VPX技术介绍

VPX技术介绍
VPX技术介绍

VPX技术介绍

1VPX 技术

新型VPX(VITA 46)标准是自从VME引入后的25年来,对于VME总线架构的最重大也是最重要的改进。它将增加背板带宽,集成更多的I/O,扩展了格式布局。

目前,VME64x已经不能满足国防和航空领域越来越高的性能要求和更为恶劣环境下的应用。许多应用,例如雷达,声纳,视频图像处理,智能信号处理等,由于受到VME64x传输带宽的限制,系统性能无法进一步提高。急需要一种新体制的总线,替代现有的VME64x总线,以提高系统传输带宽。

2B1. VPX标准概述

VITA 46基础标准由VITA46.0(基础协议)和VITA46.1(VME连接)描述,也称为VPX,并成功地于2006年一月引入。这是一个里程碑,因为我们可以确信VITA46标准已经设计和实现出来了。下一步是完成最终文档,并且提交ANSI(美国国家标准化组织)得到正式ANSI批准。

9B1.1 VPX高速串行总线

VPX总线是VME技术的自然进化,它采用高速串行总线替代并行总线是其的最主要变化。VPX采用RapidIO和Advanced Switching Interconnect等现代的工业标准的串行交换结构,来支持更高的背板带宽。这些高速串行交换可以提供每个差分对儿250MBytes/sec的数据传输率。如果4个信道最高1 GBytes/sec的理论速率。VPX的核心交换提供32个查分对儿,组成4个4信道端口,每个信道都是双向的(一发送差分对儿,一接收差分儿)。VPX模块的理论合计带宽为8 GB/sec。

当今基于VME总线雷达系统阵列中的每个系统处理器,都必须等待轮到该处理器获得总先后才能发送数据。这样不仅仅使处理器终止了对当前数据块的处理,同时还终止了处理器对输入数据的处理。

交换结构使所有数据流畅通无阻,来解决这一问题,这样减小了处理延迟和输入数据流的中断。

StarFabric是一个串行转换结构,他利用现有的VME-64背板链接嵌入式多处理器。可是,VME64X接口的物理特性限制限制了它将来的发展。在VITA46开发以前,雷达系统开始面临主卡的性能的制约。VME主卡其中两个最严重的限制是每个插槽上通过信号针的数据量限制,以及严重的功率浪费。VITA46通过采用高速连接器和支持先进的交换结构,着重解决了这两个问题。

由于采集的数据频率越高,图像效果越好。随着雷达数据管道变得越来越大,VPX将成为解决这些新需求的新技术。

10B1.2 VPX接插件

VPX采用了由Tyco公司开发出了模块化的VPX RT2连接器,该连接器内含可控阻抗,低插入损耗,在最高6.25 Gbaud下,串扰小于3%。Tyco公司生产的独特的新7排RT2连接器,与级联块儿和键一起,实现VITA 46模块和背板设计。VITA 46选择RT2连接器的目的是为了解决以下问题:

--- 连接器必须可以发送信号至少5 Gbits/sec

--- 连接器必须提供充足的I/O,适应现代主卡上日益增加的功能。

---连接器的尺寸必须能够满足VME标准长度,以便可以安装PMC模块,能够保证0.8英寸

的板间距。

---连接器系统必须足够牢固,这样在军事/航空系统的恶劣环境中才能应用。

VITA 46模块插入和拔出力量与VME64X模块相近。这是因为虽然VITA46拥有更多的接触点,但是Tyco公司的MultiGig RT2连接器使得每个接触点压力降低而又能保证充分的接触。以上结论都是建立在连接器机械结构评估和测试基础上得来的。

VITA 46 工作组对最终交付使用的VPX连接器,为VPX模块标准做了大量的测试认证。这些测试再现了一些最苛刻的环境测试,执行了板级标准。

主要环境参数测试包括如下:

- 振动及颤动

- 温度

-适度

- 沙尘

- 耐久

- 静电保护

11B1.3 VPX的I/O能力

VPX拥有着更多的I/O能力,其数量几乎是64X类型卡的两倍。所有的I/O针都有千兆传输能力,最高到6.25 Gig/Sec。并且有辅助的VITA 48标准选择,使得每个插槽可以插更高功率的板子。与传统的VME技术比VPX的针脚数要多,一般的6U VPX模块可以提供:

总共707个非电源电触电

总共464个信号:

64个信号,用于核心交换的32个高速差分对

104个信号,用于实现VME64的

268个通用用户I/O,其中包括128个高速差分对儿。

28个信号,用于作系统信号(重启,JTAG,寻址等),其余未使用。

VPX提供最高32个网络交换针,这些针的作用:

---得到更多的吞吐量

---提升性能

--实现网状拓扑结构

---减少插槽数

---无需交换插槽

---节省空间和降低重量

12B1.4 VPX的电源改进

VPX改进了电源供电。5V最高可达115W,12V最高可达384W,48V最高可达768W。

如此大功率的电源,允许板子集成更多的功能。可选的更高的电压输入,可以减少背板的电流,降低重量和降低电子兼容问题产生。

3B2. VPX高速串行总线

新串行交换结构技术使得军用和航空嵌入式计算机系统得到更高的性能,同时减少系统成本和重量。如今有多种高性能交换结构技术可供选择。这其中的三个——Gigabit Ethernet (GbE), Serial RapidIO (SRIO), and PCI Express (PCIe)尤其突出,优点最多。GbE是基于IP数据通信的标准,无论是平台间网络还是在同一个背板中的子系统。SRIO是DSP应用中高密度多处理簇互联的最好方式。第三种,PCIe事实上已经是,核心处理器到外围设备高带宽数据流传输应用的标准。图1展示了嵌入式系统的网络结构的概念。

因为不可能有一种网络交换技术可以满足国防和航空嵌入式应用领域中所有的需求,所以业界各大特种计算机公司提出了分层(hierarchy)解决方案——使用GbE作为平台间网络互联,并且使用SRIO和PCIe作为底板总线交换网络互联。使用这种方式,国防和航空系统集成商

可以在他们系统中应用交换结构技术。

GbE,SRIO以及PCIe各有优势,如果将这些交换结构结合在一起应用于嵌入式军用系统中,将形成功一种新的能强大的结构。经过应用,主要的芯片,板子大量真实评估,以及主板整体设计,一种被称为VPX新的高性能底板问世。无论客户应用采用分布的、集中的,还是混合的网络拓扑结构,这种存在多种网络交换的计算平台,允许用户选择最合适的网络来满足系统需求设计。

GbE可以应用于松散耦合系统的链接,SRIO, PCIe,或两个结合使用适合于处理器,外围设备以及板卡之间的紧密耦合通信簇。用户可以使用1/10GbE交换网络建立Intra-Platform Network(IPN)来有效的传输IPv4/v6信息包,用户可以使用标准的电缆连接不同的系统,或者通过标准底板进行板子与处理器间传输(参看图1)。SRIO更适用于组建网状拓扑结构的数字信号处理器应用,PCIe更适用于核心处理器到外围设备的高带宽数据传输。

13B2.1高性能网络1/10 Gbe交换

以太网是目前最普遍的网络技术。几乎所有的网络通信的起始和重点都有以太网连接。这种商业领域广泛的应用正在影响军用市场,找到某种方式将网络中心引入加固国防应用市场。

Network Centric Warfare (NCW)学说的实现推动了高带宽、高可靠的IP网络的战场通信的发展。随着国防部对利用现有资源无缝连接到全球网络的迫切需求,1-GbE网络交换已经成为链接机箱和链接板子,组建今天高带宽IP平台网络的首选。

将来的技术转向1/10Gbe网络是很自然的事情,它是一种高速网络的解决方案,足可以满足日益增长的苛刻应用需求。为了满足有效地在平台资源间传输音频,视频,控制及管理数据的需求,支持IPv4/v6的1/10 Gbe提供了统一的方法来进行标准数据传输。

通过简单的在原来系统上增加交换机或PMC交换卡,在VME64x机箱里组建星型或双-星型网络来升级原有系统。采用VPX背板的新系统不仅可以允许1 GBE接口,还可以允许10 GBE 接口通过背板路由,这样很容易增加网络带宽。

对于高性能网络,VPX系统采用类似于VME64X系统的集中交换结构,(例如一个VPX交换/路由卡或者一个X/PMC交换卡)通过GbE连接机箱中的板子,机箱可以采用铜或者光介质链接,组建分布式或集中式的网络拓扑结构(参看图2)。

虽然有很多现行的GbE标准,其中的最流行的几个标准和特性包括:

1000BaseT,一般用于铜介质背板进行板间或处理器间通信。1000BaseSX(1 Gb/s)一般用于光介质传输。XAUI一般用于堆栈或者作为数据干路的10 GbE交换卡。

每个GbE接口是10 Mb/s, 100 Mb/s,和1 Gb/s自适应, 或者通过链接代理得到多种速率,提供高性能连接。

以太网未来的标准将会发展到背板上支持802.3ap (一个信道的1000Base,四个信道的10GBaseKX4以及一个信道的10GBaseKR)。

新一代1/10 GbE交换芯片将很快投入市场,每个口运行速度可以在1,2.5,5,和10 Gb/s。

优化的1和10 GbE NIC芯片即将投入市场,它可以通过远程直接内存访问(RDMA)和TCP卸载引擎(TOE)消除网络瓶颈(举例来说:一个10 GbE RDMA/TOE NIC芯片可以达到800-MBytes/s,并且占用最小的处理器周期进行大的数据传输)

由于采用RDMA和TOE技术减轻了1/10 GbE终端节点的瓶颈和TCP/IP协议握手所花费的处理器额外负载,使得GbE还可以应用到低延迟,高吞吐量和确定操作的嵌入式高性能聚合应用中。

在商业领域中,1 GbE 和10 GbE 能否迅速的应用到大多数主要的军用平台的决定因素,是降低成本提高性能。

14B2.2 串行RapidIO 发展壮大

SRIO, 高速串行交换结构技术,正在多处理器信号处理应用例如雷达,声纳,自动目标识别以及信号智能等高性能数据传输扮演越来越重要的角色。SRIO综合了许多的重要特性,使它比PCI Express和以太网更适合组建大量的处理器间通信的大型多处理器系统。采用传统的StarFabric或者Race++连接技术构造系统设计师们发现,他们的下一代产品如果使用基于SRIO产品开发会很容易成功。SRIO特性包括:

每组包括一个发差分儿送及一个接收差分儿(称为一个信道)1.25,2.5,或者3.125 Gb/s信号速率,每个信道单方向最高可以到312.5 Mbytes/s

每个SRIO口可以有一个或者四个信道,每个口单方向最高的理论数据速度为1.25Gbytes/s 8B/10B编码以,端对端封包CRC校验

四级优先权

采用消息和门铃方式进行有效的处理器间通信。用于高可靠应用的冗余路由。

SRIO在建立多处理器系统时,与同类产品相比较有很多不同。SRIO为点对点通信设计,支持寻址模型,支持消息传输等方式确保高效、快速的数据传输。串行RapidIO系统可以构造任意拓扑结构,这对构建变化多端的数据流DSP系统是非常重要的。

最近军事及航空信号处理市场最重要的变化是VPX模块格式的引入。VPX格式协议(包含VITA 46及附件VPXREDI/ VITA 48)利用现代高速串行接口的性能,建立了一个新的COST标准。VSO组织标准定义了VME-以及cPCI-兼容的3U-和6U-尺寸模型,使用当今高速串行网络比如说SRIO的信号速度的现代背板连接器。VPX标准基于"核心网络"连接器的概念,充当板间通信媒介,也就是我们常说的"交换串行背板"。在VPX中,核心网络包含4个四信道SRIO口。在SRIO 3.125 Gb/s的信号速率时,VPX板可以访问5 Gbytes/s发送和5 Gbytes/s接收,总共10 Gbytes/s的通信带宽。当前,几个领先的嵌入式厂商包括Curtiss-Wright已经发布基于SRIO连接的VPX产品。标准的6U格式,参看图3(研祥VPX-1811)

15B2.3 PCI Express: 高性能接口

PCIe接口普遍应用于商用桌面电脑,笔记本及服务器中。在大量PC应用中,PCIe的普及有助于降低PCIe交换芯片和PCIe外围设备的成本。尤其最近,PCIe开始移植到先进的单板计算机和数字信号处理器模块中,部署于军用及航空应用设计中。由于在PC市场的普及,使得低成本成为优势,技术上说,PCIe确实是一种先进的连接技术。它的主要特性包括:

点对点通信:每个链接(点对点连接)可由1,2,4,8,16,或者32信道组成。

每个lane由一个传输和一个接收对儿组成,发信为2.5Gband,理论上数据速率为每信道每方向250Mbytes/s,或8信道总合数据速率为4 Gbytes/s。

每个数据位采用8B/10B编码和每个信息包端对端CRC提供充分的错误校验。

它的信息包承认协议,在错误时自动重发,提供端对端可靠数据传输不需要软件控制。

数据流划分优先次序

它的物理层强制位不规则性来降低EMI(消除长序列1或者0,目的是消除长电平,强制方波)

它的电信号层采用了pre-emphasis/de-emphasis来优化信号完整性,允许低印刷电路和接头原料成本

商业PC市场出现了基于PCIe的各种各样的板子,这些基于PCIe的模块的标准包括:

标准桌面PC的PCI Express卡

ExpressCard模块将替代现今的PCMCIA。

PICMG 3.4 (PCIe on AdvancedTCA)

PICMG EXP.0 (CompactPCI Express)

PICMG AMC.1 (PCIe on Advanced Mezzanine Card)

EPIC Express标准,来自PC/104 Consortium

由VITA标准组织(VSO)定义的,广泛应用于嵌入式军事/航空领域中,基于PCIe的模块标准,以前发布了几个版本。包括先前提及的VPX和VITA 42。VITA 42(也称为VMC"交换Mezzanine 卡")是广泛应用在VME和CompactPCI PMC格式的扩展。VITA42通过在模块上增加两个高速接头,扩展了最初的PMC协议,VITA42.3补充协议定义了PCIe到新的XMC接头的映射。这样,兼容VITA42.3-主卡和mezzanine卡可以通过PCIe进行多个gigabyte/s交换数据,VITA42 可以应用于诸如高解析度图像引擎和G sample/秒模拟的数据采集模块等高级应用。

新的VPX模块标准同样采用了PCIe。图4是代表性的VPX模块,图解了Tyco Multigig RT2背板接头和两个VITA XMC插槽。

4B3. PowerPC处理器

如今国防和航空系统设计师们在选择他们下一代DSP系统结构时有着很多的选择。DSP和通用处理器市场充斥着各种构架的处理器,包括MIPs, X86, ARM和Power构架等产品,他们拥有不同的性能、功率和价格。在众多选择中,Power构架成为了能满足军用航空系统需求的少数处理器之一。为什么这个90年代初才引入的构架能一直牢牢把握这个特殊市场呢?他未来还能一直领导这个市场吗?Power构架的演变过程瞄准嵌入式应用,一直保持低功率、高性能的特点。该构架还将继续演变,以适应未来更复杂的应用。

16B3.1 Power构架的演变

最初的PowerPC构架是由苹果,IBM和摩托罗拉公司共同研制的,他针对IBM公司的RISC(Power)构架处理器进行了优化和增强。虽然最早的PowerPC构架针对桌面系统,但是他优化了指令系统结构(ISAs),使其适用不同的应用。Book E是其ISA指令集之一,他是针对嵌入式市场设计的指令集。他只包括一条Book,性能和功耗在嵌入式应用市场是同样的重要,该指令集很好的平衡了这两者,使处理器能够应用到A&D系统。从那时起,向量处理和电源管理的创新使得PowerPC构架又演化成Power构架,嵌入式系统设计师能够平衡性能和功率因素。

AltVec单指令多数据(SIMD)指令集是重要改进之一,并最终使其演化成Power构架。这个扩展功能于1999年引入,AltVec作为MPC74xx处理器的一部分,苹果公司的G4 Macintosh 系列电脑采用了这款处理器。这个革命也为DSP世界带来了突破,用户除了专用DSP芯片有更多的选择,因为AltVec技术使得处理器内核进行向量处理。许多军事应用要求支持浮点运算,AltiVec技术可以提供,因为富电源算比定点运算效率更高,但一般需要额外的硬件。军事和航空应用不像一般的电子应用对成本非常敏感,这些应用对执行效率和支持浮点运算提出更高的要求。有趣的是直到https://www.360docs.net/doc/8118002077.html,官方将AltiVec写进ISA2.0.3发布版本,在这之前他从来就没有作为PowerPC构架的一部分。

表一

今天,对于很多航空和国防DSP应用,AltVec技术都是一种标准的实现方法。他支持多种实时操作系统。专用DSP芯片由于不支持标准的实时操作系统,采用专用DSP芯片比Power 构架技术编程更加困难。Power构架允许系统集成师利用大量的第三方供应商提供的高级的工具。

Power构架另外一个重要的优点是低功耗。随着需求的增长,要求在VME和VPX系统中有限空间内部署更多的处理器,Power构架技术开发商开始在一个芯片内集成更多的处理器内核。例如Freescalse的MPC8641D双核处理器就是这样的处理器。双核处理器可以释放出双倍的性能,但与两个单核处理器比较却降低了电源消耗。将更多的功能集成到一个芯片,板子上芯片数量降低从而提高了可靠性和性能。这也节约了板子空间,要知道班子空间对军事和航空设计师是非常重要的。另外,这样可以解决更高级的系统功率,因为单个芯片更强大,集成更多的功能。

17B3.2 今天A&D应用的革命

Power构架技术在不断的演化,满足SwaP(空间,重量和功率)日益增长的需求,适应雷达和信号处理等应用。我们可以发现Power构架技术关键的改进在于包含多个内存控制器。这些内置的内存控制器,降低了传输延迟,增加内存总线的带宽,从而提高了系统的速度。这在大量消耗DRAM开款的DSP系统中非常重要,因为这样的系统总是频繁的从DRAM中读数据,处理大量的输入数据。当高性能内核等待从内存读取输入数据时是不工作的,此时没有处理数据的能力。例如,研祥智能科技股份公司的VPX-1813引擎使用Power构架技术的MPC8640D处理器。采用DDR3 内存桥片,驱动125MHz DDR内存接口,峰值2GB/s。最新的VPX DSP引擎使用DDR2内存,以两倍速度运行,并且拥有两个bank(Discovery III一个),这样内存速度提高了4倍。

随着应用需求的不断变化,图像处理系统需要庞大的、可升级的多处理器系统。Power构架技术与x86构架处理器比较最大的优点在于内置支持Serial RapidIO互联技术。Serial RapidIO 互联不像GbE和PCIe互联,他可以组建仲裁拓扑网络。Serial RapidIO使用终端和交换模式,是一种真正的点到点多处理网络技术。终端是处理器自己,他通过链接一个或多个Serial

RapidIO交换器与其他终端通信。这些终端和交换器共同构成Serial RapidIO网络或互联。Serial RapidIO不像其他互联技术,他不要求使用专门的拓扑结构,这是非常灵活的,能够组建很大的系统,最多可达65536个节点,这远远超出绝大多数COST系统需求。在多处理器应用中,理想的假定是系统中的处理器高速、平等的彼此互联,没有一个处理器具有特殊属性,不像PCI/PCI Express系统,有一个处理器作为根节点。MPC8641D的Serial RapidIO接口和支持Serial RapidIO的交换芯片,使得板子设计师采用新VPX(VITA46)标准发挥带宽优势。

18B3.3展望Power构架的未来

带着嵌入式市场的背景,Power构架在A&D市场已经有了很长的历史。https://www.360docs.net/doc/8118002077.html, 组织于2004年被授权负责制定构架的开放标准和规范,Power构架技术的未来在很大程度上依赖于该组织。Power ISA 2.03已经发布了,向广大Power构架的开发商和最终用户提供了相应的路径。

虽然系统设计师在集成系统的过程中有很多的选择,但是Power构架具有许多关键性的优点,这些优点有助于简化板子的设计,降低功耗,提高复杂DSP应用的带宽。在过去,Power 构架技术是低功率、高性能处理器,广泛用于国防、航空系统,它未来的发展是将向量处理,多内存控制器以及Serial RapidIO等交换互联技术结合在一起,形成一个高度集成的解决方案。它的发展还将为设计师们节省空间、降低重量和功耗,而这些恰恰是国防、航空系统的关键。可以预见,Power构架在未来的国防、航空DSP设计中仍将是最重要的处理器构架。

5B4. VPX与VME, VXS区别

很快迎来25周年的纪念,古老的VMEBus仍然不断演变以满足当前和下一代系统的需求。VITA41协议在保留VME32/VME64同时扩展了交换网络互联。VITA46采用了一百多个串行I/O,取代了传统的并行总线。VITA48增加了一些功能来实现二级维护,同时定义了液冷散热。

