不影响其它保护插件及操作箱的正常运行。

10kv保护整定计算

金州公司窑尾电气室10kv 保护整定 1. 原料立磨主电机(带水电阻)整定 接线方式:A 、B 、C 三相式 S=3800kW In=266A Nct=400/5 保护型号:DM-100M 珠海万力达 1.1保护功能配置 速断保护(定值分启动内,启动后) 堵转保护(电机启动后投入) 负序定时限电流保护 负序反时限电流保护 零序电压闭锁零序电流保护 过负荷保护(跳闸\告警可选,启动后投入) 过热保护 低电压保护 过电压保护 工艺联跳(四路) PT 断线监视 1.2 电流速断保护整定 1.2.1 高值动作电流:按躲过电机启动时流经本保护装置的最大电流整定: Idz'.bh=Krel ×Kk* In 式中: Krel----可靠系数,取1.2~1.5 Kk 取值3 所以 Idz'.bh=Krel ×Kk* In/80=1.2×3.5×266/80=13.97A 延时时间:t=0 s 作用于跳闸 1.2.2 低值动作电流 Idz'.bh=Krel ×Kk* In/Nct=1.2×2*266/80=7.98A 延时时间:t=0 s 作用于跳闸 1.3负序电流定时限负序保护 lm i N i N k K K I Iop I K K 9.0577.0≤≤ Iop=2.4A 延时时间:T=1s 作用于跳闸

1.4 负序电流反时限负序保护(暂不考虑) 1.5 电机启动时间 T=12s 1.6低电压保护 U * op = Krel st.min *U Un=(0.5~0.6)Un 取0.6Un 故 U * op =60V 延时时间:t=0.5 s 作用于跳闸 1.7零序电压闭锁零序电流保护 I0=10A/Noct=0.17A 延时时间:t=0.5 s 作用于跳闸 1.8 过电压保护 Uop =k*Un=115V 作用于跳闸 延时时间:t=0.5 s 1.9 负序电压 U2op=0.12In=12V 1.10 过负荷保护电流电流 Idz'.bh=Krel × In/Nct=1.1×266/80=3.63A 取3.63A 延时时间:t=15 s 作用于跳闸 二、差动保护MMPR-320Hb 电机二次额定电流Ie=264/80=3.3A 1、 差动速断电流 此定值是为躲过启动时的不平衡电流而设置的,为躲过启动最大不平衡电流,推荐整定值按下式计算: t s k dz I K I tan ?=, k K :可靠系数,取1.5 t s I tan 为电流启动倍数取2In 则: =?=?l t s k j dz n I K I tan 1.5*2*264/80=9.9A 作用于跳闸 2、 比率差动电流 考虑差动灵敏度及匝间短路,按以下公式整定 dz I =0.5 In/Nct =1.65A 作用于跳闸 3、 比率制动系数:一般整定为0.5。 4、 差流越限 Icl=0.3Idz =0.3*1.65=0.495A 取0.5A 2 DM-100T 变压器保护功能配置 三段复合电压闭锁电流保护

