51单片机是冯诺依曼还是哈佛结构

51单片机是冯诺依曼还是哈佛结构
51单片机是冯诺依曼还是哈佛结构

关于这个问题,有人说51地址线复用,就是冯诺依曼结构。

很多入门的书上基本上都说:由运算器、控制器、存储器、输入设备、输出设备组成的系统都叫冯氏结构。

也有的说:“程序存储器的数据线地址线”与“数据存储器的数据线地址线”共用的话,就是冯氏结构,所以51是该结构。(我认为说得太绝对了)

我认为冯氏结构与哈佛结构的区别应该在存储器的空间分别上,哈佛结构的数据区和代码区是分开的,它们即使地址相同,但空间也是不同的,主要表现在数据不能够当作代码来运行。(比如51---注)

地址线复用,就将它认为成冯氏结构,我认为这样不足取,应该是按照空间是否完全重合来辨别。比如PC机的代空间和数据空间是同一空间,所以是冯氏结构;51由于IO口不够,但代码空间和数据空间是分开的,所以还是哈佛构.(此种观点才是正确的--注)

另外,还有的把CISC RISC 和地址是否复用与是哪种结构这3这都混到一起。我认为这三者都没有必然的关系。只不过 RISC因为精简了指令集,没有了执行复杂功能的指令,为了提高性能,常采用哈佛结构,并且不复用地址线。(这种说法不具体,有待补充---注)

材料二:

哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。中央处理器首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度,如Microchip公司的PIC16芯片的程序指令是14位宽度,而数据是8位宽度。

目前使用哈佛结构的中央处理器和微控制器有很多,除了上面提到的Microchip公司的PIC系列芯片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列和安谋公司的ARM9、A RM10和ARM11,51单片机也属于哈佛结构

冯·诺伊曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置,因此程序指令和数据的宽度相同,如英特尔公司的8086中央处理器的程序指令和数据都是16位宽。

目前使用冯·诺伊曼结构的中央处理器和微控制器有很多。除了上面提到的英特尔公司的8086,英特尔公司的其他中央处理器、安谋公司的ARM7、MIPS公司的MIPS处理器也采用了冯·诺伊曼结构。

评论:哈佛结构和冯.诺依曼结构都是一种存储器结构。哈佛结构是将指令存储器和数据存储器分开的一种存储器结构;而冯.诺依曼结构将指令存储器和数据存储器合在一起的存储器结构。-----注

材料三:

MCS-51单片机有着嵌入式处理器经典的体系结构,这种体系结构在当前嵌入式处理器的高端ARM系列上仍然在延续,这就是哈佛结构。相对于大名鼎鼎的冯·诺依曼结构,哈佛结构的知名度显然逊色许多,但在嵌入式应用领域,哈佛结构却拥有着绝对的优势。哈佛结构与冯·诺依曼结构的最大区别在于冯·诺

依曼结构的计算机采用代码与数据的统一编址,而哈佛结构是独立编址的,代码空间与数据空间完全分开。

在通用计算机系统中,应用软件的多样性使得计算机要不断地变化所执行的代码的内容,并且频繁地对数据与代码占有的存储器进行重新分配,这种情况下,冯·诺依曼结构占有绝对优势,因为统一编址可以最大限度地利用资源,而哈佛结构的计算机若应用于这种情形下则会对存储器资源产生理论上最大可达50%的浪费,这显然是不合理的。

但是在嵌入式应用中,系统要执行的任务相对单一,程序一般是固化在硬件里。当然这时使用冯·诺依曼结构也完全可以,代码区和数据区在编译时一次性分配好了而已,但是其灵活性得不到体现,所以现在大量的单片机也还在沿用冯·诺依曼结构,如TI的MSP430系列、Freescale的HCS08系列等。

那是为什么说哈佛结构有优势呢?嵌入式计算机在工作时与通用计算机有着一些区别:嵌入式计算机在工作期间的绝大部分时间是无人值守的,而通用计算机工作期间一般是有人操作的;嵌入式计算机的故障可能会导致灾难性的后果,而通用计算机一般就是死死机,重新启动即可。这两点决定了对嵌入式计算机的一个基本要求:可靠性。

使用冯·诺依曼结构的计算机,程序空间不封闭,期程序空间的数据在运行期理论上可以被修改,此外程序一旦跑飞也有可能运行到数据区。虽然都是一些不常见的特殊情况下,但是看看哈佛结构德计算机在这些情况下是怎样的:基于哈佛结构的处理器入MCS-51,不需要可以对代码段进行写操作的指令,所以不会有代码区被改写的问题;程序只能在封闭的代码区中运行,不可能跑到数据区,这也是跑飞的几率减少并且跑飞后的行为有规律(数据区的数据是不断变化的而代码区是不变的)。