由于新的嵌入式国防和航空应用的出现,对带宽和散热技术提出了更高的要求。为了满足这些要求,近日开发出了新型主板结构协议。其中三个最重要的新型协议是VITA 41 VMEbus Switched Serial Standard (VXS),VITA 46和有关协议,以及VITA 48 Enhanced Ruggedized Design Implementation (ERDI)。

为了帮助系统用户理解这些新协议独特的优势和真实的差异,这里帮您比较一下他们多样的特性并突出每一个协议想要解决的问题。系统用户在选择一个系统架构时必须考虑的主要技术差异包括:

物理环境

处理器需求和系统内带宽

外部系统带宽和连接

保存过去的研发成果以及未来验证

技术实用性和成本

总的来看,我们需要特别关注背板连接。因为基本规范VME64X仍然是一个非常重要的技术并仍将使用很多年,我们也同样需要检验如何建立一个VXS,VITA46,和VITA48系统并将其带入VME64X。

19B4.1 广泛使用的VME

以上所有的三种新协议都兼容老的VME产品,这得用户可以利用以前开发的主板和软件,

节约成本。

现今,VME总线技术在非常广阔的领域内应用,包括:

图像(医疗,军事)

工业控制

视频处理

模拟器(飞行,导弹)

雷达/声纳

电子情报

任务计算机

电信系统

不同应用领域有不同的需求。雷达系统可能需要放置在风冷环境或者喷气式战斗机的前端。任务计算机可以简单的收集、记录多个1553接口的输入,也可以接收多个前视红外线(FLIR)图像,分析并显示在多功能显示器上。电信系统可能需要所有的I/O在前面板,这样系统可以背对背放置在设备架子上,也可能需要所有I/O连接走背板布线保证整洁的面板,这样可以迅速确定系统中出问题的卡加以替换。,从而降低平均返修时间(MTTR)。

在空气流通或环境良好的环境中中,使用风冷1101.10机械协议。然而,在恶劣的环境,例如喷气式战斗机的前端需要使用导冷协议1101.2。

在系统内部带宽需求比较低时,协议VME总线就可以提供很好的解决方案。然而,当数据带宽很高时,例如多视频显示系统,或者在多处理器间有高运算负载和数据共享系统中,可以在VME总线主卡的J2连接器上增加二级数据总线例如RACEway,StarFabric或者SKYChannel来提供额外的带宽。但是,这种方式占用了其他I/O的背板插针,例如PMC I/O,1553,串行通道,GigE,以及其他的I/O协议。不幸的是,用户没有任何协议格式供参考,使用这些二级总线。

VITA 41,VITA 46和VITA 48协议为解决这些设计难题而制定的。然而,每个协议集中,解决这些I/O问题都有所不同。

20B4.2 VITA 41

VITA 41是为了满足高速数据总线需求,为10 GigE,Serial RapidIO,PCI Express,和高级转换连接等下一代高速串行互联开发的协议。这些串行协议的共同特点是都可以运行在2 Gbps。在这样的速度下,标准的VME总线连接器不能工作的。

与此同时,VITA 41特别注意了与老的VME硬件和老的VME主板的兼容问题。VITA 41背板仍然采用J1和J2连接器作为传统的VMEbus,不同的是它采用Tyco公司的7排RT2连接器代替原来的J0连接器。RT2连接器是一个高速差分连接器,提供30个差分对儿,其中16对儿作为高速连接定义。J0其它插针,其中一个针用于支持live insertion,剩下的保留将来使用(RFU)。

图1展示了20插槽的背板,背板上拥有两个交换卡。VITA 41卡采用一个中央交换调度(芯片)进行板间通信。16对差分信号被分为两个双向4信道串行端口。一个端口都连接VITA 41背板其中一个交换卡上,另一个解决连接到另一个交换卡上。这样在其中一个集中交换模块

失效时,还有另一个冗余通信路径。

研祥智能科技股份有限公司可以提供VITA-41,用在客户定制背板上。这可以满足需要很高带宽的应用,超出老的VME总线P0连接器2 Gbaud的限制。

图1

21B4.3 VITA 46

VITA 46协议使用了类似又不尽相同的方式来解决带宽问题(参看图2)。相同之处在于它使用RT2连接器,但不同的是,所有连接器都使用RT2连接器,因此使得所有的连接都支持高速差分信号。VITA 46协议在J2定义了32个差分I/O对儿,而VITA 41值定义了16对儿。

这种结构提供了一些很有趣的能力。VITA 41设计为双冗余中央交换,而VITA 46允许用户设计出分布式的网状交换系统,因此不会出现由于单独路径,或者模块的失效而导致系统瘫痪的情况。图2展示4个4信道端口连接到各个模块。当每个信道运行在3.125 Gbaud时,每个端口的双向带宽为2.5 Gbps(由于8B/10B译码会有20%的占用)。网状拓扑的优势在于能够开发出更紧凑、占用更小空间的系统,因为不再需要VITA 41中的两个中心交换槽了。

在尝试提升VME总线模块的带宽能力过程中,VITA 41使用高速差分RT2连接器代替了VME 总线J0连接器。然而,这导致了用户I/O针的数量大大减少,从205减少到110。VITA 46通过替换VME总线J0和J1连接器,全部采用RT2连接器,在图2中表出。这样做有很明显的优势。最重要的优势是使用VITA46,用户的I/O数量从VITA 41的110个针增加到272个针。并且,这272个针中有256个是自定义的高速差分对儿,每个的数据传输速率可达10 Gbps。

为了利用这些附加的用户I/O针,VITA46.9定义了XMC和PMC用户针的协议映射。(XMC 和PMC User I/O Mapping for VITA 46)。

图2

VITA 46还有一个超过VITA 41的优势。VITA 46其中的一个连接器P0,被设计为功能连接器。功能连接器连接电源,维护总线,和测试总线。电源支持:48 V @ 16 A 或者12 V @ 32 A,作为高功耗卡的主电源。

5 V @ 1

6 A 作为低功耗卡的主电源

+12 V @ 2 A 作为模拟以及PMC电压

12 V @ 2 A作为模拟和PMC电压

3.3 V @ 2 A作为辅助电源使用

22B4.4 向后兼容

构造有效率系统的插槽数越多,就需要更多用户I/O,有多种向后兼容的方案。VITA 41和VITA 46都需要一个新的系统背板。VITA 41向后兼容的方案是使用传统的VME卡,但不使用VME总线上的J0连接器:VITA41采用VME协议的J1和J2连接器与老的VME总线卡通信。在这点上两个协议都是同样的。而VITA46的方案是使用一个混合背板,允许老的VME总线卡插入到系统中。图3展示了混合背板,该背板有五个老的VME槽和5个VITA 46槽。在VITA 46混合背板上,VITA46连接器和老的VME总线间通信遵循VITA46.1(VITA 46的VMEbus 总线映射)。

图3

VITA41背板通过放弃VME总线J0连接器的方式,为老的VME卡提供兼容。如果老的卡使用J0连接器,VITA46背板必须要做一些修改,将老的VME总线模块与VITA41模块链接在一起。

23B4.5 3U VITA 46

VITA46背板拥有更多的插针数量,这一优点特别使用在小型系统中。

老的的3U VME总线系统不提供任何背板用户I/O。VITA46协议提供给系统用户3U解决方案,在VITA46 总线J1上给用户提供网状拓扑,允许用户使用J2作为用户I/O。

VITA46的J2采用的RT2查分连接器提供客户72个用户IO针。

24B4.6 VITA 48

VITA 48从本质上来说,是一个板型协议,补充了VITA46协议的其他功能。它采用VITA 46协议相同的连接器,并提供所有相同的带宽和用户I/O。除此之外,VITA48定义了二级维护协议,通过利用顶盖来保护模块电路。它同样定义了先进的制冷技术,例如液体循环制冷理论。

为了得到这些优势,VITA 48定义了每个模块的槽间距为1" (从0.8"增加到)。通过允许VITA 46模块插入VITA48背板和机箱,来实现向后兼容。

25B4.7 总结

三个新出现的协议各自有各自的特点,来解决不同的系统需求。表1将这些特性列出。VME总线适用于系统内不带宽要求不高的系统,他在将来的很多年都会继续发展及应用。

VITA 41适合于需要比较高的系统内部带宽,同时不需要很多的背板I/O,系统物理空间也不受到限制的应用,这些系统多使用前面板I/O。

VITA 46适合于比较高的系统内部和背板带宽,同时在背板上需要大量的用户I/O针。VITA 46非常适合于系统物理尺寸受到限制的应用,3U VITA 46可在背板上提供用户I/O,而VITA41和VME总线没有。

VITA 48也同样适合于比较高系统内部和背板带宽,需要大量的用户I/O针的应用。然而,他的区别在于它为高功耗主板提供液体循环制冷机制。

6B5. 采用基于VPX总线的系统迎接航空任务计算应用的挑战

任务计算应用要求背板构架能够在恶劣的军事和航空环境中工作,并且能够为不同的系统提供可靠平台。最新的VPX背板标准使得系统集成商能够在加固平台上使用最最先进的技术。

在众多加固的、开放的嵌入式计算模块构建应用中,航空任务计算应用无疑是系统集成商们最具挑战的应用,任务计算机是软件高度密集的系统,他必须在恶劣的飞机工作环境下处理种类繁多的I/O,并提供可靠的操作。如今,系统集成商可以使用最新的VPX(VITA46)背板标准,利用现代的串行高速互联通信,提供众多高速I/O信号,实现这些目标。并且,VPX已经成功的通过了复杂的环境认证过程。

26B5.1 任务计算的挑战

无论是一个升级项目或是一个新的飞机系统,任务计算机都需要解决下面最常见的问题:很多的I/O

通过配合多处理方案,提供强大的计算能力

有限的尺寸和重量限制

在恶劣的航空环境下工作

在电路板级支持二级维护的概念

要求支持多种I/O

很多I/O的需求

任务计算机需要连接大量的系统,包括数据传感器(空速,高速,系统状态),导航子系统,敌我识别单元,雷达,导弹报警传感器,电子战传感器,光电/红外传感器视频,网络数据连,飞行人机界面输入,座舱显示,大容量存储接口,以及一些其他的设备。事实上,复杂的任务计算机需要连接20-30个不同系统。这些不同的数据接口使用不同的电信号级(RS-422, MIL-STD-1553, Fibre Channel, Ethernet, ARINC-429, DVI, 用户自定义高速接口等)。

RS-422和MIL-STD-1553等老的总线标准仍然在使用,与此同时,用于高分辨率数字视频传输的DVI以及用于大容量存储的Serial ATA等较新的标准,也越来越多的采用,使得信号速率到达multi-gibabit范围内。需要数以百计的I/O信号——这些信号中1Gbps或者更大的数据吞吐率的I/O越来越多,这极大的冲击着传统的任务计算系统。所有的这些I/O信号需要散布在系统内不同板级模块中。为了避免在系统中增加额外的专用I/O模块,板级I/O数量增长承受着巨大的压力。

