改善材料切削加工性的途径的方法

改善材料切削加工性的途径的方法
改善材料切削加工性的途径的方法

改善材料切削加工性的途径的方法

根据材料的性能分析,需要对材料进行相关的处理,才更方便我们进行切削加工,那么到底是如何做的呢?

1.合理选择材料的供应状态

在满足工件使用要求的前提下,应尽可能选择切削交给那个性能较好的工件材料,同时还应注意合理选择材料的供应状态。例如,低碳钢经冷拔加工后,可降低塑性,提高其切削加工性;中碳钢以部分球化的珠光体组织的切削加工性最好;高碳钢完全球化退火状态易于切削加工;锻造毛胚余量不均匀,且表层有硬皮,不如冷拔或热轧毛坯切削加工性好。

2.改善化学成分

如果在钢中适当添加一些元素,如硫、磷、铅、钙等,可使钢的切削加工性得到显著改善,这种钢称为易切削钢。易切削钢加工时的切削力小,易断屑,刀具耐用度高,已加工表面质量好。

3.进行热处理

生产中改善金属工件材料切削加工性最常用的办法之一是通过适当的热处理工艺,改变材料的金属组织,使材料的切削加工性得到改善。例如,高碳钢、工具的硬度偏高,且有较多的网状、片状的渗碳体组织,加工性差,经过球化退火即可降低硬度,并得到球状

渗碳体;热轧中碳钢的组织不均匀,经正火可使得其组织与硬度均匀;低碳钢的塑性太高,可通过正火适当降低塑性,提高硬度;马氏体不锈钢常要进行调质处理降低塑性;铸铁一般在切削加工前均要进行退火处理,降低表层硬度,以上措施都可以有效地改善材料的切削加工性。

此外,选用合适的刀具材料,确定合理的刀具角度和切削用量,安排适当的加工方法和加工顺序,也可以改善材料的切削加工性。

金属材料切削加工性

第一章金属材料切削加工性 切削加工性:Machinability,指金属材料被切削加工成合格零件的难易程度。例如:以车削45#钢为例: 材料硬度HB200(正火) 单位切削力κc=200kg/mm2 用YT15车刀车削:IT8 νc=120 θ=800oC 此种车削方法家喻户晓,人人皆知,谁都会做,没什么难点。 1. 铝合金,这是比较好加工的,κc=70,νc=800m/min时,θ也不高,T很长。 2. 灰口铸铁HT200 κc=114 断屑 切削加工性评价指标: ①刀具耐用度高;T ②许用切削速度高;νc ③已加工表面易于达到; ④车削时断屑; ⑤切削力小,切削温度低。F c θ 3. 45#淬火HRC50 切削力F c大,切削温度θ高,刀具耐用度T低。 一般情况下不车,只能磨削。IT8 §1—1 衡量切削加工性指标

以车削45#钢(HB200)为参照基准: 刀具材料:YT15; 刀具耐用度:T=60min ; [ν60]j =100m/min ; 当切削LY12 ν60=300m/min 相比 []6060300 3100 r j νκν= == 一、称相对加工性 相对加工性比较表 二、衡量指标: 1. 刀具耐用度T : T 较长,加工性较好。 例:45#钢 T=60min 30C r M n SiA T=20min 加工性差。 2. 切削速度νc : 例:45#钢 νc =100m/min YT15 LY12 νc =300m/min YG15

300 3 100 r κ= = 加工性好。 泰勒公式: 0.4c A T ν= 切削速度是根据刀具耐用度确定的。一定刀具耐用度下有一个允许的切削速度νT 。 3. 切削力F c (或者κc ) 凡切削力大者,加工性差。 单位切削力κc 比较 4. 切削温度(θ) 凡是切削温度高者,加工性差。 切削温度比较表 条件: νc =60m/min a p =3 f=0.1 见图(一) θo

机械材料切削性能研究3

徐州建筑学院继续教育学院 专业专科毕业论文 机械材料切削加工性能的研究学生姓名: 学号: 指导教师: 专业: 年级: 教学点:江苏省交通技师学院 二0一二年六月

摘要:材料的化学成分不一样, 材料的组织结构不同, 热处理的方法不同, 力学性能也不同, 其切削加工性也完全不同。而切削加工性又会影响刀具的耐用度、零件表面质量、产品的生产率, 甚至使被加工零件变成次品、废品。因此, 必须对影响工件材料切削加工性的因素进行分析, 为以后选择正确的加工工艺路线提供依据。主要对影响工件材料切削加工的各种因素如材料的力学性能、物理性能、化学性能、化学成分、金相组织等进行了较为详细的分析, 并提出了改善工件材料切削加工性的基本途径。 关键词:切削加工、热处理、工艺路线,物理特性 Abstract: Chemical composition is not the same as the organizational structure of the material, heat treatment, mechanical properties, its machinability is also completely different. Cutting would affect the durability of the tool parts surface quality, the product of productivity, even the parts to be processed into defective, waste. Therefore, we must analyze the factors affecting the machinability of the workpiece material to provide a basis for the future to select the correct processing line. On a variety of factors influence the machining of the workpiece material, such as the mechanical properties, physical properties, chemical properties, chemical composition, microstructure, etc. in a more detailed analysis, and basic way to improve workpiece material machinability. Keywords:Machining, heat treatment, process route, the physical characteristics