所以,相对于冯·诺依曼结构,哈佛结构更加适合于那些程序固化、任务相对简单的控制系统。

总结::::::::::

冯.诺依曼(Von Neumann)指出:程序只是一种(特殊)的数据,它可以像数据一样被处理,因此可以和数据一起被存储在同一个存储器中——这就是著名的冯.诺依曼原理。注意:数据总线和地址总线共用。--注

哈佛结构:

哈佛结构是一种并行体系结构,它的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个独立的存储器,每个存储器独立编址、独立访问。与两个存储器相对应的是系统的4条总线:程序的数据总线与地址总线,数据的数据总线与地址总线。这种分离的程序总线和数据总线允许在一个机器周期内同时获得指令字(来自程序存储器)和操作数(来自数据存储器),从而提高了执行速度,使数据的吞吐率提高了1倍。又由于程序和数据存储器在两个分开的物理空间中,因此取指和执行能完全重叠。CPU首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。

图2 Harvard architecture

哈佛结构采用数据存储器与程序代码存储器分开,各自有自己的数据总线与地址总线。但这是需要C PU提供大量的数据线,因而很少使用哈佛结构作为CPU外部构架来使用。但是对于 CPU内部,通过使用不同的数据和指令cache,可以有效的提高指令执行的效率,因而目前大部分计算机体系都是CPU内部的哈佛结构+CPU外部的冯·诺伊曼的结构。

MCS-51指令详解

MCS-51指令详解 说明:为了使MCS-51单片机初学者快速入门,迅速掌握单片机指令含意、操作码、操作数及;对应地址,汇编语言怎样编写等,现按指令操作码按顺序编写,可对照本公司编写的<>一书第145页指令手册查看,更详细资料请阅第四章 MCS-51指令系统" 及第124页指令系统摘要。并在仿真器上装入;JJM.HEX文件,并对有关单元置数,用单步(F8)验证其正确性及其运行结果。 ORG 0000H NOP ;空操作指令 AJMP L0003 ;绝对转移指令 L0003: LJMP L0006 ;长调用指令

L0006: RR A ;累加器A内容右移(先置A为88H) INC A ; 累加器A 内容加1 INC 01H ;直接地址(字节01H)内容加1 INC @R0 ; R0的内容(为地址) 的内容即间接RAM加1 ;(设R0=02H,02H=03H,单步执行后02H=04H) INC @R1 ; R1的内容(为地址) 的内容即间接RAM加1 ;(设R1=02H,02H=03H,单步执行后02H=04H) INC R0 ; R0的内容加1 (设R0为00H,单步执行后查R0内容为多少) INC R1 ; R1的内容加1(设R1为01H,单步执行后查R1内容为多少)

INC R2 ; R2的内容加1 (设R2为02H,单步执行后查R2内容为多少) INC R3 ; R3的内容加1(设R3为03H,单步执行后查R3内容为多少) INC R4 ; R4的内容加1(设R4为04H,单步执行后查R4内容为多少) INC R5 ; R5的内容加1(设R5为05H,单步执行后查R5内容为多少) INC R6 ; R6的内容加1(设R6为06H,单步执行后查R6内容为多少) INC R7 ; R7的内容加1(设R7为07H,单步执行后查R7内容为多少) JBC 20H,L0017; 如果位(如20H,即24H的0位)为1,则转移并清0该位L0017: ACALL S0019 ;绝对调用 S0019: LCALL S001C ;长调用

AT89C51单片机的基本结构和工作原理

AT89C51单片机的主要工作特性: ·内含4KB的FLASH存储器,擦写次数1000次; ·内含28字节的RAM; ·具有32根可编程I/O线; ·具有2个16位可编程定时器; ·具有6个中断源、5个中断矢量、2级优先权的中断结构; ·具有1个全双工的可编程串行通信接口; ·具有一个数据指针DPTR; ·两种低功耗工作模式,即空闲模式和掉电模式; ·具有可编程的3级程序锁定定位; AT89C51的工作电源电压为5(1±0.2)V且典型值为5V,最高工作频率为24MHz. AT89C51各部分的组成及功能: 1.单片机的中央处理器(CPU)是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。