27B5.2多处理器方案满足强大处理需求

现今,现代航空电子任务计算是一种软件最复杂,嵌入式实时应用。操作飞行程序(Operational Flight Program, OFP)是由系统多功能属性驱动的,极为复杂的程序,他涉及众多工业领域,包括很多的数据源接收器,以及数百个处理任务。表一列出了主要的处理任务。

任务计算应用的复杂性还在于涉及很多处理类型,他们包括:

需要在某个固定的时间进行周期处理,例如60MHz的显示刷新率处理

需要进行异步的,基于需求的处理,例如处理飞行或数据链输入

需要高计算量的处理,例如视频处理

一些任务包含综合的,有限状态机逻辑

据估计,像F-16, F-18等先进飞机的OFP程序大小,其源代码高达5百万行。

28B5.3 系统的需求

进行这些处理需要多个处理器协调工作,OFP也必须拆成小的,易于管理的模块,方便维护和升级。任务计算的工程师们必将引领面向对象编程技术和用于数据共享的中间件的发展。图一展示了任务计算机软件用到的经典软件分层方法。这些软件层次进一步增加了处理量,对于多处理解决方案需要更强大的计算能力。

基于多处理解决方案,需要处理器间高效的通信手段,目前,通过在硬件层支持软件层用到的逻辑中间件总线实现,如图二所示。高性能,低延迟以及开放标准等特征也是受任务计算机开发工程师青睐的。这些特征可以通过在背板加入Serial RapidIO和Advanced Switching Interconnect(ASI)等互联利用现代高速互联技术,满足工程师们的要求。

29B5.4 尺寸和重量的限制

无论是超音速战斗机还是攻击直升机,发送攻击,超高的机动能力,任务计算机总是引领飞机在格斗范围内战斗。这迫使系统集成师寻找能够降低最终系统尺寸和重量的总线结构。对于升级现有飞机的电子设备,任务计算机必须采用传统的空间尺寸来实现新功能,这个尺寸一般是ATR标准大小。

30B5.5 恶劣环境下的性能

除了处理众多I/O,提供强大的处理能力,以及尺寸和重量限制外,系统集成师们设计的任

务计算机必须在军用战术航空器中遇到的极端温度,冲击和振动的环境下仍能可靠的工作。振动一般在飞机是非常普遍的,他包括结构振动,引擎振动,枪炮振动,直升机主要是螺旋桨旋转振动,产生的总共随机振动负载大约是20G RMS或者更高。这要求内部的电路板与背板链接器链接足够紧密。

贯穿整个可更换模块的二级维护

一般认为,在整个生命周期内维护一个复杂的武器系统需要的成本要比最初装备成本高好几倍。维护系统成本的很大一部分是维修成本——这不仅仅包括实际的维修,还包括返修运输与备用件储备的后勤保障成本。

在军事服务中,通过直接在平台上拆除和更换可插拔处理板、I/O板等系统模块,减轻后勤保障负担的方法逐渐成为主流思想。这消除了传统的首先拆除系统级黑盒子,然后把它运回库房以备后续更换可插拔电路板的一步骤。围绕Line-Replaceable Modules (LRMs)这个概念设计出的系统,在LRM级储备备用件,取代了传统的在机箱级储备备用件。储备备用件的成本、数量和重量将会减少。

31B5.6 新VPX标准将会给我们带来什么?

VPX标准为满足客户军用、航空嵌入式计算系统的需要,支持系统级设计,他解决了任务计算机应用面临的诸多挑战。

VPX背板结构的主要元素包括:

基于Tyco公司开发的7排RT-2 MultiGiga连接器设计的高级连接器系统,他提供更多I/O,支持高速的串行链接,以及包含ESD(静电)保护结构

基于标准的0.8英寸厚度的3U和6U模块儿

扩展结构格式VPX-REDI(VITA-48)标准提供了一个顶盖儿和一个底盖儿,他与VPX与一起使得模块应用二级维护环境

FPGA应用于流处理——是很自然的选择

输入信号或图像数据的高性能流处理,要求FPGA能够进行可重配置(reconfigurable)计算,同时能够进行系统及设计,并能解决成本问题。

7B6. FPGA应用于流处理

许多军事和航空应用都要求对实时数据流,或图像数据流进行高速处理。I/O流处理一般包括滤波,信号调整,校验和采集。虽然一些流处理应用采用专用ASIC芯片,但是他非常不灵活,并且需要很长的设计周期和昂贵的成本,所以不是一个理想的解决方案。此外,为了满足处理需要,流处理应用一般需要解决系统问题,例如尺寸大小,重量,功率,开发周期,现场升级和重配置。

多计算系统一般采用具有灵活的通信网络,基于该系统中的RISC或DSP处理器,用于流处理系统是很自然的选择。但是,迫于系统成本的压力,国防和航空客户只能使用RISC或DSP 处理器搭建他们的系统。而现代的FPGA拥有可重配置,很多的逻辑门数量,DSP单元和内置高速穿行口等优点,使得客户拥有更多的选择。

32B6.1流处理系统的特点

在一些流处理应用中,除了有一些回馈信息需要从后期处理阶段传回前期处理阶段,数据流动的主要方向还是单向流动。前期处理阶段更接近DSP处理,而后期处理更接近于符号处理。处理类型的不同,每个处理阶段使用的硬件有所区别,请参考表1

基于多计算系统的流处理是不同的。他包括I/O板(传感器接口或模数转换),FPGA处理板,用于浮点DSP运算和其他通用计算的四-PowerPC板,以及用于控制和设备I/O的单板计算机。请参考图一。FPGA计算引擎通过专用的串行链接链接系统输入设备。交换通信网络链接不同的处理单元。

图一

表一

33B6.2使用FPGA做前期处理

在流处理系统中,现代FPGA技术非常适合做前期处理。Xilinx Virtex-5提供了很大的用户可用面积,专门的浮点DSP单元和高速串口。该FPGA采用65纳米工艺,可以有效的减少漏

电电流和静态功率消耗。65纳米工艺还减少了节点电容,并且采用1V核心电压,这些都有助于减少动态功率消耗。

ExpressFabric结构拥有增强的查找表(lookup table, LUT)结构,该查找表结构有6个输入。DSP48E DSP块,拥有25个18-bit乘法器,增强了FPGA浮点运算能力。这些乘法器可以排列成管道或瀑布结构,增加不同滤波器算法的吞吐量。

该FPGA的LXT版本拥有24条高速、低功耗的串行通道,速度从100Mbits~2.3Gbit/s不等,支持很多高速串行I/O标准。此外,还提供Aurora和RapidIO协议的软核,还包括千兆网和PCI Express使用的专用硬件模块。

用于流处理应用的商用平台可以利用Virtex-5 LXT系列的高级特性完成高速早期流处理。例如,基于双LXT版本FPGA板子的高速串行口可以连接背板,子卡插槽,两个FPGA,在这些I/O路径间建立4个信道。每个FPGA使用18对儿(36针)离散LVDS信号链接链接背板,用于并行传输或自定义I/O。

板载多个SRAM和SDRAM bank,确保FPGA 应用能够拥有足够的内存带宽用于存储和访问滤波器模块,暂存运算数据等。当每个内存映射成多口模式时,开发人员拥有很大的灵活进行并行或管道FPGA设计。

34B6.3将FPGA集成到系统中

这样的FPGA节点用于前期流处理运算。当该节点物理上链接到包含DMA引擎的通信网络时,FPGA节点缺乏通用处理器管理复杂数据传输的灵活性。

例如,DMA的建立和控制一般由外部的通用处理器节点进行处理。支持AltiVec功能的Power 构架(PowerPC)Freescale 8641D处理器,可以完成这些任务。初次还可以完成配置FPGA、快速重构,处理器间同步任务、动态调整滤波系数等计算参数的功能。

其中许多任务经过背面控制总线,需要避免打断SRIO总线上传输的数据流。这些功能一般通过操作系统或板级支持包(BSP)函数调用初始化。或者通过通信中间层进行初始化。

流处理应用中的中期和后期处理阶段一般采用PowerPC通用处理器处理,板载PowerPC处理器,除了处理FPGA命令和控制任务,还可以类似四-DSP或单板机里的处理器节点,参与中后期处理。这些处理阶段通常包含浮点向量计算,使用8641D中AltiVec单元进行处理。在这个体系中的板载PowerPC处理器都会得益于丰富的系统和中间软件,用户可以从复杂的集成工作解脱出来,通过抽象出硬件细节,开发出更简化的应用程序代码。

开发的加固的、商业板子满足了流处理应用的需求,它采用6U VPX/VPX-REDI格式,板子上有两块LXT FPGA和一个双核8641D PowerPC处理器(如图二)。

RS485总线接口引脚定义及说明

RS485总线标准是工业中(考勤,监控,数据采集系统)使用非常广泛的双向、平衡传输标准接口,支持多点连接,允许创建多达32个节点的网络;最大传输距离1200m,支持1200 m时为100kb/s的高速度传输,抗干扰能力很强,布线仅有两根线很简单。 RS485通信网络接口是一种总线式的结构,上位机(以个人电脑为例)和下位机(以51系列单片机为例)都挂在通信总线上,RS485物理层的通信协议由RS485标准和51单片机的多机通讯方式。由于RS-485是从RS-422基础上发展而来的,所以RS-485许多电气规定与RS-422相仿。如都采用平衡传输方式、都需要在传输线上接终接电阻等。RS-485可以采用二线与四线方式,二线制可实现真正的多点双向通信。 下面介绍以下rs485通讯接口定义的标准 1.英式标识为TDA(-) 、TDB(+) 、RDA(-) 、RDB(+) 、GND 2.美式标识为Y 、Z 、A 、B 、GND 3.中式标识为TXD(+)/A 、TXD(-)/B 、RXD(-) 、RXD(+)、GND rs485两线一般定义为: "A, B"或"Date+,Date-" 即常说的:”485+,485-” rs485四线一般定义为: "Y,Z,A, B," 一般rs485协议的接头没有固定的标准,可能根据厂家的不同引脚顺序和管脚功能可能不尽相同,但是官方一般都会提供产品说明书,用户可以查阅相关 rs485管脚图定义或者引脚图 上图中rs232转rs485电路中hin232(max232可以起到同样的作用但是要贵一点)起到转