浅析继电保护专业全过程管理之定值整定篇

浅析继电保护专业全过程管理之定值整定篇 继电保护专业全过程管理,是指在电网规划、设计审查、设备选型、安装调试、投产验收、设备启动、运行维护、质量监督和技术改造全过程进行继电保护专业管理。继电保护能够对变电站的设备实现保护,但是,在有些比较复杂的自然环境中往往对变电站继电保护定值的适应性产生很大的影响,所以对于变电站继电保护定值整定工作就显得非常的重要,本文主要就对辖区某110kV变电站因#2主变B套保护定值现场整定错误,与定值通知单不符,造成某110kV变电站#2主变B套保护跳闸进行分析和探讨。 标签:变电站;继电保护;定值整定 1 故障前运行方式 某110kV变电站由I线506供电,#1主变供35kVI母、10kV I母,#2主变主供35kVII母10kVII母。400、300断路器处于热备用状态。事故发生前,#2主变差动、高后备、中后备、低后备、非电量保护装置处于运行状态。 2 事件经过 某变电站#2主变二套保护装置CSC326FK发“高复流三段T2出口,I=3.656A”,跳开520、420、320断路器。 接调度命令,运行人员立即查看保护装置,发现#2二套保护装置动作,立即通知检修公司运维室、检修室、检修人员,并开展一次设备检查工作。现场经检查发现#2主变二套保护装置定值整定与定值单不一致,其中高复流三段装置定值3.7A、复流三段2时限0.5秒与定值单“继字17-1111号”定值高复流三段装置定值5.7A、复流三段2时限2.7秒不一致,低电压闭锁定值100V与定值单低电压闭锁定值80V不一致,正常电压为57.7x1.737=100.25当电压稍有降低达到100V,电流升高至3.7A(一次值=3.7x200/5=148A)时动作条件达到启动高复流三段保护,是导致此次事故的主要原因。 事故发生后,对#2主变进行保护传动试验、与变压器油样送检工作并对全站所有新换设备进行定值与装置核对工作。油样送检:在检修人员到达现场后立即对#2主变进行取油送检,反馈试验结果,送检油样正常,与上次送检无明显变化。保护传动试验:#2主变保护传动试验,两套保护装置传动试验均正常动作,设备无异常。定值核对工作:对本次某变电站改造设备进行定值核对装置与定值单除事发#2主变II套保护外其它设备定值均整定正确。 3 原因及存在的问题 本次事件发生的直接原因,是由于#2主变B套保护定值现场整定错误,与定值通知单不符。运行人员与检修人员核对#2主变保护定值时,采取在装置上

继电保护整定计算课程设计指导书

继电保护定值计算课程设计指导书 一、课程设计的目的、要求和依据 (一)课程设计的目的 1.巩固《电力系统继电保护原理》课程的理论知识,掌握运用所学知识分析和解决生产实际问题的能力。 2.通过对国家行业颁布的有关技术规程、规范和标准学习,建立正确的设计思想,理解我国现行的技术政策。 3.初步掌握继电保护设计的内容、步骤和方法。 4.提高计算、制图和编写技术文件的技能。 (二)对课程设计的要求 1.理论联系实际。对书本理论知识的运用和对规程、规范的执行必须考虑到任务书所规定的实际情况,切忌机械地搬套。 2.独立思考。在课程设计过程中,既要尽可能参考有关资料和主动争取教师的指导,也可以在同学之间展开讨论,但必须坚持独立思考,独自完成设计成果。 3.认真细致。在课程设计中应养成认真细致的工作作风,克服马虎潦草不负责的弊病,为今后的工作岗位上担当建设任务打好基础。 4.按照任务书规定的内容和进度完成。 (三)课程设计所依据的文件 《电力装置继电保护和自动装置设计规范》GB50062—92 《3~110kV电网继电保护装置运行整定规程》 《220~750kV电网继电保护装置运行整定规程》 二、课程设计的内容 (一)相间保护整定计算 1. 110kV单电源环形网络相间短路保护整定计算 (1). 短路计算 考虑到35~110kV单电源环形网络相间短路保护可能采用带方向或不带方向的电流电压保护,因此在决定保护方式前,必须较详细地计算各短路点短路时,流过有关保护的短路电流和保护安装处的残余电压。然后根据计算结果,在满足“继电保护和自动装置技术规程”和题目给定的要求条件下,尽可能采用简单的保护方式。计算短路电流和残余电压的步骤及注意事项如下。 a. 系统运行方式的考虑 除考虑发电厂发电容量的最大和最小运行方式外,还必须考虑在设备检修或

定值计算

电力分析软件对线路保护整定值的计算方法 电流、电压整定值受电网结构及运行方式影响较大,整定值的准确计算比较复杂, 下面以图13-1所示的单侧电源环网供电电网,母线 B C 间断路器5QF 的保护为例, 简单介绍采用 EDCS-6110单元线路的各种保护整定值的计算。 假设在图 13-1 所示的系统中 Z AB =2.27 Q , Z BC =2.46 Q , Z AD =2.26 Q , Z DC =2.38 Q ,Z F1 =0.52 Q , Z F 2=0.39 Q 13-1.1 电流速断保护整定值 I sdz1的计算 电流速断保护为无时限保护,其动作时间为保护装置的固有动作时间,按“规程” 规定微机保护的固有动作时间为 40ms 以下。 一?电流速断保护的整定计算 2QF 6QF 10QF 丸/一 3QF 7QF 択/— 一 / QF 11QF -— 13-1 单侧电源环网供电网络图 1.电流速断保护动作电流整定值 I szd1的基本计算公式:根据保护的选择性要求,电流 速断保护只有在本线路内发生短路时才动作,为使计算简单,通常取线路末端母线 (母线C )短路来计算线路短路电流 I dmax ,考虑到末端母线上其它线路近端短路时, 短路电流与母线短路电流接近,为保证电流速断保护不误动,则电流速断保护电流 整定值为: I szd 1 K K I (3) d m ax (13-1) 1 2