(1)运算器 运算器主要用来实现算术、逻辑运算和位操作。其中包括算术和逻辑运算单元ALU、累加器ACC、B寄存器、程序状态字PSW和两个暂存器等。 ALU是运算电路的核心,实质上是一个全加器,完成基本的算术和逻辑运算。算术运算包括加、减、乘、除、增量、减量、BCD码运算;逻辑运算包括“与”、“或”、“异或”、左移位、右移位和半字节交换,以及位操作中的位置位、位复位等。 暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。 累加器是CPU使用最频繁的一个寄存器。ACC既是ALU处理数据的来源,又是ALU运算结果的存放单元。单片机与片外RAM或I/O扩展口进行数据交换必须通过ACC来进行。 B寄存器在乘法和除法指令中作为ALU的输入之一,另一个输入来自ACC。运算结果存于AB寄存器中。 (2)控制器 控制器是识别指令并根据指令性质协调计算机内各组成单元进行工作的部件,主要包括程序计数器PC、PC增量器、指令寄存器、指令译码器、定时及控制逻辑电路等,其功能是控制指令的读入、译码和执行,并对指令执行过程进行定时和逻辑控制。AT89C51单片机中,PC是一个16位的计数器,可对64KB程序存储器进行寻址。复位时PC的内容是0000H. (3)存储器 单片机内部的存储器分为程序存储器和数据存储器。AT89C51单片机的程序存储器采用4KB的快速擦写存储器Flash Memory,编程和擦除完全是电器实现。 (4)外围接口电路 AT89C51单片机的外围接口电路主要包括:4个可编程并行I/O口,1个可编程串行口,2个16位的可编程定时器以及中断系统等。 AT89C51的工作原理: 1.引脚排列及功能 AT89C51的封装形式有PDIP,TQFP,PLCC等,现以PDIP为例。 (1)I/O口线 ·P0口 8位、漏极开路的双向I/O口。 当使用片外存储器及外扩I/O口时,P0口作为低字节地址/数据复用线。在编程时,P0口可用于接收指令代码字节;程序校验时,可输出指令字节。P0口也可做通用I/O口使用,但需加上拉电阻。作为普通输入时,应输出锁存器配置1。P0口可驱动8个TTL负载。 ·P1口 8位、准双向I/O口,具有内部上拉电阻。 P1口是为用户准备的I/O双向口。在编程和校验时,可用作输入低8位地址。用作输入时,应先将输出锁存器置1。P1口可驱动4个TTL负载。 ·P2 8位、准双向I/O口,具有内部上拉电阻。 当使用外存储器或外扩I/O口时,P2口输出高8位地址。在编程和校验时,P2口接收高字节地址和某些控制信号。 ·P3 8位、准双向I/O口,具有内部上拉电阻。 P3口可作为普通I/O口。用作输入时,应先将输出锁存器置1。在编程/校验时,P3口接收某些控制信号。它可驱动4个TTL负载。 (2)控制信号线

8051单片机的内部结构

8051是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。 8051单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明: 中央处理器(CPU)是整个单片机的核心 部件,是8位数据宽度的处理器,能处理 8位二进制数据或代码,CPU负责控制、 指挥和调度整个单元系统协调的工作,完 成运算和控制输入输出功能等操作。 ·数据存储器(RAM): 8051内部有128个8位用户数据存储 单元和128个专用寄存器单元,它们是统 一编址的,专用寄存器只能用于存放控制 指令数据,用户只能访问,而不能用于存 放用户数据,所以,用户能使用的的RAM 只有128个,可存放读写的数据,运算的 中间结果或用户定义的字型表。 ·程序存储器(ROM): 8051共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。 ·定时/计数器(ROM): 8051有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。 ·并行输入输出(I/O)口: 8051共有4组8位I/O口(P0、P1、P2或P3),用于对外部数据的传输。 ·全双工串行口: 8051内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以 用作异步通信收发器,也可以当同步移位器使用。 ·中断系统: 8051具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可 满足不同的控制要求,并具有2级的优先级别选择。 ·时钟电路: 8051内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序,但8051 单片机需外置振荡电容。

51单片机各引脚及端口详解

51单片机各引脚及端口详解 51单片机引脚功能: MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图: l P0.0~P0.7 P0口8位双向口线(在引脚的39~32号端子)。 l P1.0~P1.7 P1口8位双向口线(在引脚的1~8号端子)。 l P2.0~P2.7 P2口8位双向口线(在引脚的21~28号端子)。 l P3.0~P3.7 P2口8位双向口线(在引脚的10~17号端子)。 这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。 P0口有三个功能: 1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口) 2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)