1常见的金属切削加工方式有哪些

1常见的金属切削加工方式有哪些? 答:一般可分为车削加工、铣削加工、钻削加工、镗削加工、刨削加工、磨削加工、齿轮加工及钳工等 2. 切削加工的主要特点是什么? 答:工件精度高、生产率高及适应性好,凡是要求具有一定几何尺寸精度和表面粗糙度的零件,通常都采用切削加工方法来制造。 3. 在切削加工过程中,刀具和工件之间的相对运动称为切削运动。按其所起的作用,切削运动分为两类()、()。 4.什么是主运动?什么是进给运动? 主运动切下切屑所必需的基本运动称为主运动。在切削运动中,主运动的速度最高,消耗的功率也最大。 进给运动使被切削的金属层不断投入切削的运动称为进给运动 5.什么是切削要素? 切削要素是指切削用量和切削层参数 6. 切削用量是(切削速度)、(进给量)及(背吃刀量)的总称。 7.切削速度、进给量、被吃刀量的计算: 1)切削速度 切削速度指主运动的线速度,以v表示,单位为m/s。当主运动为旋转运动时,其切削速度可按下式计算: 式中:D—被切削件(或刀具)的直径,mm; n—被切削件(或刀具)的转速,r/min。 2)进给量 进给量指工件(或刀具)每转一转时,刀具(或工件)沿进给方向移动的距离(也称走刀量),以f表示,单位为mm/r。如主运动为往复直线运动(如刨削、插削),则进给量的单位为mm/次。 3)背吃刀量 背吃刀量指工件已加工表面和待加工表面间的垂直距离(旧称切削深度),以ap表示,单位为mm。 在车床上车外圆时,背吃刀量计算公式为: 式中:D—工件待加工表面的直径,mm; n—工件已加工表面的直径,mm。 8游标卡尺使用有哪些注意事项? 1、测量前应把卡尺揩干净,检查卡尺的两个测量面和测量刃口是否平直无损,把两个量爪紧密贴合时,应无明显的间隙,同时游标和主尺的零位刻线要相互对准。这个过程称为校对游标卡尺的零位。 2、移动尺框时,活动要自如,不应有过松或过紧,更不能有晃动现象。用固定螺钉固定尺框时,卡尺的读数不应有所改变。在移动尺框时,不要忘记松开固定螺钉,亦不宜过松以免掉了。 3、当测量零件的外尺寸时:卡尺两测量面的联线应垂直于被测量表面,不能歪斜。测量时,可以轻轻摇动卡尺,放正垂直位置,决不可把卡尺的两个量爪调节到接近甚至小于所测尺寸,把卡尺强制的卡到零件上去。这样做会使量爪变形,或使测量面过早磨损,使卡尺失去应有

金属材料切削加工性

第一章 金属材料切削加工性 切削加工性:Machinability ,指金属材料被切削加工成合格零件的难易程度。 例如:以车削45#钢为例: 材料硬度 HB200(正火) 单位切削力 κc =200kg/mm 2 用YT15车刀车削: IT8 ν c =120 θ=800oC 此种车削方法家喻户晓,人人皆知,谁都会做,没什么难点。 1. 铝合金,这是比较好加工的,κc =70, νc =800m/min 时,θ也不高,T 很长。 2. 灰口铸铁HT200 κc =114 断屑 切削加工性评价指标: ① 刀具耐用度高; T ② 许用切削速度高; νc ③ 已加工表面易于达到; ④ 车削时断屑; ⑤ 切削力小,切削温度低。 F c θ 3. 45#淬火 HRC50 切削力F c 大,切削温度θ高,刀具耐用度T 低。 一般情况下不车,只能磨削。 IT8 §1—1 衡量切削加工性指标 以车削45#钢(HB200)为参照基准: 刀具材料:YT15; 刀具耐用度:T=60min ; [ν60]j =100m/min ; 当切削L Y12 ν60=300m/min 相比 []6060300 3100 r j νκν= == 一、称相对加工性 1. 刀具耐用度T : T 较长,加工性较好。 例:45#钢 T=60min 30C r M n SiA T=20min 加工性差。 2. 切削速度νc :

例:45#钢 νc =100m/min YT15 LY12 νc =300m/min YG15 300 3 100 r κ== 加工性好。 泰勒公式: 0.4c A T ν= 切削速度是根据刀具耐用度确定的。一定刀具耐用度下有一个允许的切削速度νT 。 3. 切削力F c (或者κc ) 凡切削力大者,加工性差。 4. 切削温度(凡是切削温度高者,加工性差。 条件: νc p θo 10 20 30 40 50 60 70 80 90 100 110 120 130 νc m/min 图(一) 1—GH131 2—1Cr18Ni9Ti 3—45#钢(正火) 4—HT200 YT15—45# YG8—GH131 1Cr18Ni9Ti HT200 γo =15o α0=8o κr =75o λs =0o γε=0.2 a p =3 f=0.1