换pc端rs232接口电平的作用,然后把信号由max485这个芯片转换成485电平由AB两根线输出,如果接上双绞线信号rs485总线接口的信号的通信距离至少是1千米远。

五种总线介绍1

五种总线介绍 总线(Bus)是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束,按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。总线是一种内部结构,它是cpu、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过总线相连接,外部设备通过相应的接口电路再与总线相连接,从而形成了计算机硬件系统。在计算机系统中,各个部件之间传送信息的公共通路叫总线,微型计算机是以总线结构来连接各个功能部件的。以下为大家介绍五种总线。 Dupline总线: Dupline是一种现场及安装总线,为建筑自动化、配水、能源管理、铁路系统及其它领域提供独一无二的解决方案。该系统能通过普通双芯线缆传输数字和模拟信号达数公里距离。系统采用模块化设计,操作原理简单,即使是新手也能很快在现有或新的应用领域熟练使用该系统。解决方案设计将各种Dupline模块产品结合起来,包括数模I/O模块、可编程逻辑控制器(PLC)和个人计算机接口、人机界面和调制解调器。安装的所有模块连接到同一条双芯线缆,以在模块间以及中央控制器和模块间实现数据交换。 Dupline总线的应用: Dupline通常用作远程I/O系统,在现场装置(如传感器、接触器、阀门和按钮等)和中央监测控制器(PLC、个人计算机或Dupline控制器)之间建立连接。但是当信号通过点对点的方式传输,不需要控制器或其它智能装置时,Dupline还可用作简单的接线替代系统。(Dupline信号不仅可以通过铜线传输,也可通过光缆、无线电调制调解器、租赁电话线或GSM调制调解器传输。自1986年以来,Dupline已在全球安装了超过10万个系统,为其出色的性能提供了强有力的佐证。) Dupline总线的优点和特性: 传输距离达10公里,不需要中继器,操作简便,高度抗噪,自由拓扑,灵活,无特殊线缆要求,可利用原有线缆,有总线供电设备,与PLC和个人计算机接口灵活连接,通过GSM调制调节器、无线电调制调解器或光缆传输性能经10万个已安装系统证明,低本高效。 DeviceNet现场总线: DeviceNet现场总线是一种开放、低成本的网络解决方案。它将可编程控制器、操作员终端、传感器、光电开关、电动机起动器、驱动器等现场智能设备连接起来,减少了I/O接口和布线数量,实现了工业设备的网络化和远程管理。由于采用了许多新技术及独特的设计,与其它现场总线相比,它具有突出的高可靠性、实时性和灵活性。 主要技术特点可归纳为:(1)采用CAN物理层和数据链路层规约,使用CAN规约芯片,得到了国际上主要芯片制造商的支持;(2)网络上可以容纳多

各类总线的介绍

总线 一.总线的概念 总线是一组用于计算机之间各部件之间进行数据和命令的传送的公用信号线。二.总线的分类 (一)总线(微机通用总线)按功能和规范可分为三大类型: (1)片总线(Chip Bus, C-Bus) 又称元件级总线,是把各种不同的芯片连接在一起构成特定功能模块(如CPU模块)的信息传输通路。 (2)内总线(Internal Bus, I-Bus) 又称系统总线或板级总线,是微机系统中各插件(模块)之间的信息传输通路。例如CPU模块和存储器模块或I/O接口模块之间的传输通路。 (3) 外总线(External Bus, E-Bus) 又称通信总线,是微机系统之间或微机系统与其他系统(仪器、仪表、控制装置等)之间信息传输的通路,如EIA RS-232C、IEEE-488等。(现场总线CAN属于外总线) 三类总线在微机系统中的地位和关系 其中的系统总线,即通常意义上所说的总线,一般又含有三种不同功能的总线,即数据总线DB(Data Bus)、地址总线AB(Address Bus)和控制总线CB

(Control Bus)。 (二)总线按照传输数据的方式划分:可以分为串行总线和并行总线。串行总线中,二进制数据逐位通过一根数据线发送到目的器件;并行总线的数据线通常超过2根。常见的串行总线有SPI、I2C、USB及RS232等。 (三)总线按照时钟信号是否独立划分:可以分为同步总线和异步总线。同步总线的时钟信号独立于数据,而异步总线的时钟信号是从数据中提取出来的。SPI、I2C是同步串行总线,RS232采用异步串行总线。 按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。 三.各类总线介绍 内部总线 1.I2C总线是同步通信的一种特殊形式,具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。 2.SPI总线串行外围设备接口SPI是一种同步串行接口,SPI总线是一种三线同步总线,因其硬件功能很强,所以与SPI有关的软件就相当简单,使CPU 有更多的时间处理其他事务。 3.SCI总线串行通信接口SCI是一种通用异步通信接口UART,与MCS-51的异步通信功能基本相同。 系统总线 1.ISA总线总线标准是IBM 公司推出的系统总线标准。它是对XT总线的扩展,以适应8/16位数据总线要求。它在80286至80486时代应用非常广泛,以至于现在奔腾机中还保留有ISA总线插槽,ISA总线有98只引脚。 2.EISA总线是在ISA总线的基础上使用双层插座,在原来ISA总线的98条信号线上又增加了98条信号线,也就是在两条ISA信号线之间添加一条EISA信号线。在实用中,EISA总线完全兼容ISA总线信号。 3.VESA总线是一种局部总线,简称为VL(VESA local bus)总线。该总线系统考虑到CPU与主存和Cache 的直接相连,通常把这部分总线称为CPU总线或主总线,其他设备通过VL总线与CPU总线相连,所以VL总线被称为局部总线。它定义了32位数据线,且可通过扩展槽扩展到64 位,使用33MHz时

现场总线综述及应用实例.

现场总线技术综述 一.概述 现场总线控制系统技术是20 世纪80 年代中期在国际上发展起来的一种崭新的工业控制技术。现场总线控制系统(FCS)的出现引起了传统的PLC 和DCS控制系统基本结构的革命性变化。现场总线系统技术极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。更重要的是从原来的面向设备选择控制和通信设备转变成为基于网络选择设备。尤其是20世纪90 年代现场总线控制系统技术逐渐进入中国以来,结合Internet 和Intranet 的迅猛发展,现场总线控制系统技术越来越显示出其传统控制系统无可替代的优越性。现场总线控制系统技术已成为工业控制领域中的一个热点。 1.现场总线的特点 现场总线技术实际上是采用串行数据传输和连接方式代替传统的并联信号传输和连接方式的方法,它依次实现了控制层和现场总线设备层之间的数据传输,同时在保证传输实时性的情况下实现信息的可靠性和开放性。一般的现场总线具有以下几个特点:(1)布线简单(2)开放性(3)实时性(4)可靠性2.现场总线的优点 由于现场总线以上的特点,特别是现场总线系统结构的简化,使控制系统的设计,安装,投运到正常生产运行以及检修维护,都体现出优越性。 1.节省硬件数量与投资, 2.节省安装费用 3.节省维护开销 4.用户具有高度的系统集成主动权 5.提高了系统的准确性与可靠性 3.现场总线的应用领域 目前现场总线技术的应用主要集中在冶金、电力、水处理、乳品饮料、烟草、水泥、石化、矿山以及OEM用户等各个行业,同时还有道路无人监控、楼宇自动化、智能家居等新技术领域。

二.现场总线的标准 1.IEC61158的制定 1984年IEC提出现场总线国际标准的草案。1993年才通过了物理层的标准IEC1158-2,并且在数据链路层的投票过程中几经反复。 发展61158现场总线的本意是“排他的和联合的”,各自独立的“现场总线”将给用户带来许多头疼的技术问题,牺牲的是用户的利益。在现场总线领域里,德国派(ISP,Interoperable System Project,可互操作系统规划,是一个以Profibus 为基础制定的现场总线国际组织)和法国派(WORLD FIP)的对持十分激烈,互不相让,以至于IEC无法通过国际标准。1994年6月在国际上要求联合强烈的呼声和用户的压力下,ISP 和World FIP成立了FF(Fieldbus Foundation,现场总线基金会), 推出了FF现场总线。IEC投票的文本就是以FF为蓝本的方案。这是现场总线发展的主流方向。 由于FF的目标是致力于建立统一的国际标准,它的成立实质上意味着工业界将摒弃ISP(含PROFIBUS)和WORLD FIP。它的成立导致了德国派ISP 立即解散;法国派(WORLD FIP)已经明确表示不反对IEC的方案,并且可以友好地与IEC方案互联,甚至提出了与FF“无缝连接”方案;而剩下的德国派PROFIBUS因为与FF的方案和技术途径不同,过渡将是非常困难,因此强烈反对IEC方案以保住市场份额。但是PROFIBUS提出的技术理由仅仅是一些支节问题,于是一些评论认为它是出于商业利益的驱动去反对FF,国际上的现场总线之争已经演变成为PROFIBUS的德国派与以FF为代表的“联合派”竞争。有趣的是工业国家的大公司往往“脚踏几条船”加入各种现场总线以获得更多的商业 利益,如最能说明问题的是最主要的反对者西门子公司(PROFIBUS主要成员)也参加了FF。这种具有特殊意义事实已经说明了PROFIBUS要与FF对抗在技术上处于明显的劣势。 在现场总线国际标准IEC61158中,采用了一带七的类型,即: 类型1 原IEC61158技术报告(即FF -H1) 类型2 Control Net(美国Rockwell)公司支持 类型3 Profibus(德国SIEMENS公司支持) 类型4 P-Net(丹麦Process Data公司支持)

LPC总线介绍

在NB电路的架构框图中,我们可以看到PCH和EC之间通过LPC总线连接,在MB板上也会看到EC芯片旁边有一个JDEBUG的connector,其也与LPC总线相连,用于主板诊断。下面将对LPC总线做一些简单介绍,希望能够帮助大家了解LPC的工作原理: 1、LPC总线 LPC(Low Pin Count)是基于Intel 标准的33 MHz 4 bit 并行总线协议(但目前NB系统中LPC的时钟频率为24MHz,可能是由于CPU平台的不断发展导致的,后面会具体分析),用于代替以前的ISA 总线协议,但两者性能相似,都用于连接南桥和Super I/O芯片、FLASH BIOS、EC等设备(由于目前EC芯片中整合了Super I/O功能,所以我们在NB系统中看不到LPC总线上挂有Super I/O芯片了)。 传统ISA BUS速率大约在7.159~8.33MHz,提供的理论尖峰传输值为16MB/s,但是ISA BUS与传统的PCI BUS的电气特性、信号定义方式迥异,使得南桥芯片、Super I/O芯片浪费很多针脚来做处理,主板的线路设计也显得复杂。为此,Intel 定义了LPC接口,将以往ISA BUS的地址/数据分离译码,改成类似PCI的地址/数据信号线共享的译码方式,信号线数量大幅降低,工作速率由PCI总线速率同步驱动(时钟同为33MHz),虽然改良过的LPC接口一样维持最大传输值16MB/s,但信号管脚却大幅减少了25~30个,以LPC接口设计的Super I/O芯片、Flash芯片都能享有脚位数减少、体积微缩的好处,主板的设计也可以简化,这也是取名LPC——Low Pin Count的原因。 2、LPC总线的接口管脚 LPC总线由7个必选信号和6个可选信号组成,具体如下表所示: 表3-2 LPC总线可选信号列表