3、不扩展时,可做一般的I/O使用,但部无上拉电阻,作为输入或输出时应在外部接上拉电阻。 P1口只做I/O口使用:其部有上拉电阻。 P2口有两个功能: 1、扩展外部存储器时,当作地址总线使用 2、做一般I/O口使用,其部有上拉电阻; P3口有两个功能: 除了作为I/O使用外(其部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。 有部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的, 即:编程脉冲:30脚(ALE/PROG) 编程电压(25V):31脚(EA/Vpp) 接触过工业设备的兄弟可能会看到有些印刷线路板上会有一个电池,这个电池是干什么用的呢?这就是单片机的备用电源,当外接电源下降到下限值时,备用电源就会经第二功能的方 式由第9脚(即RST/VPD)引入,以保护部RAM中的信息不会丢失。 在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输 入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。 ALE 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。参见图2(8051扩展2KB EEPROM电路,在图中ALE与4LS373锁存器的G相连接,当CPU对外部进行存取时,用以锁住地址的低位地址, 即P0口输出。 由于ALE是以晶振六分之一的固定频率输出的正脉冲,当系统中未使用外部存储器时,ALE 脚也会有六分之一的固定频率输出,因此可作为外部时钟或外部定时脉冲使用。

51单片机教程:单片机逻辑与或异或指令详解

51单片机教程:单片机逻辑与或异或指令详解 ANL A,Rn ;A 与Rn 中的值按位’与’,结果送入A 中 ANL A,direct;A 与direct 中的值按位’与’,结果送入A 中 ANL A,@Ri;A 与间址寻址单元@Ri 中的值按位’与’,结果送入A 中 ANL A,#data;A 与立即数data 按位’与’,结果送入A 中 ANL direct,A;direct 中值与A 中的值按位’与’,结果送入direct 中 ANL direct,#data;direct 中的值与立即数data 按位’与’,结果送入direct 中。这几条指令的关键是知道什么是逻辑与。这里的逻辑与是指按位与 例:71H 和56H 相与则将两数写成二进制形式: (71H)01110001 (56H)00100110 结果00100000 即20H,从上面的式子可以看出,两个参与运算的值只要其中有一个位上是0,则这位的结果就是0,两个同是1,结果才是1。 理解了逻辑与的运算规则,结果自然就出来了。看每条指令后面的注释 下面再举一些例子来看。 MOV A,#45H;(A)=45H MOV R1,#25H;(R1)=25H MOV 25H,#79H;(25H)=79H ANL A,@R1;45H 与79H 按位与,结果送入A 中为41H (A)=41H ANL 25H,#15H;25H 中的值(79H)与15H 相与结果为(25H)=11H)ANL 25H,A;25H 中的值(11H)与A 中的值(41H)相与,结果为(25H)=11H 在知道了逻辑与指令的功能后,逻辑或和逻辑异或的功能就很简单了。逻辑或是按位或,即有1 为1,全0 为0。例:

51单片机的结构及其组成

51单片机的结构及其组成 在前面的五节课当中,我们讲述的都是一些基础概念的知识,从这节开始,我们就正式的切入到我们所在学习的对象--51单片机。 学习单片机的内部结构之前,我们先了解下我们现在正在使用的计算机的几大组成部份: 计算机的五个组成部份: 运算器:用于实现算术和逻辑运算。计算机的运算和处理都在这里进行; 控制器:是计算机的控制指挥部件,使计算机各部份能自动协调的工作; 存储器:用于存放程序和数据;(又分为内存储器和外存储器,内存储器就如我们电脑的硬盘,外存储器就如我们的U盘) 输入设备:用于将程序和数据输入到计算机(例如我们电脑的键盘、扫描仪); 输出设备:输出设备用于把计算机数据计算或加工的结果以用户需要的形式显示或保存(例如我们的打印机)。 注: 1、通常把运算器和控制器合在一起称为中央处理器(Central Processing Unit),简称CPU。 2、通常把外存储器、输入设备和输出设备合在一起称之为计算机的外部设备。 上面讲的是我们的个人办公计算机,那么51单片机的内部又有些什么部件组成呢? 1、中央处理单元(8位) 数据处理、测试位,置位,复位位操作 2、只读存储器(4KB或8KB) 永久性存储应用程序,掩模ROM、EPROM、EEPROM 3、随机存取内存(128B、128B SFR) 在程序运行时存储工作变量和资料 4、并行输入/输出口(I / O)(32条) 作系统总线、扩展外存、I / O接口芯片 5、串行输入/输出口(2条) 串行通信、扩展I / O接口芯片 6、定时/计数器(16位、加1计数) 计满溢出、中断标志置位、向CPU提出中断请求,与CPU之间独立工作 7、时钟电路 内振、外振。