第七章 工件材料的切削加工性习题

第七章工件材料的切削加工性 工件材料的种类繁多,性能各异。本章主要研究工件材料的切削加工性、影响切削加工性的因素和改善切削加工性的办法。 7.1 必备知识和考试要点 1.了解切削加工性的概念和衡量指标。 2.熟悉影响材料切削加工性的因素。 3.掌握改善材料切削加工性的办法。 4.了解难加工材料切削加工的问题和对策。 7. 2 典型范例和答题技巧。 [例7.1] 工件材料切削加工性的含义是什么?为什么说它是相对的? [答案] 工件材料切削加工性是指在一定的条件下,工件材料切削加工的难易程度。由于切削加工的条件和要求不同,材料的切削加工性有不同的内容和指标。所谓材料切削加工的难易,都是相对某种工件材料而言,这种难易程度是一个相对概念。例如以45钢为基准时,可以说高强度钢切削加工性不好,就是相对于45钢而言。 [例7.2] 常用的切削加工性衡量指标有哪些?各用于什么场合?何谓相对加工性? [答案] 常用的切削加工性衡量指标有:(1)以表面加工质量衡量切削加工性。容易获得好的加工表面质量的材料,切削加工性好,反之则差。该指标是零件精加工时常用的衡量指标。(2)以刀具耐用度衡量切削加工性。在相同的切削条件下加工不同材料时,刀具耐用度较长,或允许的切削速度较高,或切除金属体积较多,切削加工性好。其中相同切削条件下比较刀具耐用度和相同刀具耐用度下比较允许的切削速度是最常用的切削加工性指标,可适用于各种加工条件。(3)以单位切削力、切削温度衡量切削加工性。在相同的条件下,切削力小、切削温度低时,材料的切削加工性好。在粗加工或机床刚性、动力不足时用这种衡量指标。(4)以断屑性能衡量切削加工性。在自动机床、组合机床及自动生产线或深孔钻削等对工件材料断屑性能有要求时,采用这种衡量指标。 相对加工性K v是指以强度 b=0.637GPa的45钢的v60为基准,记为(v60);其它被切削材料的v60与之相比的数值,称为相对加工性,即,K v= v60/(v60);K v愈大,切削加工性愈好。 [例7.3] 影响工件材料切削加工性的主要因素有哪些?如何影响? [答案] 影响工件材料切削加工性的主要因素有:(1)工件材料的硬度。硬度包括材料的常温硬度、高温硬度、硬质点和加工硬化。硬度高时,切削力大,切削温度高,降低了刀具耐用度,甚至发生刀尖烧损或崩刃。(2)材料的强度。材料强度包括常温强度和高温强度。材料强度高时,切削力大,切削温度高,刀具磨损加快。(3)工件材料的塑性和韧性。塑性大时,切屑变形大,切削力增大,切削温度也较高,易发生粘结,刀具磨损加大,工件加工表面也粗糙。塑性低或呈脆性时,刀刃处的切削负荷大,刀具磨损加剧。工件材料韧性大时,断屑困难。(4)材料的导热系数。导热系数小的材料,切削温度高,切削加工性差。(5)材料的化学成分。化学元素对材料的作用不相同,影响材料的物理机械性能。钢中Cr、Ni、V、Mn、W、Mo等元素能提高材料的强度和硬度;而铅、硫、磷等能降低材料的强度和塑性,从而影响材料的加工性能。铸铁中硅、铝、铜等元素能促进铸铁碳的石墨化,可提高切削加工性;Cr、Mn、P、S等元素阻碍石墨化,会降低切削加工性。(6)材料的组织。材料的组织不同,其物理机械性能就不同,切削加工性也不一样。铁素体塑性大,切削加工性不好,珠光体硬度、强度、塑性等比较适中,切削加工性好。索氏体和托氏体、渗碳体和马氏体等,或强度大,或硬度高,或两者兼有,切削加工性差。奥氏体塑性、韧性大,加工硬化严重,切削加工性差。 [例7.4] 为什么说低碳钢与高碳钢的切削加工性都不如中碳钢?

金属材料的工艺性能

金属材料的工艺性能 金属材料的工艺性能是指制造工艺过程中材料适应加工的性能,即指其铸造性能、锻造性能、焊接性能、切削加工性能和热处理工艺性能。 1、铸造性能 金属材料铸造成形获得优良铸件的能力称为铸造性能,用流动性、收缩性和偏析来衡量。 1)流动性熔融金属的流动能力称为流动性。流动性好的金属容易充满铸型,从而获得外形完整和尺寸精确、轮廓清晰的铸件; 2)收缩性铸件在凝固和冷却的过程中,其体积和尺寸减少的现象称为收缩性。铸件用金属材料的收视率越小越好; 3)偏析铸锭或铸件化学成分和组织的不均匀现象称为偏析,偏析大会使铸件各部分的力学性能有很大的差异,降低铸件的质量。 被铸物质多为原为固态,但加热至液态的金属,如铜、铁、锡等,铸模的材料可以是沙,金属甚至陶瓷。南关菜市场东头前两年有两个人把大量的铝易拉罐盒熔化后倒进模子里铸成大大小小的铝锅、铝盆等 2、锻造性 工业革命前锻造是普遍的金属加工工艺,马蹄铁、冷兵器、铠甲均由各国的铁匠手锻造(俗称打铁),金银首饰加工、金属包装材料是锻造与冲压的总和。什么是锻造性能? 锻造性能:金属材料用锻压加工方法成形的适应能力称锻造性。

锻造性主要取决于金属材料的塑性和变形抗力。塑性越好,变形抗力越小,金属的锻造性能越好。高碳钢不易锻造,高速钢更难。 (塑性:断裂前材料产生永久变形的能力。) 3、焊接性 金属材料对焊接加工的适应性成为焊接性。也就是在一定的焊接工艺条件下,获得优质焊接接头的难易程度。钢材的含碳量高低是焊接性能好坏的主要因素,含碳量和合金元素含量越高,焊接性能越差。4、切削加工性能 切削加工性能一般用切削后的表面质量(用表面粗糙程度高低衡量)和道具寿命来表示。金属材料具有适当的硬度和足够的脆性时切削性良好。改变钢的化学成分(如加入少量铅、磷等元素)和进行适当的热处理(如低碳钢进行正火,高碳钢进行球化退火)可以提高刚的切削加工性能。(热处理的四把火:正火、退火、淬火、回火等,后面我们将进一步学习。)铜有良好的切削加工性能。 5、热处理工艺性能 钢的热处理工艺性能主要考虑其淬透性,即钢接受淬火的能力。(淬火能获得较高的硬度和光洁的表面),含锰、铬、镍等元素的合金钢淬透性比较好,碳钢的淬透性较差。铝合金的热处理要求较严,铜合金只有几种可以熔热处理强化。三国时诸葛亮带兵打仗,请当时的著名工匠蒲元为他造了3000把钢刀,蒲元用了(清水淬其锋)的热处理工艺,经过千锤百炼,使钢刀削铁如泥,从而大败敌军.有关方面的成语:趁热打铁、斩钉截铁等。