ProjectWise系统技术介绍

ProjectWise-工程信息管理系统技术介绍部分 一、软件综述 由美国Bentley系统公司提供的ProjectWise软件可满足您实现工程设计流程控制及图档管理的需求。ProjectWise是一个面向工程企业、基于先进的三级客户/服务器体系结构、运行于Microsoft Windows NT网络操作系统上的工程信息管理系统。 ProjectWise服务器端软件是控制、管理此软件系统,并为客户端的服务请求提供响应的,运行于Windows NT Server平台上的后台服务进程;其客户端软件则是运行于Windows 95/98、Window NT Workstation等客户端网络操作系统上的前端应用程序。这些应用程序组合在一起为用户提供了强大的系统管理、文件访问、查询、批注、信息扩充和项目信息及文档的迁移功能。 二、关键词: 我们在此对本文中所涉及到的一些有关ProjectWise的专有名词作出必要的解释。 1.数据源:每个数据源对应于服务器上的一个数据库。每个数据库中记录了用户单位所承 接的一个工程所涉及到的所有文档的全部属性信息以及参与该项目的ProjectWise用户的各项属性信息(包括用户名、口令及权限信息等各种属性)。在客户端,当一个用户使用ProjectWise管理员分配给他的,专用于某个数据源的用户名和口令登录到该数据源上后,便可依据该用户名在此数据源中所具有的权限访问相应工程所涉及到的文档。 2.项目库:ProjectWise能够根据专业和文件分类存储的需求将同一工程中所涉及到的众多 文档存储在树状结构的多级项目库中。项目库的层次结构如同Windows操作系统中的目录结构一样。例如,对于某个工程项目,可能由土建、电气、暖通和给排水等四个专业参与设计,那么我们就可为每个专业建立自己的项目库,这样该专业所涉及到的文档将可分别保存在其专用项目库中。对于项目库的划分没有固定的原则,而是根据用户实际工程项目的需求而定的。 3.文件属性:是指ProjectWise为文档所定义的基本属性(如:文件名、创建日期、文件 描述等许多项)和用户通过“环境定义”功能为文档所添加的满足单位和项目需求的附加属性。 4.环境:环境包含一个由用户在数据库中定义的附加属性表和一组用户预定义的界面。这 些界面允许用户以表格的形式在文档基本属性的基础上为文档添加所需的附加属性。对于每个数据源或说工程项目可添加若干个环境,在ProjectWise客户端可将环境赋予不同的项目库。 5.工作流程/状态:工作流程和状态是文档的两种可选基本属性。每一种工作流程中可包含

现场总线概述

现场总线概述 现场总线控制系统技术是20 世纪80 年代中期在国际上发展起来的一种崭新的工业控制技术。现场总线控制系统(FCS)的出现引起了传统的PLC和DCS控制系统基本结构的革命性变化。现场总线系统技术极大地简化了传统控制系统繁琐且技术含量较低的布线工作量,使其系统检测和控制单元的分布更趋合理。更重要的是从原来的面向设备选择控制和通信设备转变成为基于网络选择设备。尤其是20世纪90 年代现场总线控制系统技术逐渐进入中国以来,结合Internet 和Intranet 的迅猛发展,现场总线控制系统技术越来越显示出其传统控制系统无可替代的优越性。现场总线控制系统技术已成为工业控制领域中的一个热点。 1 现场总线的发展 计算机控制系统的早期,采用一台小型机控制几十条控制回路,目的是降低每条回路的成本。但由于计算机的故障将导致所有控制回路失效,所以后来发展成分布式控制(DCS),即由多台微机进行数据采集和控制,微机间用局域网(LAN)连接起来成为一个统一系统。DCS沿用了二十多年,其优点和缺点均充分显露。最主要的问题仍然是可靠性:一台微机坏了,该微机管辖下的所有功能都失效;一块AD板上的模/数转换器坏了,该板上的所有通道(8或16个)全部失效。曾有过采用双机双I/O等冗余设计,但这又增加了成本,增加了系统的复杂性。为了克服系统可靠性、成本和复杂性之间的矛盾,更为了适应广大用户要求的系统开放性、互操作性要求,实现控制系统的网络化,一种新型控制技术──现场总线控制系统(FCS)正迅速发展起来。 1.1 什么是现场总线 从名词定义来讲,现场总线是用于现场电器、现场仪表及现场设备与控制室主机系统之间的一种开放的、全数字化、双向、多站的通信系统。而现场总线标准规定某个控制系统中一定数量的现场设备之间如何交换数据。数据的传输介质可以是电线电缆、光缆、电话线、无线电等等。 通俗地讲,现场总线是用在现场的总线技术。传统控制系统的接线方式是一种并联接线方式,从PLC控制各个电器元件,对应每一个元件有一个I/O口,两者之间需用两根线进行连接,作为控制和/或电源。当PLC所控制的电器元件数量达到数十个甚至数百个时,整个系统的接线就显得十分复杂,容易搞错,施工和维护都十分不便。为此,人们考虑怎样把那么多的导线合并到一起,用一根导线来连接所有设备,所有的数据和信号都在这根线上流通,同时设备之间的控制和通信可任意设置。因而这根线自然而然地称为了总线,就如计算机内部的总线概念一样。由于控制对象都在工矿现场,不同于计算机通常用于室内,所以这种总线被称为现场的总线,简称现场总线。

系统信息SIB技术介绍

系统信息介绍 1.概述 系统信息是连接UE和网络的纽带,UE与UTRAN之间只有通过系统信息的传递,才能确保无线通信的完成。系统信息广播为UE提供接入层和非接入层的信息,帮助UE在UTRAN 中进行各种操作。小区及公共传输信道建立完成后,RNC会向NodeB下发所有的SIB。RNC 负责执行系统广播信息的调度,并向Node B发送调度信息。Node B根据RNC提供的调度参数向UE发送从RNC接收来的系统信息。 2.系统信息分类 系统信息主要分为以下几类。 MIB Master information block,包含SB1/SB2、部分SIB的调度信息以及核心网信息(PLMN类型与标识,PLMN标识包含MCC、MNC) SB1/SB2Scheduling block 1/ Scheduling block 2,目前只用到SB1,包含对其它系统信息块SIBs的调度信息 SIB1System information block type 1,非接入层系统信息以及UE在空闲与连接状态下的定时器与计数器 SIB2System information block type 2,URA标识 SIB3System information block type 3,小区选择与小区重选参数 SIB4System information block type 4,连接模式下小区选择与小区重选参数 SIB5System information block type 5,公共物理信道配置参数 SIB6System information block type 6,连接模式下公共物理信道配置参数 SIB7System information block type 7,上行链路快速变化参数与动态持续水平 SIB11System information block type 11,小区测量控制信息 SIB12System information block type 12,连接模式下小区测量控制信息 SIB18System information block type 18,相邻小区PLMN标识(空闲态与连接态) 3.系统信息的分段与调度 调度信息的放置采用树形结构,MIB处于树根位置,下面是SB1,SB2,SIBs。目前方案:在MIB 中放入SB1,SIB1,SIB3,SIB5的调度信息。在SB1中放入其他SIBs的调度信息。

RS232串行接口总线详细介绍

RS232串行接口总线 目录 第一节RS232串行接口系统描述 (3) 第二节 RS232串行接口拓扑结构 (3) 第三节物理接口 (5) 3.1 电气特性 (5) 3.2接口信号 (6) 3.3机械特性 (8) 第四节电源 (8) 第五节 RS232接口协议 (9) 5.1 数据传送格式 (9) 5.2 流控制 (10) 5.3 差错检测 (10) 5.4 差错控制 (10) 第六节系统配置 (10) 6.1 端口地址和中断 (10) 6.2 串行端口寄存器 (11) 6.3 DLAB (14) 第七节数据流模型 (14) 第八节 RS232串口接口设备 (15)

第一节RS232串行接口系统描述 串行接口是微型计算机与外部设备的主要通信接口之一。只需要一条信号线就可以进行单向数据传送。由于线路简单,价格相对较低,目前得到广泛应用。 串行通信接口标准经过使用和发展,目前已经有几种。但都是在RS-232标准的基础上经过改进而形成的。所以,以RS-232C为主来讨论。RS-323C标准是美国EIA(电子工业联合会)与BELL等公司一起开发的1969年公布的通信协议。它适合于数据传输速率在0~20000b/s范围内的通信。这个标准对串行通信接口的有关问题,如信号线功能、电器特性都作了明确规定。由于通行设备厂商都生产与RS-232C制式兼容的通信设备,因此,它作为一种标准,目前已在微机通信接口中广泛采用。 在讨论RS-232C接口标准的内容之前,先说明两点: 首先,RS-232-C标准最初是远程通信连接数据终端设备DTE(Data Terminal Equipment)与数据通信设备DCE(Data Communication Equipment)而制定的。因此这个标准的制定,并未考虑计算机系统的应用要求。但目前它又广泛地被借来用于计算机(更准确的说,是计算机接口)与终端或外设之间的近端连接标准。显然,这个标准的有些规定及和计算机系统是不一致的,甚至是相矛盾的。有了对这种背景的了解,我们对RS-232C标准与计算机不兼容的地方就不难理解了。 其次,RS-232C标准中所提到的“发送”和“接收”,都是站在DTE立场上,而不是站在DCE的立场来定义的。由于在计算机系统中,往往是CPU和I/O设备之间传送信息,两者都是DTE,因此双方都能发送和接收。 目前,PC系列微机串行接口采用异步通信方式,按照RS-232接口标准进行数据传输。 UART(Universal Asynchronous Receiver/Transmitter) 是实现数据字符的串并转换的单元。 第二节RS232串行接口拓扑结构 使用串行接口进行通信的器件可以分为两类。一类叫做DCE(DATA COMMUNICATIONS EQUIPMENT),另外一类叫做DTE(DATA TERMINAL EQUIPMENT)。DCE是类似MODEM一类的设备。而DTE就是计算机或者是计算终端。图2.1是典型的串行通信的拓扑结构图。