51单片机的P0口工作原理详细讲解

51单片机的P0口工作原理详细讲解 一、P0端口的结构及工作原理P0端口8位中的一位结构图见下图: 由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。再看图的右边,标号为P0.X引脚的图标,也就是说P0.X引脚可以是P0.0到 P0.7的任何一位,即在P0口有8个与上图相同的电路组成。下面,我们先就组成P0口的每个单元部份跟大家介绍一下:先看输入缓冲器:在P0口中,有两个三态的缓冲器,在学数字电路时,我们已知道,三态门有三个状态,即在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),大家看上图,上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为‘读锁存器’端)有效。下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为‘读引脚’的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的部数据总线上。D锁存器:构成一个锁存器,通常要用一个时序电路,时序的单元电路在学数字电路时我们已知道,一个触发器可以保存一位的二进制数(即具有保持功能),在51单片机的32根I/O口线中都是用一个D触发器来构成锁存器的。大家看上图中的D 锁存器,D端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。对于D触发器来讲,当D输入端有一个输入信号,如果这时控制端CP没有信号(也就是时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端Q非的。如果时序控制端CP的时序脉冲一旦到了,这时D端输入的数据就会传输到Q及Q非端。数据传送过来后,当CP时序控制端的时序信号消失了,这时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来了)。如果下一个时序控制脉冲信号来了,这时D端的数据才再次传送到Q端,从而改变Q端的状态。多路开关:在51单片机中,当部的存储器够用(也就是不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器)时,P0口可以作为通用的输入输出端口(即I/O)使用,对于8031(部没有ROM)的单片机或者编写的程序超过了单片机部的存储器容量,需要外扩存储器时,P0口就作为‘地址/数据’总线使用。那么这个多路选择开关就是用于选择是做为普通I/O口使用还是作为‘数据/地址’总线使用的选择开关了。大家看上图,当多路开关与下面接通时,P0口是作为普通的I/O口使用的,当多路开关是与上面接通时,P0口是作为‘地址/数据’总线使用的。输出驱动部份:从上图中我们已看出,P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。 前面我们已将P0口的各单元部件进行了一个详细的讲解,下面我们就来研究一下P0口做为I/O口及地址/数据总线使用时的具体工作过程。1、作为I/O端口使用时的工作原理P0口作为I/O端口使用时,多路开关的控制信号为0(低电平),看上图中的线线部份,多路开关的控制信号同时与与门的一个输入端是相接的,我们知道与门的逻辑特点是“全1出1,

51单片机CPU的内部结构

51单片机CPU的内部结构 在前面的课程中,我们已知道了单片机内部有一个8位的CPU,同时知道了CPU 内部包含了运算器,控制器及若干寄存器。在这节课,我们就与大家一起来讨论一下51单片机CPU的内部结构及工作原理。 从上图中我们可以看到,在虚线框内的就是CPU的内部结构了,8位的MCS-51单片机的CPU内部有数术逻辑单元ALU(Arithmetic Logic Unit)、累加器A (8位)、寄存器B(8位)、程序状态字PSW(8位)、程序计数器PC(有时也称为指令指针,即IP,16位)、地址寄存器AR(16位)、数据寄存器DR(8位)、指令寄存器IR(8位)、指令译码器ID、控制器等部件组成。 1、运算器(ALU)的主要功能 A)算术和逻辑运算,可对半字节(一个字节是8位,半个字节就是4位)和单字节数据进行操作。 B)加、减、乘、除、加1、减1、比较等算术运算。 C)与、或、异或、求补、循环等逻辑运算。 D)位处理功能(即布尔处理器)。 由于ALU内部没有寄存器,参加运算的操作数,必须放在累加器A中。累加器A 也用于存放运算结果。 例如:执行指令 ADD A,B 执行这条指令时,累加器A中的内容通过输入口In_1输入ALU,寄存器B通过内部数据总线经输入口In_2输入ALU,A+B的结果通过ALU的输出口Out、内部