塑料的切削加工方法

塑料制件一般采用直接成型的方法生产,但有些塑件直接成型困难或对其精度要求高时,必须进行切削加工。塑件的切削加工一般采用加工金属的设备。由于塑料的性能和金属相差较大,且塑料品种繁多,其种类不同性能也有较大差异,所以塑件的切削加工有它自身的特点。 2塑料的性能对切削加工的影响 热性能 和金属相比,塑料的热容量小,导热性差(其导热系数只有金属的千分之三或更小),热膨胀系数大(比金属大1.5~20倍)。故在切削过程中因摩擦而产生的热量主要传给刀具。即使少量热量传给塑件,因难以传入塑件内部,极易产生局部过热,引起塑件变色、熔融、甚至燃烧。而且温度过高,塑件的弹性变形加剧,影响塑件的表面质量和尺寸精度,严重时引起工件弹跳,甚至造成事故。因此,加工中常采用冷却剂(一般用压缩空气)降低温度。 弹性模量 塑料的弹性模量只有金属的1/10~1/16,切削加工时,若刀具和夹具对它施加压力过大,会引起较大的弹性变形,影响塑件的加工精度,严重时会造成加工困难。因此在切削加工时,刀具的参数要合理,刃口要锋利,切削用量应适当,以减小切削力。夹紧力不可过大。 塑料切屑的特点 在高速切削时,被切下来的塑料碎屑呈胶熔状态,遇冷即硬化。在加工过程中,碎屑极易粘附在刀具上,从而改变刀具的角度,增大切削深度,影响塑件的加工精度,因此应及时除去切屑。此外塑料制件在切削加工过程中,会产生大量切屑粉尘,必须采取有效的通风除尘措施,使空气中的粉尘含量符合国家规定的标准。 3 刀具材料的选择 刀具的材料主要有高速钢、硬质合金、金刚石等。切削一般的塑料,可选用前两种刀具材料。相比较而言,高速钢的磨利性较好,选用高速钢刀具并仔细刃磨,能使刀具刃口更锋利,但其耐用度低于硬质合金刀具。加工玻璃钢宜选用金刚石

七种常用金属加工方法

七种常用的金属加工方法 组成机器的零件大小不一。金属切削加工方法也多种多样。常用的形状和结构各不相同。有车削、钻削、镗削、刨削、拉削、铣削和磨削等。尽管它加工原理方面有许多共同之处。切削运动形式不同,但由于所用机床和刀具不同,所以它有各自的工艺特点及应用范围。 一、车削 1.1 车削的定义 英文名称:turning 定义:工件旋转作主运动,车刀作进给运动的切削加工方法。 车削的主运动为零件旋转运动,特别适用于加工回转面,刀具直线移动为进给运动。如图1-1所示。 图1-1 车削加工示意图 由于车削比其他加工方法应用的普遍。车床往往占机床总数的一般的机械加工车间中20%~50%甚至更多。根据加工的需要。如卧式车床、立式车床、转塔车床有很多类型车床、自动车床和数控车床等。卧式车床和立式车床结构如图1-2,1-3,1-4所示。 图1-2 卧式车床和立式车床结构图

图1-3 转塔车床示意图图1-4 转塔刀架结构图 1.2 车削的工艺特点: 1. 易于保证零件各加工面的位置精度 零件各表面具有相同的回转轴线(车床主轴的回转轴线)——一次装夹中加工车削时,同一零件的外圆、内孔、端平面、沟槽等。能保证各外圆轴线之间及外圆与内孔轴线间的同轴度要求。 2. 生产率较高 一般情况下车削过程是连续进行的,不易产生冲击,切削力基本上不发生变化。并且当车刀几何形状、吃刀量和进给量次走刀过程中刀齿多次切入和切出一定时,切削过程可采用高速切削和强切削层(公称横截面积)是不变的切削力变化很小。车削加工既适于单件小批量生产,生产效率高,也适宜大批量生产。 3. 生产成本较低 车刀是刀具中最简单的一种,故刀具费用低,制造、刃磨和安装均较方便。车床附件多,加之切削生产率高,装夹及调整时间较短,故车削成本较低。 4. 适于车削加工的材料广泛 可以车削黑色金属(铁、锰、铬)、有色金属,非金(除难以切削的30HRC(洛氏硬度)以上高硬度的淬火钢件外),塑性材料(有机玻璃、橡胶等),特别适合于有色金属零件的精加工。某些有色金属零件的硬度较低,塑性较大,若用砂轮磨削,软的磨屑易堵塞砂轮,难以得到很光洁的表面。因此不宜采用磨削加工,当有色金属零件外表粗糙度值要求较小时,而要用车削或铣削等方法精加工。 1.3 车削的应用 车床上使用不同的车刀或其他刀具。如内外圆柱面、内外可以加工各种回转表面,如圆锥面、螺纹、沟槽、端面和成形面等。加工精度可达IT8~IT7,外表粗糙度Ra值为1.6~0.8 m,精细车的尺寸公差等级可达IT6~IT5,表面粗糙度Ra值为0.4~0.1μm。车削常用来加工单一轴线的零件,还可以加工多轴线的零件(如曲轴、偏心轴等)或盘形凸轮,只需将刀具位置或将车床适当改装。

难加工材料

难加工材料 绪论: 1.难加工材料分类?特点? 2.难切削材料有哪些特点? 3.改善难切削材料切削加工性的基本途径有哪些? 第一章淬火钢的切削加工 1.1 什么是淬火钢?它有哪些切削特点? 1.2怎样选择切削淬火钢的刀具材料? 1.3切削淬火钢的实例有哪些? 第二章不锈钢的切削加工 第三章高强度钢和超高强度钢的切削加工 第四章高锰钢的切削加工 第五章冷硬铸铁和耐磨铸铁的切削加工 第六章钛合金的切削加工 第七章高温合金的切削加工 第八章热喷涂材料的切削加工 第九章难熔金属和纯金属的切削加工 第十章其他难加工材料

绪论: 1.难切削材料分哪几类?各有什么特点? 难加工材料,科学地说,就是切削加工性差的材料,即硬度>HB250,强度σb>1000MPa,延伸率>80%,冲击值αK>0.98MJ/m2,导热系数K<41.8W(m·K)。 难加工材料种类很多,从金属到非金属材料的范围也很广泛,初步可分为以下八大类: (1)微观高硬度材料:如玻璃钢、岩石、可加工陶瓷、碳棒、碳纤维、各种塑料、胶木、树脂、合成材料、硅橡胶、铸铁等。 这类材料的特点是含有硬质点相,其中有的研磨性很强。 由于这些材料的耐磨性很好,切削时起磨料作用,故刀具主要承受磨料磨损,在高速切削时也同时伴随着物理、化学磨损。 (2)宏观高硬度材料:如淬火钢、硬质合金、陶瓷、冷硬铸铁、合金铸铁、喷涂材料(镍基、钴基)等。 这类材料的主要特点是硬度高。切削这类材料时,由于切削力大,切削温度高,刀具主要是磨料磨损和崩刃。 (3)加工时硬化倾向严重的材料,如不锈钢、高锰钢、耐热钢、高温合金等。