PC接口总线及接口(插槽)介绍

PC接口总线及接口(插槽)介绍 学习时间:2013/8/9 第一部分:总线 1 ISA 1.1 ISA插槽 ISA插槽是基于ISA总线(Industrial Standard Architecture,工业标准结构总线)的扩展插槽,其颜色一般为黑色,比PCI接口插槽要长些,位于主板的最下端。其工作频率为8MHz左右,为16位插槽,最大传输率16MB/sec,可插接显卡,声卡,网卡以及所谓的多功能接口卡等扩展插卡。其缺点是CPU资源占用太高,数据传输带宽太小,是已经被淘汰的插槽接口。 图 ISA插槽(黑色)

1.2 ISA总线 ISA总线: (Industry Standard Architecture:工业标准体系结构)是IBM公司为PC/AT电脑而制定的总线标准,为16位体系结构,只能支持16位的I/O设备,数据传输率大约是16MB/S。也称为AT标准。开始时PC机面向个人及办公室,定义了8位的ISA总线结构,对外公开,成为标准(ISO ISA标准)。第三方开发出许多ISA扩充板卡,推动了PC机的发展。 1984年推出IBM-PC/AT系统,ISA从8位扩充到16位,地址线从20条扩充到24条。1988年,康柏、HP、NEC等9个厂商协同把ISA扩展到32位,即EISA总线(Extended ISA)。 2 PCI 2.1 PCI插槽 PCI插槽是基于PCI局部总线(Peripheral Component Interconnection,周边元件扩展接口)的扩展插槽,其颜色一般为乳白色,位于主板上AGP插槽的下方,ISA插槽的上方。其位宽为32位或64位,工作频率为33MHz,最大数据传输率为133MB/sec(32位)和266MB/sec(64位)。可插接显卡、声卡、网卡、内置Modem、内置ADSL Modem、USB2.0卡、IEEE1394卡、IDE接口卡、RAID卡、电视卡、视频采集卡以及其它种类繁多的扩展卡。PCI插槽是主板的主要扩展插槽,通过插接不同的扩展卡可以获得电脑能实现的几乎所有功能,是名副其实的“万用”扩展插槽。

各总线及接口介绍

常见接口电路介绍 一、I2C总线简介 1. 什么是I2C( INTER IC BUS) NXP 半导体(原Philips 半导体)于20 多年前发明了一种简单的双向二线制串行通信总线,这个总线被称为Inter-IC 或者I2C 总线。目前I2C 总线已经成为业界嵌入式应用的标准解决方案,被广泛地应用在各式各样基于微控器的专业、消费与电信产品中,作为控制、诊断与电源管理总线。多个符合I2C 总线标准的器件都可以通过同一条I2C 总线进行通信,而不需要额外的地址译码器。由于I2C 是一种两线式半双工串行总线,因此简单的操作特性成为它快速崛起成为业界标准的关键因素。 2. I2C总线的基本概念 1)发送器(Transmitter):发送数据到总线的器件; 2)接收器(Receiver):从总线接收数据的器件; 3)主机(Master):初始化发送、产生时钟信号和终止发送的器件;4)从机(Slave):被主机寻址的器件; 其线路结构图如下:

如上图示,I2C 总线具有如下特点: 1)I2C 总线是双向传输的总线,因此主机和从机都可能成为发送器和接收器。不论主机是发送器还是接收器,时钟信号SCL 都要由主机来产生; 2)只需要由两根信号线组成,一根是串行数据线SDA,另一根是串行时钟线SCL; 3)SDA 和SCL 信号线都必须要加上拉电阻Rp(Pull-Up Resistor)。上拉电阻一般取值3~10KΩ; 4)SDA 和SCL 管脚都是漏极开路(或集电极开路)输出结构;

3. I2C总线的信号传输 1)3种速率可选择 标准模式100kbps、快速模式400kbps、最高速率3.4Mbps; 2)具有特定的传输起始、停止条件 a)起始条件:当SCL 处于高电平期间时,SDA 从高电平向低电平跳 变时产生起始条件。 起始条件常常简记为S; b)停止条件:当SCL 处于高电平期间时,SDA 从低电平向高电平跳

ATF技术及应用系统介绍

REFINE TECHNOLOGY Refine Technology制造和世界范围内销售最好的细胞截留设备ATF?系统,ATF?系统主要因为能支持极高细 胞密度而闻名,可用于研发至大规模商业化生产,ATF?同样也为生物产品工艺的每一个阶段提供优化和支持。FACILITY 设备 在工艺研发和生产中引进新的技术和方法时,设备必须能促使工艺优化和提高综合效率。不同公司,不同阶段,设备目标可能有所不同,但是,对于所有公司而言,不管公司规模大小、产品还是财政状况不同,有些目标肯 定是相似的,这些相似的目标包括增加蛋白表达量,降低成本,提高灵活性 ATF?系统不管是通过极高细胞密度培养提高蛋白产量,还是通过快速低剪切力细胞收获以及随之简化下游操作等,都为实现这些目标提供了很多机会。利用ATF?系统优势将多种优化改进结合起来,会得到简单并且激动 人心的新的生物制造“未来工厂”典范,这样的“未来工厂”具有小规模、多产品、灵活度高、高产量特点,从 而使得成本减少。它可以不需要大规模(甚至中等规模)的不锈钢生物反应器就能生产满足市场需要的抗体, 也可以使得疫苗生产多样化,能够使得产量迅速增加,从而可以快速响应各地需求。 在评估ATF系统的影响时,最直接的改变通常是获得上十倍的生物反应器产量,在大规模生产环境中需要很好 的理解这一改变,以保证将这一改变真正在大规模商业化生产时实现。比如,一个成功的上游工艺可能导致下 游工艺瓶颈,所以Refine也将ATF系统的应用进行了延伸以满足整体的工艺强化要求。 我们意识到提供不同的方法解决同样的问题并且在实 现过程中允许高的灵活性非常重要。不管是用于N-1 步骤时为获得高密度种子的扩增还是用于最终生产发 酵,大规模灌流培养渐渐成为主流。现在可以使用浓 缩灌流培养方法(Concentrated Perfusion)可以获 得1g/L/day蛋白产量,这意味着一次性的1000L生 物反应器能够每天生产1Kg蛋白– 显然超过了很多人 的期望。但是,除非公司理解如何最好的利用这样的更高产量,否则连续收获产品并不会被所有人喜欢。所以,我们也为这些公司提供了一次浓缩收获产品的方式,超滤(UF)步骤能获得超过100m的极高细胞密度,根据 细胞特定产率,能够获得20g/L甚至更高的蛋白产量。 ATF系统可以在哪些方面影响你的工艺或者设置? 目标工艺开发生产 缩短工艺开发时间√ n/a -只需要一种细胞培养基,可以简化工艺开发时培养基分析 -很容易达到高细胞密度,使得开发高表达量细胞株不再那么需要

CAN总线简介及其特点

《计算机控制技术》期末考查论文 题目:CAN总线简介及其特点 摘要:CAN总线的数据通讯具有突出的可靠性、实时性和灵活性,其总线规范已经成为国际标准,被公认为几种最有前途的总线之一。本文在总结CAN总线特点的基础上,对其通信介质访问方式进行了详细的描述,介绍了它在应用中需要解决的技术问题以及目前应用状况。 关键词:CAN总线;通信介质访问控制;实时;应用技术 1.CAN总线简介及其特点 控制器局域网总线(CAN,Controller Area Network)是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。CAN协议由德国的Robert Bosch公司开发,用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配电线束。该协议的健壮性使其用途延伸到其他自动化和工业应用。CAN协议的特性包括完整性的串行数据通讯、提供实时支持、传输速率高达1Mb/s、同时具有11位的寻址以及检错能力。 CAN总线是一种多主方式的串行通讯总线,基本设计规范要求有高的位速率,高抗电子干扰性,并且能够检测出产生的任何错误。CAN总线可以应用于汽车电控制系统、电梯控制系统、安全监测系统、医疗仪器、纺织机械、船舶运输等领域。 CAN总线的特点 具有实时性强、传输距离较远、抗电磁干扰能力强、成本低等优点; 采用双线串行通信方式,检错能力强,可在高噪声干扰环境中工作; 具有优先权和仲裁功能,多个控制模块通过CAN 控制器挂到CAN-bus 上,形成多主机局部网络; 可根据报文的ID决定接收或屏蔽该报文; 可靠的错误处理和检错机制; 发送的信息遭到破坏后,可自动重发; 节点在错误严重的情况下具有自动退出总线的功能; 报文不包含源地址或目标地址,仅用标志符来指示功能信息、优先级信息。 2.CAN总线通信介质访问控制方式 CAN采用了的3层模型:物理层、数据链路层和应用层。CAN支

国内动中通系统技术介绍

国内动中通天线自跟踪技术介绍 1 动中通卫星通信系统的组成 (1) 2 动中通天线跟踪方式介绍 (2) 2.1 精确指向跟踪系统 (2) 2.2 单脉冲自动跟踪方式 (3) 2.3 混合跟踪方式(差分GPS) (3) 3 动中通惯导比较 (4) 1 动中通卫星通信系统的组成 动中通卫星通信系统主要由天线自动跟踪系统和常规卫星通信系统两大部分组成,其中天线自动跟踪系统是关键技术。

2 动中通天线跟踪方式介绍 目前,国内动中通系统天线自动跟踪系统有三大类:1精确指向跟踪系统;2单脉冲自动跟踪系统;3混合跟踪系统(差分GPS),这几种方式根据其技术特点,应用范围有所不同,分别介绍如下: 2.1 精确指向跟踪系统 精确指向跟踪方式根据车辆运动过程中位置(经度、纬度、高度)及姿态(航向角、俯仰角及横滚角)等参数,计算出天线指向卫星的方位角,俯仰角和极化角。该系统要求陀螺惯导系统精度高,稳定性好(不漂移),但不能解决卫星定点位置的漂移问题,因而此种方式的优点是不需要捕获引导,可实现盲対星,不怕遮挡(但卫星通信本身还是怕遮挡的)。但缺点是高性能高稳定度陀螺惯导(法国进口光纤惯导)价格昂贵,而且不能解决卫星定点位置的飘移,因而跟踪精度稍低。 经过国内相关机构多次调研和实际测试,在相同精度的陀螺设备中,激光陀螺比光纤陀螺的漂移累计周期短,一年内需进行多次相校。进口光纤陀螺稳定周期长,漂移累积小,一般选用OCTANS法国高精度光纤陀螺惯性导航系统作为该跟踪系统的测姿部件。相关指标如下:

2.2 单脉冲自动跟踪方式 单脉冲自动跟踪方式是跟踪卫星的信标,其主要的技术特点是利用单脉冲精密跟踪技术,实现卫星通信天线在移动载体上对卫星的精密跟踪。因而主要的优点是跟踪精度高,不怕卫星漂移(由于受太阳和月亮引力的影响,静止卫星会在一个与地球赤道平台夹角不断变化的倾斜轨道上运行。假设卫星轨道的东西位置保持不变,则从地球显道表面观察卫星的日漂移轨迹是一个对称于同步静止卫星轨道位置的“8”字形)。 但由于该产品是利用单脉冲跟踪技术,而在此频段(Ku频段)天线波束很窄,因而天线可跟踪角度范围很小(一般只有±1°左右),一旦跟踪目标丢失(如进山洞、卫星信号被遮挡或车体因剧烈跳动等原因),重新捕获目标比较困难,有时甚至需要人工辅助才行。该类型动中通系统为保证跟踪精度,复杂程度高,价格昂贵,目前主要应用军方市场,国内39所54所拥有此技术。 2.3 混合跟踪方式(差分GPS) 精确指向式跟踪系统具有不依赖外界信息、隐蔽性好、抗干扰性强、全天候工作等优点,是一种能够提供多种导航参数,完全自主的导航系统。但它的精度随时间而变化,长时间工作会累积较大误差,这使惯性导航系统不宜作长时间导航。而全球卫星定位系统(GPS)具有较高的导航精度,但由于运动载体的机动变化,常使接收机不易捕获和跟踪卫星的载波信号。为发挥两种技术的优势,更有效全面地提高产品的性能,增强系统的可靠性、可用性和动态性,现多采用多传感器数据融合技术将卫星定位与惯性测量相结合,推出了全新姿态方位差分GPS(混合跟踪方式)的“动中通”系统。 利用差分GPS跟踪系统的动中通惯性导航平台继承发扬了GPS导航和惯性测

CAN总线概述

现场总线技术综述 现场总线(Fieldbus)是80年代末、90年代初国际上发展形成的,用于过程自动化、制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系。它不仅是一个基层网络,而且还是一种开放式、新型全分布控制系统。这项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术,已经受到世界范围的关注,成为自动化技术发展的热点,并将导致自动化系统结构与设备的深刻变革。国际上许多实力、有影响的公司都先后在不同程度上进行了现场总线技术与产品的开发。现场总线设备的工作环境处于过程设备的底层,作为工厂设备级基础通讯网络,要求具有协议简单、容错能力强、安全性好、成本低的特点:具有一定的时间确定性和较高的实时性要求,还具有网络负载稳定,多数为短帧传送、信息交换频繁等特点。由于上述特点,现场总线系统从网络结构到通讯技术,都具有不同上层高速数据通信网的特色。 一般把现场总线系统称为第五代控制系统,也称作FCS——现场总线控制系统。人们一般把50年代前的气动信号控制系统PCS称作第一代,把4~20mA等电动模拟信号控制系统称为第二代,把数字计算机集中式控制系统称为第三代,而把70年代中期以来的集散式分布控制系统DCS称作第四代。现场总线控制系统FCS作为新一代控制系统,一方面,突破了DCS系统采用通信专用网络的局限,采用了基于公开化、标准化的解决方案,克服了封闭系统所造成的缺陷;另一方面把DCS的集中与分散相结合的集散系统结构,变成了新型全分布式结构,把控制功能彻底下放到现场。可以说,开放性、分散性与数字通讯是现场总线系统最显著的特征。 现场总线技术在历经了群雄并起,分散割据的初始阶段后,尽管已有一定范围的磋商合并,但至今尚未形成完整统一的国际标准。其中有较强实力和影响的有 FoudationFieldbus(FF)、LonWorks、Profibus、HART、CAN、Dupline等。它们具有各自的特色,在不同应用领域形成了自己的优势。本文将在简要描述现场总线技术特点的基础,紧扣系统的可靠性、实用性等,介绍现场总线网络结构、体系结构等关键技术及目前较为流行的几种有实力的现场总线技术的现状,最后阐述现场总线的发展趋势与技术展望。 一、现场总线的技术特点 1、系统的开放性。开放系统是指通信协议公开,各不同厂家的设备之间可进行互连并实现信息交换,现场总线开发者就是要致力于建立统一的工厂底层网络的开放系统。这里的开放是指对相关标准的一致、公开性,强调对标准的共识与遵从。一个开放系统,它可以与任何遵守相同标准的其它设备或系统相连。一个具有总线功能的现场总线网络系统必须是开放的,开放系统把系统集成的权利交给了用户。用户可按自己的需要和对象把来自不同供应商的产品组成大小随意的系统。 2、互可操作性与互用性,这里的互可操作性,是指实现互连设备间、系统间的信息传送与沟通,可实行点对点,一点对多点的数字通信。而互用性则意味着不同生产厂家的性能类似的设备可进行互换而实现互用。 3、现场设备的智能化与功能自治性。它将传感测量、补偿计算、工程量处理与控制等功能分散到现场设备中完成,仅靠现场设备即可完成自动控制的基本功能,并可随时诊断设备的运行状态。 4、系统结构的高度分散性。由于现场设备本身已可完成自动控制的基本功能,使得现场总线已构成一种新的全分布式控制系统的体系结构。从根本上改变了现有DCS集中与分散相结合的集散控制系统体系,简化了系统结构,提高了可靠性。 5、对现场环境的适应性。工作在现场设备前端,作为工厂网络底层的现场总线,是专为在现场环境工作而设计的,它可支持双绞线、同轴电缆、光缆、射频、红外线、电力线等,具有较强的抗干扰能力,能采用两线制实现送电与通信,并可满足本质安全防爆要求等。 二、现场总线的优点 由于现场总线的以上特点,特别是现场总线系统结构的简化,使控制系统的设计、安装、投运到正常

文档管理系统技术介绍

文档管理系统技术介绍 结构化数据与非结构化数据整合管理平台作为企业和机构数据信息基础设施的关键组成部分,该平台展现出了所有可用于真正生产环境向的企业级平台的特性,这里将着重说明是如何满足这些特性的要求的。 一、开放性 文立方文档管理系统完全是基于标准的,使其能够轻松的与企业现有的IT基础设施集成到一起。该系统提供了面向WebDAV、FTP、ODBC、JDBC以及Web Services标准UDDI和WSDL等标准的API。全符合J2EE标准(对于基于Web 的用于来说)并且支持所有微软的标准,如:NET,COM,ASP 和Visual Basic。提供了与企业级应用和电子商务平台的集成功能,包括了使用LDAP标准的目录服务。同时还具有面向 XML 处理全面的、可配置的支持。

文立方文档管理系统面向所有的内容管理需求,提供了端到端的解决方案——从内容的创建/捕捉和管理到交付和归档。但是,每一个企业的需求都有其独特之处,要求能够对该平台进行扩展,体现不同企业不同的业务规则。非结构化数据管理平台的基础--对象模型是完全可扩展的,使客户能够定义定制化的对象类型来满足独特的业务需求。业务对象架构提供了一个用于扩展多种可用内容管理服务的模型。该平台支持在多个关键领域的插件的开发。如用户认证、多媒体内容处理以及遗留系统存储的支持等。开放的API确保客户能够向任何应用中增加内容管理功能。 三、可伸缩性 文立方文档管理系统是面向大型企业和机构而设计的。企业在内容管理方面,无论是文件的大小还是复杂程度都在不断增加,该系统面对不断增加的内容数量、越来越大的流量、更多的用户、更加复杂的工作流,都能够实现对内容的高效管理,同时保证系统的高性能应用。并且能够以一种经济实惠的方式来处理这些不断增长的负载。非结构化数据管理平台的体系结构利用多处理器系统和集群环境,从设计上就充分利用了底层硬件平台的可伸缩性。

应用系统介绍

应 用 系 统 介 绍 第一部分 信息技术部情况 一、信息技术部组织结构图 二、信息技术部管理模式 信息技术部按照公司的结构分为三层,总公司设有信息技术部,分公司有省、地市两级信息技术机构,省级公司设信息技术处,负责辖区内信息技术应用的管理、开发、运行维护工作,地市级公司设信息技术科,承担辖区内的运行维护工作,并受省公司信息技术处的直接指导。 目前中国人寿的业务处理和管理主要集中在地市级公司(15家是省级集中处 总经理 副总经理 总经理助理 机关运行处 系统运行处 规划处 软件开发中 心 设备管理处 网络管理处 省级分公司 信息技术处 省级分公司 信息技术处 省级分公司 信息技术处 省级分公司 信息技术处 …… 总经理助理 地市级分公司 信息技术科 地市级分公司 信息技术科 ……

理)进行,相应的业务处理系统和财务管理系统的数据(生产数据库)也集中在地市级分公司。 三、应用系统开发、维护、升级模式 所有系统基本采用信息技术部软件开发中心和系统集成公司合作开发的模式进行开发,这些系统集成商包括:中青旅尚洋、科比亚、惠普、北鑫辰、国大科软等公司。 应用系统维护由信息技术部系统运行处。 软件开发完成之后,移交给系统运行处,由该处负责软件新版本的升级。 四、应用系统分布情况 地市级分公司应用的系统有: 综合业务处理系统; 财务管理及核算系统; 代理人管理系统; 客户服务中心系统; 办公自动化系统; 通用统计系统; 精算处理及分析系统。 在总公司应用的系统有: 统括业务系统 财务管理及核算系统 责任准备金处理系统 通用统计系统 财务分析系统

第二部分应用系统详细介绍 一、核心业务系统系统 发展历程 97年12月推出CBPS一版 1)系统管理。包括用户授权管理和基本数据管理。 2)客户管理。包括开户、审核、归并和客户资料批改等。 3)险种定义处理。 4)新契约管理。包括投保登记、接单、核保、医务核保的和出单等。 5)收付费管理。 6)保全业务处理。包括批改、复效、终止合同、撤单、挂失、迁出和生 存金/年金给付等。 7)理赔业务处理。包括理赔申请、审核等。 8) 业务控制处理。包括订正、黑名单管理等。 9) 单据打印管理。 10) 综合查询。 11) 统计处理。 12) 营销员管理。包括机构管理、营销员管理、佣金计算和统计等。 13) 手工老保单管理。 处理总颁六个直销险种和七个营销险种 98年3月推出CBPS二版,增加的主要功能有: 1)银行转帐 2)语音查询 3)黑名单管理 4)死亡客户管理 5)多种口径的业务统计及新增单证打印

相关文档
最新文档