数据总线,送回到累加器A。 2、程序计数器PC PC的作用是用来存放将要执行的指令地址,共16位,可对64K ROM直接寻址,PC低8位经P0口输出,高8位经P2口输出。也就是说,程序执行到什么地方,程序计数器PC就指到哪里,它始终是跟蹿着程序的执行。我们知道,用户程序是存放在内部的ROM中的,我们要执行程序就要从ROM中一个个字节的读出来,然后到CPU中去执行,那么ROM具体执行到哪一条呢?这就需要我们的程序计数器PC来指示。 程序计数器PC具有自动加1的功能,即从存储器中读出一个字节的指令码后,PC自动加1(指向下一个存储单元)。 3、指令寄存器IR 指令寄存器的作用就是用来存放即将执行的指令代码。 在这里我们先简单的了解下CPU执行指令的过程,首先由程序存储器(ROM)中读取指令代码送入到指令寄存器,经译码器译码后再由定时与控制电路发出相应的控制信号,从而完成指令的功能。关于指令在单片机内部的执行过程,我们在后面将会以另一节课来进行详细的讲解。 4、指令译码器ID 用于对送入指令寄存器中的指令进行译码,所谓译码就是把指令转变成执行此指令所需要的电信号。当指令送入译码器后,由译码器对该指令进行译码,根据译码器输出的信号,CPU控制电路定时地产生执行该指令所需的各种控制信号,使单片机正确的执行程序所需要的各种操作。 5、地址寄存器AR(16位) AR的作用是用来存放将要寻址的外部存储器单元的地址信息,指令码所在存储单元的地址编码,由程序计数器PC产生,而指令中操作数所在的存储单元地址码,由指令的操作数给定。从上图中我们可以看到,地址寄存器AR通过地址总线AB与外部存储器相连。 6、数据寄存器DR 用于存放写入外部存储器或I/O端口的数据信息。可见,数据寄存器对输出数据具有锁存功能。数据寄存器与外部数据总线DB直接相连。 7、程序状态字PSW 用于记录运算过程中的状态,如是否溢出、进位等。 例如,累加器A的内容83H,执行: ADD A,#8AH ;累加器A与立即数8AH相加,并把结果存放在A中。 指令后,将产生和的结果为[1]0DH,而累加器A只有8位,只能存放低8位,即0DH,元法存放结果中的最高位B8。为些,在CPU内设置一个进位标志位C,当执行加法运算出现进位时,进位标志位C为1。 8、时序部件 由时钟电路和脉冲分配器组成,用于产生微操作控制部件所需的定时脉冲信号在后面的课程中我们将会安排一节课来讲解这些专用的寄存器。

51单片机汇编语言教程:13课单片机逻辑与或异或指令详解

51单片机汇编语言教程:第13课-单片机逻辑与或异或指令详解

结果11111001 而所有的或指令,就是将与指仿中的ANL换成ORL,而异或指令则是将ANL换成XRL。即或指令: ORL A,Rn;A和Rn中的值按位'或',结果送入A中 ORL A,direct;A和与间址寻址单元@Ri中的值按位'或',结果送入A中 ORL A,#data;A和立direct中的值按位'或',结果送入A中 ORL A,@Ri;A和即数data按位'或',结果送入A中 ORL direct,A;direct中值和A中的值按位'或',结果送入direct中 ORL direct,#data;direct中的值和立即数data按位'或',结果送入direct中。 异或指令: XRL A,Rn;A和Rn中的值按位'异或',结果送入A中 XRL A,direct;A和direct中的值按位'异或',结果送入A中 XRL A,@Ri;A和间址寻址单元@Ri中的值按位'异或',结果送入A中 XRL A,#data;A和立即数data按位'异或',结果送入A中 XRL direct,A;direct中值和A中的值按位'异或',结果送入direct中 XRL direct,#data;direct中的值和立即数data按位'异或',结果送入direct中。 练习: MOV A,#24H MOV R0,#37H ORL A,R0 XRL A,#29H MOV35H,#10H ORL35H,#29H MOV R0,#35H ANL A,@R0 四、控制转移类指令 无条件转移类指令 短转移类指令 AJMP addr11 长转移类指令

51汇编伪指令详解

51汇编伪指令 伪指令是对汇编起某种控制作用的特殊命令,其格式与通常的操作指令一样,并可加在汇编程序的任何地方,但它们并不产生机器指令。许多伪指令要求带参数,这在定义伪指令时由“表达式”域指出,任何数值与表达式匀可以作为参数。不同汇编程序允许的伪指令并不相同,以下所述的伪指令仅适用于MASM51系统,但一些基本的伪指令在大部份汇编程序中都能使用,当使用其它的汇编程序版本时,只要注意一下它们之间的区别就可以了。 MASM51中可用的伪指令有: ORG 设置程序起始地址 END 标志源代码结束 EQU 定义常数 SET 定义整型数 DATA 给字节类型符号定值 BYTE 给字节类型符号定值 WROD 给字类型符号定值 BIT 给位地址取名 ALTNAME 用自定义名取代保留字 DB 给一块连续的存储区装载字节型数据 DW 给一块连续的存储区装载字型数据 DS 预留一个连续的存储区或装入指定字节。 INCLUDE 将一个源文件插入程序中 TITLE 列表文件中加入标题行