这类材料的塑性高、韧性好、强度高,强化系数高。切削加工时的切削表面和已加工表面硬化现象严重。由于这类材料的强度高,导热系数低,切削温度高,切削力大,刀具主要承受磨料磨损、粘结磨损和热烈磨损。 (4)切削温度高的材料:如合成树脂、木材、硬质橡胶、石棉、酚醛塑料、高温合金、钛合金等。 这类材料的导热系数很低。切削这类材料时,刀具易产生磨料磨损、粘结磨损、扩散磨损和氧化磨损。 (5)高塑性材料:如纯铁、纯镍、纯铜等。 由于这类材料延长率大于50%,塑性高,切削时塑性变形很大,易产生积屑瘤和鳞刺,刀具主要时磨料磨损和粘结磨损。 (6)高强度材料:是指强度σb>1000MPa的材料,如奥氏体不锈钢、高锰钢、高温合金和部分合金钢。 由于它们的强度高,切削时的切削力大,切削温度高,不仅刀具易磨损,而且切屑不易处理。 (7)化学活性大的材料:如钛、镍、钴及及其的合金。这类材料化学活性大、亲和性强,切削加工时易粘结在刀具上,与刀具材料产生化学、物理反应、相互扩散。

切削加工常用计算公式

附录3:切削加工常用计算公式 1. 切削速度Vc (m/min) 1000n D Vc ?π?= 主轴转速n (r/min) D 1000 Vc n ?π?= 金属切除率Q (cm 3/min) Q = V c ×a p ×f 净功率P (KW) 3p 1060Kc f a V c P ????= 每次纵走刀时间t (min) n f l t w ?= 以上公式中符号说明 D — 工件直径 (mm) ap — 背吃刀量(切削深度) (mm) f — 每转进给量 (mm/r ) lw — 工件长度 (mm)

精选文库 2. 铣削加工 铣削速度Vc (m/min) 1000n D Vc ?π?= 主轴转速n (r/min) D 1000 Vc n ?π?= 每齿进给量fz (mm) z n Vf fz ?= 工作台进给速度Vf (mm/min) z n fz Vf ??= 金属去除率Q (cm 3/min) 1000Vf ae ap Q ??= 净功率P (KW) 61060Kc Vf ae ap P ????= 扭矩M (Nm) n 1030P M 3 ?π??= 以上公式中符号说明 D — 实际切削深度处的铣刀直径 (mm ) Z — 铣刀齿数 a p — 轴向切深 (mm) a e — 径向切深 (mm)

精选文库 3. 钻削加工 切削速度Vc (m/min) 1000 n d Vc ?π?= 主轴转速n (r/min) d 1000Vc n ?π?= 每转进给量f (mm/r) n Vf f = 进给速度Vf (mm/min) n f Vf ?= 金属切除率Q (cm 3/min) 4 Vc f d Q ??= 净功率P (KW) 310 240kc d Vc f P ????= 扭矩M (Nm) n 1030P M 3 ?π??= 以上公式中符号说明: d — 钻头直径 (mm) kc1 — 为前角γo=0、切削厚度hm=1mm 、切削面积为1mm 2时所需的切 削力。 (N/mm 2) mc — 为切削厚度指数,表示切削厚度对切削力的影响程度,mc 值越 大表示切削厚度的变化对切削力的影响越大,反之,则越小 γo — 前角 (度)

那些因素影响工件材料切削加工性

那些因素影响工件材料切削加工性 工件材料的切削加工性能与其本身的物理、力学性能有很大关系。主要影响因素有以下几点: 1.材料的导热性 工件材料的导热性越好,由切屑带走和由工件散出的热量就越多,越有利于降低切削区的温度,减少刀具的磨损,切削加工性好。例45钢的导热系数为50.2W/(m℃),而奥氏体不锈钢和高温合金的导热系数仅为45钢的1/3-1/4,这是其切削加工性低于45钢的重要原因之一。而铜、铝及其合金的导热系数很大,为45钢的2-8倍,这是它们切削加工性好的原因之一。 2.材料的强度和硬度 工件材料的硬度和强度越高,切削力就越大,消耗的功耗也越大,切削温度也越高,使刀具的磨损加剧,切削加工性能就差。特别是工件材料的耐热性越高,这时候刀具材料的硬度与工件材料的硬度之比就越低,切削加工性能就越差,刀具越容易莫顺。这也是某写耐热钢、高温合金钢切削加工性差的主要原因。 并不是材料的硬度越低,越好加工。有些金属如低碳、纯铁、纯铜等硬度虽低,但塑性很高,也不好加工。硬度适中的钢材较好加工。此外,适当提高材料的硬度,有利于获得较好的加工表面质量。 在切削加工中,被切削层材料产生剧烈的塑性变形,从而发生硬化。材料经加工硬化后,其硬度比原始硬度提高很多,使刀具发生磨损。故加工硬化现象越严重,刀具寿命越短,即材料的加工性越差。金属组织中常有一定数量的细微硬质夹杂物,则使刀具产生严重的磨料磨损,从而降低了材料的切削加工性。 3.材料的韧性 韧性以冲击值表示。韧性较大的材料,在切削变形时吸收的功较多,于是切削力和切削温度也越高,并且不易断屑,影响切削加工性。有些合金结构钢不仅强度高于碳素结构钢,冲击值也越高,故较难加工。 4.材料的塑性 材料的塑性越大,切削时的塑性变形就越大,切削温度就越高,刀具容易出现粘结磨损和扩散磨损。在低速切削塑性高的材料时易产生机屑瘤,影响表面加工质量,而且塑性大的材料,切削时候不易切削。但加工塑性太低的材料时候,则成为脆性材料,切削力和切削热集中在切削刃附近,加剧刀具的磨损,也会影响切削加工性。例如,1Cr18NiTi