I d m a 为最大运行方式下,线路末端三相短路的最大电流。 可靠系数 K K 系考虑以下因素的影响而设置 a ?躲过末端母线(母线 C )上其它线路近端短路的短路电流 b ?短路电流的计算误差 c ?短路时非周期分量的影响 d ?留有一定裕度 2 ?三相短路电流的计算 三相短路电流的计算公式为: E xt 1 d Z xt + Z Ld E xt ―― 系统电源的等效相电势 Z xt ―― 系统等效相阻抗, 即保护安装处到电源间的等效阻抗, 包含保护安装处后方 输电线路阻抗、变压器阻抗、发电机阻抗等。 Z Ld ―― 被保护线路短路点到保护安装处的阻抗, 其值为Z Ld =乙? L , Z 1为线路单位 长度的阻抗,L 为线路长度,计算整定值时, L 为线路全长L max ,故计算整 定值中的 拧公式为: 3.运行方式对短路电流的影响:电力系统运行方式不同,流过保护装置的短路电流也 不同,流过保护装置短路电流最大的运行方式,称为最大运行方式,短路电流最小 的运行方式称为最小运行方式,对于附图 1中保护5 (即5QF 处装设的保护),全部 电源投入且开网(3QF 或7QF 断开)运行时为最大运行方式,只投入内阻较大的一 个电源、环网闭网运行 (全部QF 投入)为最小运行方式, 但对于9、10、11QF 保护, 闭网运行时为最大方式,开网运行为最小方式。 a.最大运行方式短路电流计算,最大运行方式下, C 母线短路时流过保护 5的电流 计算公式为: I = ____________ E x _________ d max .m — Z 7 Z Z Ext Z AB Z BC 将系统参数代入上式得: I (3) I d max E xt Z xt Z 1L m ax (13-2)

过电流和速断保护的整定速算公式

过电流和速断保护整定值的计算公式 过电流保护的整定计算 计算变压器过电流保护的整定值 m a x ,r e l w r e o p L r e r e i o p K K I I I K K K I == 式中 o p I —继电保护动作电流整定值(A ); rel K —保护装置的可靠系数,DL 型电流继电器一般取1.2; GL 型继电器一般取1.3; w K —接线系数,相电流接线时,取1;两相电流差接线时,取3; re K —继电器的返回系数,一般取 0.85~0.9; i K —电流互感器变比; m ax L I —最大负荷电流,一般取变压器的额定电流。 速段保护 m ax rel w qb K i K K I I K = 式中 q b I —电流继电器速断保护动作电流(A ); rel K —保护装置的可靠系数,一般取1.2; w K —接线系数,相电流接线时,一般取1; i K —电流互感器变比; m ax K I —线路末端最大短路电流,即三相金属接地电流稳定 值(A ); 对于电力系统的末端供配电电力变压器的速断保护,一般取m ax K I 为电

力变压器一次额定电流的2~3倍。 一、高压侧 过电流保护的整定计算 max 1.2128.8 2.260.85905rel w op L re i K K I I A A K K ?==?=? 取 o p I =2.5A ,动作时间t 为0.5S 。 速断保护的整定计算 max 1.21228.8 3.84905rel w qb k i K K I I A A K ?==??= 取 q b I =4A ,动作时间t 为0S 。 速断保护动作电流整定为4A ,动作时限为0S 。 低压侧 过流保护 2 1.2721.7 5.418005rel op N re i K I I A A K K ==?= 取 o p I =5.5A ,动作时间t 为0.5S 。 0.70.70.473.73.8N op i U U K V V K ?=== 电压闭锁整定值取75V 。 速断保护 max 1.21272110.88005rel w qb k i K K I I A A K ?==??= 取 q b I =11A ,动作时间t 为0S 。 速断保护动作电流整定为11A ,动作时限为0S 。

相关文档
最新文档