NOLIST 汇编时不产生列表文件 NOCODE 条件汇编时,条件为假的不产生清单 一、ORG 伪指令ORG用于为在它之后的程序设置地址值,它有一个参数,其格式为: ORG 表达式 表达式可以是一个具体的数值,也可以包含变量名,如果包含变量名,则必须保证,当第一次遇到这条伪指令时,其中的变量必须已有定义(已有具体的数值),否则,无定义的值将由0替换,这将会造成错误。在列表文件中,由ORG定义的指令地址会被打印出来。 ORG指令有什么用途呢?指令被翻译成机器码后,将被存入系统的ROM中,一般情况下,机器码总是一个接一个地放在存储器中,但有一些代码,其位置有特殊要求,典型的是五个中断入口,它们必须被放在0003H,000BH,0013H,001BH和0023H的位置,否则就会出错,如果我们编程时不作特殊处理,让机器代码一个接一个地生成,不能保证这些代码正好处于这些规定的位置,执行就会出错,这时就要用到ORG伪指令了。看如下例子: 例: INT_0 EQU 1000H TIME_0 EQU 1010H INT_1 EQU 1020H TIME_1 EQU 1030H SERIAL EQU 1040H

外文翻译---51系列单片机的结构和功能

外文翻译---51系列单片机的结构和功能

外文资料翻译 英文原文: Structure and function of the MCS-51 series Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same. 8051 daily representatives- 51 serial one-chip computers . An one-chip computer system is made up of several following parts: (1) One microprocessor of 8 (CPU). (2) At slice data memory RAM (128B/256B),it use not depositing not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. (3) Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc.. (4) Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction, may use as exporting too. (5) Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, and can according to count or result of timing realize the control of the computer. (6) Five cut off cutting off the control (universal asynchronous receiver/transmitter (UART) ), is it realize one-chip computer or one-chip computer and serial communication of computer to use for. (8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 megahertz now at most. Every the above-mentioned part was joined through the inside data bus .Among them, CPU is a core of the one-chip computer, it is the control of the computer and command center, made up of such parts as arithmetic unit and controller , etc.. The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing devices temporarily of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate ACC count by 2 input ends entered of checking etc. temporarily as one operation often, come from person who store 1 operation is it is it make operation to go on to count temporarily , operation result and loop back ACC with another one. In addition, ACC is often regarded as the transfer station of data transmission on 8051 inside. The same as general microprocessor, it is the busiest register. Help remembering that agreeing with a expresses in the order. The controller includes the procedure counter, the order is deposited, the

单片机伪指令和指令详解

ASM-51汇编伪指令 一、伪指令分类 1.符号定义 SEGMENT, EQU, SET, DATA, IDATA, XDATA, BIT, CODE 2.存储器初始化/保留 DS, DB, DW, DBIT 3.程序链接 PUBILC, EXTRN, NAME 4.汇编程序状态控制 ORG, END 5.选择段的伪指令 RSEG, CSEG, DSEG, XSEG, ISEG, BSEG, USING 二、伪指令具体说明 1.符号定义伪指令 1)SEGMENT伪指令 格式:段名SEGMENT 段类型 说明:SEGMENT 伪指令说明一个段。段就是一块程序代码或数据存储器。允许使用的段类型为: ●CODE代码空间 ●DATA 可以直接寻址的内部数据空间 ●XDATA外部数据空间 ●IDATA可以间接寻址的整个内部数据空间 ●BIT位空间 例子:(段符号用于表达式时,代表被连接段的基地址) STACK SEGMENT IDATA RSEG STACK DS 10H ;保留16字节做堆栈 MOV SP , #STACK-1 ;堆栈指针初始化

2)EQU伪指令 格式:符号名 EQU 表达式 符号名 EQU 特殊汇编符号 说明:EQU表示把一个数值或特殊汇编符号赋予规定的名字。 一个表达式赋予一个符号,必须是不带向前访问的表达式。 例子:N27 EQU 27; ACCUM EQU A ;定义ACCUM代替特殊汇编符号A(累加器) HERE EQU $; HERE为当前位置计数器的值 3)SET伪指令 格式:符号名 SET 表达式 符号名 SET 特殊汇编符号 说明:SET类似EQU,区别在于可以用另一个SET伪指令在以后对定义过的符号重新定义。 例子:COUNT SET 0 COUNT SET COUNT+1 4)BIT伪指令 格式:符号名 BIT 位地址 说明: BIT伪指令把一个地址赋予规定的符号名。该符号类型取段类型BIT. 例子: RSEG DATA_SEG; CONTROL: DS 1 ALATM BIT CONTROL.0; OPEN_BOARD BIT ALATM+1 ;下一位 RESET_BOARD BIT 60H ;下一个绝对的位 5)DATA伪指令 格式:符号名 DATA 表达式 说明:DATA伪指令把片内的数据地址赋予所规定的符号名。符号段类型为DATA. 例子:CONIN DATA SBUF;定义CONIN 到串行口缓冲器的地址