数控刀具材料的选用

3.3 数控刀具材料及选用 先进的加工设备与高性能的数控刀具相配合,才能充分发挥其应有的效能,取得良好的经济效益。随着刀具材料迅速发展,各种新型刀具材料,其物理、力学性能和切削加工性能都有了很大的提高,应用范围也不断扩大。 3.3.1刀具材料应具备基本性能 刀具材料的选择对刀具寿命、加工效率、加工质量和加工成本等的影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用。因此,刀具材料应具备如下一些基本性能:(1)硬度和耐磨性。刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC以上。刀具材料的硬度越高,耐磨性就越好。 (2)强度和韧性。刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动,防止刀具脆性断裂和崩刃。 (3)耐热性。刀具材料的耐热性要好,能承受高的切削温度,具备良好的抗氧化能力。 (4)工艺性能和经济性。刀具材料应具备好的锻造性能、热处理性能、焊接性能;磨削加工性能等,而且要追求高的性能价格比。 3.3.2刀具材料的种类、性能、特点、应用 1.金刚石刀具材料的种类、性能和特点及刀具应用

金刚石是碳的同素异构体,它是自然界已经发现的最硬的一种材料。金刚石刀具具有高硬度、高耐磨性和高导热性能,在有色金属和非金属材料加工中得到广泛的应用。尤其在铝和硅铝合金高速切削加工中,金刚石刀具是难以替代的主要切削刀具品种。可实现高效率、高稳定性、长寿命加工的金刚石刀具是现代数控加工中不可缺少的重要工具。 ⑴金刚石刀具的种类 ①天然金刚石刀具:天然金刚石作为切削刀具已有上百年的历史了,天然单晶金刚石刀具经过精细研磨,刃口能磨得极其锋利,刃口半径可达0.002μm,能实现超薄切削,可以加工出极高的工件精度和极低的表面粗糙度,是公认的、理想的和不能代替的超精密加工刀具。 ②PCD金刚石刀具:天然金刚石价格昂贵,金刚石广泛应用于切削加工的还是聚晶金刚石(PCD),自20世纪70年代初,采用高温高压合成技术制备的聚晶金刚石(Polycrystauine diamond,简称PCD刀片研制成功以后,在很多场合下天然金刚石刀具已经被人造聚晶金刚石所代替。PCD原料来源丰富,其价格只有天然金刚石的几十分之一至十几分之一。 PCD刀具无法磨出极其锋利的刃口,加工的工件表面质量也不如天然金刚石,现在工业中还不能方便地制造带有断屑槽的PCD刀片。因此,PCD只能用于有色金属和非金属的精切,很难达到超精密镜面切削。 ③CVD金刚石刀具:自从20世纪70年代末至80年代初,CVD金刚石技术在日本出现。CVD金刚石是指用化学气相沉积法(CVD)在异质基体(如硬质合金、陶瓷等)上合成金刚石膜,CVD金刚石具有与天然金刚石完全相同的结构和特性。 CVD金刚石的性能与天然金刚石相比十分接近,兼有天然单晶金刚石和聚晶金刚石(PCD)的优点,在一定程度上又克服了它们的不足。 ⑵金刚石刀具的性能特点: ①极高的硬度和耐磨性:天然金刚石是自然界已经发现的最硬的物质。金刚石具有极高的耐磨性,加工高硬度材料时,金刚石刀具的寿命为硬质合金刀具的lO~100倍,甚至高达几百倍。 ②具有很低的摩擦系数:金刚石与一些有色金属之间的摩擦系数比其他刀具都低,摩擦系数低,加工时变形小,可减小切削力。 ③切削刃非常锋利:金刚石刀具的切削刃可以磨得非常锋利,天然单晶金刚石刀具可高达0.002~0.008μm,能进行超薄切削和超精密加工。 ④具有很高的导热性能:金刚石的导热系数及热扩散率高,切削热容易散出,刀具切削部分温度低。 ⑤具有较低的热膨胀系数:金刚石的热膨胀系数比硬质合金小几倍,由切削热引起的

工件材料的切削加工性

第一节工件材料的切削加工性 材料的切削加工性是指对某种材料进行切削加工的难易程度。 1.衡量切削加工性的指标 切削加工性的指标可以用刀具使用寿命、一定寿命的切削速度、切削力、切削温度、已加工表面质量以及断屑的难易程度等衡量。 某种材料切削加工性的好坏,是相对另一种材料而言的。因此,切削加工性是具有相对性的。一般以切削正火状态45钢的v60作为基准,其它材料与其比较,用相对加工性指标Kr表示: (3-1) 式中,v60——某种材料其刀具使用寿命为60min时的切削速度; (v60) j——切削45钢,刀具使用寿命为60min时的切削速度。 二。影响材料切削加工性的主要因素 影响材料切削加工性的主要因素有材料的物理力学性能、化学成分和金相组织等。三。难加工材料的切削加工性 (一)、高锰钢的切削加工性 高锰钢加工硬化严重,塑性变形会使奥氏体组织变为细晶粒的马氏体组织,硬度急剧增加,造成切削困难。高锰钢热导率低,仅为45钢的1/4,切削温度高,刀具易磨损,高锰钢韧度大,约为45钢的8倍,其伸长率也大,变性严重,导致切削力增加,并且不易断屑。 (二)不锈钢的切削加工性 奥氏体不锈钢中的铬、镍含量较大,铬能提高不锈钢的强度及韧性,但使加工硬化严重,易粘刀。不锈钢切屑与前刀面结出长度较短,刀尖附近应力较大,经计算刀尖所收的应力为切削碳钢的1.3倍,造成刀尖易产生塑性变形或崩刀。奥氏体不锈钢导热性差,切削温度高。另外,锯齿形切屑并不因速度增高而有所改变,所以切削波动大,易产生振动,使刀具破损。断屑问题也是不锈钢车削中的突出问题。 车削不锈钢时,多采用韧性好的YG类硬质合金刀片,选择较大的前角和小的主偏角;较低的切削速度,较大的进给量和背吃刀量。 四、改善材料切削加工性的基本方法 1.在材料中适当添加化学元素??? 在钢材中添加适量的硫、铅等元素,能够破坏铁素体的连续性,降低材料的塑性,使切削轻快,切屑容易折断,大大地改善材料的切削加工性。在铸铁中加入合金元素铝、铜等能分解出石墨元素,利于切削。 2.采用适当的热处理方法??? 例如,正火处理可以提高低碳钢的硬度,降低其塑性,以减少切削时的塑性变形,改善加工表面质量;球化退火可使高碳钢中的片状或网状渗碳体转化为球状,降低钢的硬度;对于铸铁可采用退火来消除白口组织和硬皮,降低表层硬度,改善其切削加工性。 3.采用新的切削加工技术??? 采用加热切削、低温切削、振动切削等新的加工方法,可以有效地解决一些难加工材料的切削问题。