51单片机的内部结构

51单片机的内部结构 MCS-51单片机内部结构 8051是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。 8051单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、 并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明: ·中央处理器: 中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位 二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控 制输入输出功能等操作。 ·数据存储器(RAM): 8051内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据, 所以,用户能使用的的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义 的字型表。 ·程序存储器(ROM): 8051共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。 ·定时/计数器(ROM): 8051有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。 ·并行输入输出(I/O)口: 8051共有4组8位I/O口(P0、 P1、P2或P3),用于对外部数据的传输。 ·全双工串行口: 8051内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。 ·中断系统: 8051具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。

51单片机IO口应用详解

51单片机IO口应用详解 MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照单片机引脚图: 这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。 P0口有三个功能: 1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口) 2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口) 3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。 P1口只做I/O口使用:其内部有上拉电阻。 P2口有两个功能: 1、扩展外部存储器时,当作地址总线使用 2、做一般I/O口使用,其内部有上拉电阻; P3口有两个功能: 除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。 有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的, 即:编程脉冲:30脚(ALE/PROG) 编程电压(25V):31脚(EA/Vpp) 在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。 ALE 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起

80C51单片机内部结构和工作原理

第2章80C51单片机内部结构和工作原理 本章要点 80C51系列单片机内部结构 外部引脚功能 存储空间配置和功能 片内RAM结构和功能 特殊功能寄存器的用途和功能 程序计数器PC的作用和基本工作方式 I/O端口结构、工作原理及功能 时钟和时序 复位电路、复位条件和复位后状态 低功耗工作方式的作用和进入退出的方法 §2-1 内部结构和引脚功能 一、 二、引脚功能 40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。

⒈电源: ⑴VCC - 芯片电源,接+5V; ⑵VSS - 接地端; ⒉时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。 ⒊控制线:控制线共有4根, ⑴ALE/PROG:地址锁存允许/片内EPROM编程脉冲 ①ALE功能:用来锁存P0口送出的低8位地址 ②PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。 ⑵PSEN:外ROM读选通信号。 ⑶RST/VPD:复位/备用电源。 ①RST(Reset)功能:复位信号输入端。 ②VPD功能:在Vcc掉电情况下,接备用电源。 ⑷EA/Vpp:内外ROM选择/片内EPROM编程电源。 ①EA功能:内外ROM选择端。 ②Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。 ⒋I/O线 80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。 P3.0 ——RXD:串行口输入端; P3.1 ——TXD:串行口输出端; P3.2 ——INT0:外部中断0请求输入端; P3.3 ——INT1:外部中断1请求输入端; P3.4 ——T0:定时/计数器0外部信号输入端; P3.5 ——T1:定时/计数器1外部信号输入端; P3.6 ——WR:外RAM写选通信号输出端; P3.7 ——RD:外RAM读选通信号输出端。 §2-1 存储空间配置和功能 80C51的存储器组织结构可以分为三个不同的存储空间,分别是: ⑴64KB程序存储器(ROM),包括片内ROM和片外ROM; ⑵64KB外部数据存储器(外RAM); ⑶256B内部数据存储器(内RAM) (包括特殊功能寄存器)。 80C51存储空间配置图 一、程序存储器(ROM) 地址范围:0000H~FFFFH,共64KB。其中:

文献翻译-51系列单片机的结构和功能

Structure and function of the MCS-51 series Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have ,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same. 8051 daily representatives- 51 serial one-chip computer .An one-chip computer system is made up of several following parts:(1) One microprocessor of 8 (CPU).(2) At slice data memory RAM (128B/256B),it used to depositing not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc.(3)Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc..(4)Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction , may use as exporting too.(5)Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, and can according to count or result of timing realize the control of the computer.(6)Five cut off cutting off the control system of the source .(7)One all duplex serial I/O mouth of UART (universal asynchronous receiver/transmitter(UART)), is it realize one-chip computer or one-chip computer and serial communication of computer to use for.(8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 now at most. Every the above-mentioned part was joined through the inside data bus . Among them, CPU is a core of the one-chip computer, it is the control of the computer and command centre, made up of such parts as arithmetic unit and controller, etc.. The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing device temporarily of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate ACC count by 2 input ends entered of checking etc. temporarily as one operation often, come from person who store 1 operation is it is it make operation to go on to count temporarily , operation result and loop back ACC with another one. In addition, ACC is often regarded as the transfer

相关文档
最新文档