金属切削复习题

一、名词解释 1、过渡表面:工件上由切削刃正切削着的表面,处在待加工表面与已加工表面之间; 2、待加工表面:工件上即将被切除的表面,也称加工表面或切削表面。 3、进给量:主运动的一个循环或单位时间内刀具和工件沿进给运动方向的相对位移量; 4、自由切削:只有一个切削刃参加切削的情况;宽刃刨刀刨削工件就属于自由切削; 5、非自由切削:由非直线切削刃或多条直线切削刃同时参加切削的情况;车外圆、铣键槽属于非自由切削。 二、填空题 1、刀具磨损到一定限度就不能继续使用。这个磨损限度称为(磨钝标准)。 2、刀具由刃磨后开始切削,一直到磨损量达到刀具(磨钝标准)所经历的总的切削时间称为(刀具耐用度)。 3、前角γo是(前刀面)与(基面)之间的夹角;后角αo是(后刀面)与(切削平面)之间的夹角。 4、高速钢是一种加入了较多的钨、(钼)、(铬)、(钒)等合金元素的高合金工具钢。 5、一般情况下,当前角增大时,剪切角随之增大,变形(减小),当摩擦角增大时,剪切角随之减小,变形(增大)。 6、目前应用较广而且比较成熟又简单可靠的测量切削温度的方法,是(自然热电偶法)和(人工热电偶法),也常有用半人工热电偶法的。 7、通常刀具磨损的形态有(前刀面磨损)、后刀面磨损和(边界磨损)。 8、在一定切削条件下,对工件材料进行切削加工的难易程度,称为(工件材料切削加工性)。 9、所谓切削用量是指(切削速度)、(进给量)和(背吃刀量)。 10、主偏角是指主切削刃的投影与(进给方向)的夹角。副偏角是指副切削刃的投影与(进给方向)的夹角。楔角是(前刀面)与(后刀面)的夹角。 11、硬质合金是由难熔金属碳化物WC、(TiC)、TaC、(NbC)等和金属粘结剂经(粉末冶金)方法制成的。 12、切削热的来源就是(切屑变形功)和(前、后刀面的摩擦功)。 13、工件材料的强度越高,切削力就(越大),切削温度(越高),刀具磨损加剧。 14、钢的锰含量在11%-14%时,称为(高锰钢),它全部都是(奥氏体组织)时,可获得较好的使用性能。 15、加工塑性材料时,应选择(较大)的前角;加工脆性材料时,应选择(较小)的前角。 16、砂轮的特性主要由(磨料)、粒度、(结合剂)、硬度、组织及形状尺寸等因素所决定。 17、非水溶性切削液主要是切削油,它主要起到(润滑)作用,水溶性切削液具有良好的(冷却)作用,清洗作用也很好。 三、简答题 1、试分析加工不锈钢、奥氏体耐热钢、淬硬钢、高锰钢、钛合金时刀具材料的选择。 答:YW类硬质合金:主要用于加工高锰钢、不锈钢等难加工材料; 奥氏体耐热钢:细晶粒硬质合金; 淬硬钢:由于切削力很大,切削与前刀面接触长度很短,切削力集中在切削附近, 易造成崩刀,宜采用韧性较好的YG合; 钛合金:可选用YG类合金。 2、加工钢料等塑性材料和加工铸铁等脆性材料时,前刀面和后刀面的哪一方面切削温高? 答:加工钢料塑性材料时:前刀面的切削温度高; 加工铸铁脆性材料时:后刀面的切削温度高。 3、通常刀具磨损的原因主要有哪些?它们的磨损形式是什么? 答:刀具磨损的原因:硬质点磨损、粘结磨损、扩散磨损、化学磨损; 刀具磨损的形态:前刀面磨损、后刀面磨损、边界磨损。

钨钼材料的切削加工

1.常用难熔金属的力学物理性能有哪些? 工业上常用的高熔点金属统称难熔金属,如钨、钼、钽、铌、锆等。 难熔金属熔点高、密度大,晶体结构稳定,激活能大,切削加工困难。以难熔金属为主,添加其他合金元素构成难熔金属材料。随着科学技术的发展,难熔金属在原子能、宇航、机械、电子、化工、医疗、纺织、轻工等领域得到了越来越广泛的应用。 常用难熔金属中钨的熔点最高(3380℃),密度最大(19.1g/cm3),而钼的弹性模量最大,达到343 350MPa。 难熔金属系列——钨合金 4.怎样切削加工钨锭与钨棒? 纯钨的硬度和强度都很高,钨的铸锭在切削加工时,由于晶粒粗大,易产生掉块而使加工表面粗糙。切削钨锭和钨棒可以使用硬质合金作刀具材料,常用的硬质合金牌号有YG6、YG8、YS2(YG10H)、726等。 用硬质合金切削钨锭或钨棒,可选用45o主偏角,荒车时前角与后角应小些,粗车与半精车时前角、后角适当加大。纯钨性极脆,切削时易崩边或剥落,刀具切入切出时,应减小进给量,以防止刀具破损。钨的切削参数推荐值见表10-2。 CBN刀具也可以加工纯钨。例如,用DLS—F复合片车削φ10 mm钨棒,在ν C =30m/min、f=0.1mm/r、a p =0.1mm;γ O =-4o、α O =12o、λ O =0o、Κ r =90o、r ε=0.3mm、 倒棱为0.25mm×(-8o)的条件下,当后刀面磨损0.2mm时,切削路程为104 m。而 用YG6X刀片,当ν C =9.5m/min、后刀面磨损0.2 mm时,切削路程为57.6m。可见,CBN刀具的切削速度为YG6X硬质合金刀具3倍的条件下,耐用度为其2倍。

金属切削加工刀具材料的选择 2

金属切削加工刀具材料的选择 金属切削加工刀具分为:车刀、铣刀、刨刀、钻头等。下面我们就针对这些做出说明。 (一)车刀 车刀是用于车削加工的、具有一个切削部分的刀具。车刀是切削加工中应用最广的刀具之一。车刀的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。 车刀的切削部分由主切削刃、副切削刃、前刀面、主后刀面和副后刀面,刀尖角成。车刀的切削部分和柄部(即装夹部分)的结合方式主要有整体式、焊接式、机械夹固式和焊接-机械夹固式。机械夹固式车刀可以避免硬质合金刀片在高温焊接时产生应力和裂纹,并且刀柄可多次使用。机械夹固式车刀一般是用螺钉和压板将刀片夹紧,装可转位刀片的机械夹固式车刀。刀刃用钝后可以转位继续使用,而且停车换刀时间短,因此取得了迅速发展。车刀的切削部分由主切削刃、副切削刃、前面、后面和副后面等组成。它的几何形状由前角γo、后角αo、主偏角κr、刃倾角γ S、副偏角κ惤和刀尖圆弧半径rε所决定。车刀几何参数的选择受多种因素影响,必须根据具体情况选取。前角γo根据工件材料的成分和强度来选取,切削强度较高的材料时,应取较小的值。例如,硬质合金车刀在切削普通碳素钢时前角取10°~15°;在切削铬锰钢或淬火钢时取-2°~-10°。一般情况下后角取6°~10°。主偏角κr根据工艺系统的刚性条件而定,

一般取30°~75°,刚性差时取较大的值,在车阶梯轴时,由于切削方式的需要取大于或等于90°。刀尖圆弧半径rε和副偏角κ惤一般按加工表面粗糙度的要求而选取。刃倾角γ S则根据所要求的排屑方向和刀刃强度确定。车刀前面的型式主要根据工件材料和刀具材料的性质而定。最简单的是平面型,正前角的平面型适用于高速钢车刀和精加工用的硬质合金车刀,负前角的平面型适用于加工高强度钢和粗切铸钢件的硬质合金车刀。带倒棱的平面型是在正前角平面上磨有负倒棱以提高切削刃强度,适用于加工铸铁和一般钢件的硬质合金车刀。对于要求断屑的车刀,可用带负倒棱的圆弧面型,或在平面型的前面上磨出断屑台。 车刀分类:按结构可分为整体车刀、焊接车刀、机夹车刀、可转位车刀和成型车刀。车刀按用途可分为外圆、台肩、端面、切槽、切断、螺纹和成形车刀等。还有专供自动线和数字控制机床用的车刀。车刀按材质可分为.高碳钢、高速钢、非铸铁合金刀具、烧结碳化刀具、陶瓷车刀、钻石刀具、氮化硼刀具等。 高碳钢车刀是由含碳量0.8%~1.5%之间的一种碳钢,经过淬火硬化后使用,因切削中的摩擦四很容易回火软化。 高速钢为一种钢基合金俗名白车刀,含碳量0.7~0.85%之碳钢中加入W、Cr、V及Co等合金元素而成。例如18-4-4高速钢材料中含有18%钨、4%铬以及4%钒的高速钢。高速钢车刀切削中产生的摩擦热可高达至600℃,适合转速1000rpm以下及螺纹之车削。

改善工件材料切削加工性的方法

改善工件材料切削加工性的措施 改善工件材料的切削加工性通常可通过以下三种方法: 一、选择加工性好的存在状态 低碳钢以冷拔及热轧状态最好加工;中碳钢以部分秋花的珠光体组织最好加工;高碳钢则以完全球化的的退火状态加工性最好。 二、通过热处理改善加工性 如工具钢,一般经退火处理可降低硬度、强度,提高加工性。白口铸铁可以加热到950~1100℃,保温、退火,来提高加工性。 有的工件材料通过调质处理,提高硬度、强度,降低塑性来改善加工性。如车制不锈钢2Cr13螺纹时,由于硬度太低,塑性较大,光洁度不易提高,当经调质处理后,硬度达到HRC28时,塑性下降,光洁度可以改善,生产效率也相应提高。 还有一些工件材料,如氮化钢,为了减小工件以加工表面的残余应力,可采取去应力退火。时效处理也是改善加工性的方法,如加工Cr20Ni80Ti3之前,先加热到1000℃保持8小时,然后在900~950℃温度下时效处理16小时,再在空气里冷却,这样处理后可以提高切削加工性 用热处理的方法改善加工性,要在工艺允许范围内进行,而且具体采用哪一种热处理规范,要跟据工厂的条件而定。 三、在工艺要求许可的范围内,选用加工性好的工件材料 如机床用的某些丝杠,可以选用易切钢。自动机、自动线生产中使用易切材料,对提高刀具耐用度及保证稳定生产有重要作用。这是由于易切钢中的金属夹杂物(如MnS)具有润滑与脆化的作用,可以降低切削力,克服粘刀现象,并使切屑容易折断。 随着切削加工技术和刀具材料的发展,工件材料的加工性也会发生变化。如电加工的出现,使一些原来认为难加工的材料,变得不难加工。“群钻”的发展,使碳素结构钢和合金结构钢钻孔的加工性差距变小了。 硬质合金的不断改进,新刀具材料的不断涌现,将使各种的加工性差距逐渐缩小。随着新的工件材料(如耐热材料、高强度材料、高硬材料、高纯材料)的出现,高精度、高光洁度加工以及自动化技术的发展,必然给工件材料的切削加工性带来新的矛盾,这就要求人们进一步的去认识它、分析和解决它。

相关文档
最新文档