三点共线、线共点

三点共线、线共点
三点共线、线共点

第三讲 点共线、线共点

在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。

1. 点共线的证明

点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n (n ≥4)点共线可转化为三点共线。

例1 如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平行四边形AECD ,

BFCG 。又作平行四边形CFHD ,CGKE 。求证:H ,C ,K 三点共线。 证 连AK ,DG ,HB 。

由题意,AD EC KG ,知四边形AKGD 是平行四边形,于是AK DG 。同样可证AK HB 。

四边形AHBK 是平行四边形,其对角线AB ,KH 互相平分。而C 是AB 中点,线段KH 过C 点,

故K ,C ,H 三点共线。

例2 如图所示,菱形ABCD 中,∠A =120

°,O 为△ABC 外接圆,M 为其上一

点,连接MC 交AB 于E ,AM 交CB 延长线于F 。求证:D ,E ,F 三点共线。

证 如图,连AC ,DF ,DE 。

因为M

O 上,

则∠AMC =60°=∠ABC =∠ACB , 有△AMC ∽△ACF ,得

CD

CF

CA CF MA MC =

=。 又因为∠AMC =BAC ,所以△AMC ∽△EAC ,得

AE

AD

AE AC MA MC ==。 所以AE AD

CD CF =,又∠BAD =∠BCD =120°,

知△CFD ∽ △ADE 。所以∠ADE =∠DFB 。因为AD ∥BC ,所以∠ADF =∠DFB =

∠ADE ,于是F ,E ,D 三点共线。

例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点C E (E ')A

B D F M

Q G A

B C

D E F

H K G

P,AD与BC的延长线交于点Q。由Q作该圆的两条切线QE和QF,切点分别为E,F。求证:P,E,F三点共线。

证如图。

连接PQ,并在PQ上取一点M,使得

B,C,M,P四点共圆,连CM,PF。设PF与圆的另一交点为E’,并作QG丄PF,垂足为G。易如

QE2=QM·QP=QC·QB①

∠PMC=∠ABC=∠PDQ。

从而C,D,Q,M四点共圆,于是

PM·PQ=PC·PD②

由①,②得

PM·PQ+QM·PQ=PC·PD+QC·QB,

即PQ2=QC·QB+PC·PD。

易知PD·PC=PE’·PF,又QF2=QC·QB,有

PE’·PF+QF2=PD·PC+QC·AB=PQ2,

即PE’·PF=PQ2-QF2。又

PQ2-QF2=PG2-GF2=(PG+GF)·(PG-GF)

=PF·(PG-GF),

从而PE’=PG-GF=PG-GE’,即GF=GE’,故E’与E重合。

所以P,E,F三点共线。

例4以圆O外一点P,引圆的两条切线PA,PB,A,B为切点。割线PCD交圆O 于C,D。又由B作CD的平行线交圆O于E。若F为CD中点,求证:A,F,

E三点共线。

证如图,连AF,EF,OA,OB,OP,BF,OF,延长FC交BE于G。

OF丄CP,所以P,A,F,O,B

五点共圆,有∠AFP=∠AOP=∠POB

∠PFB。

又因CD∥BE,所以有

∠PFB=∠FBE,∠EFD=∠FEB,

而FOG为BE的垂直平分线,故EF=FB,∠FEB=∠EBF,

所以∠AFP=∠EFD,A,F,E三点共线。

2. 线共点的证明

证明线共点可用有关定理(如三角形的3条高线交于一点),或证明第3条直线通过另外两条直线的交点,也可转化成点共线的问题给予证明。

例5以△ABC的两边AB,AC向外作正方形ABDE,ACFG。

△ABC的高为AH。求证:AH,BF,CD交于一点。

证 如图。延长HA 到M ,

使AM =BC 。连CM ,BM 。 设CM 与BF 交于点K 。 在△ACM 和△BCF 中,

AC =CF ,AM =BC , ∠MAC +∠HAC =180°, ∠HAC +∠HCA =90°, 并且∠BCF =90°+∠HCA , 因此∠BCF +∠HAC =180°

∠MAC =∠BCF 。

从而△MAC ≌△BCF ,∠ACM =∠CFB 。

所以∠MKF =∠KCF +∠KFC =∠KCF +∠MCF =90°, 即 BF 丄MC 。

同理CD 丄MB 。AH ,BF ,CD 为△MBC 的3条高线,故AH ,BF ,CD 三线交于一点。

例6 设P 为△ABC 内一点,∠APB -∠ACB =∠APC -∠ABC 。又设D ,E 分别是△

APB 及△APC 的内心。证明:AP ,BD ,CE 交于一点。

证 如图,过P 向三边作垂线,垂足分别为R ,S ,T 。

连RS ,ST ,RT ,设BD 交AP 于M ,CE 交AP 于N 。 易知P ,R ,A ,S ;P ,T ,B ,R ;

P ,S ,C ,T 分别四点共圆,则 ∠APB -∠ACB =∠PAC +∠PBC

=∠PRS +∠PRT =∠SRT 。 同理,∠APC -∠ABC =∠RST ,

由条件知∠SRT =∠RST ,所以RT =ST 。 又RT =PBsinB ,ST =PCsinC , 所以PBsinB =PCsinC ,那么

AC

PC

AB PB =

。 由角平分线定理知

MP

AM

PB AB PC AC NP AN =

==。 故M ,N 重合,即AP ,BD ,CE 交于一点。 例7

O 1

O 2外切于P 点,QR 为两圆的公切线,其中Q ,R

分别为O 1

O 2

上的切点,过Q 且垂直于QO 2的直线与过R 且垂直于RO 1的直线交于点I ,

IN 垂直于O 1O 2,垂足为N ,IN 与QR 交于点M 。证明:PM ,RO 1,QO 2三条直线交于一点。

证 如图,设RO 1与QO 2交于点O ,

连MO ,PO 。

M E

D

B

H

C

F

K G

A

I Q R

M

因为∠O 1QM =∠O 1NM =90°,所以Q ,O 1,N ,M 四点共圆,有∠QMI =∠QO 1O 2。

而∠IQO 2=90°=∠RQO 1, 所以∠IQM =∠O 2QO 1, 故△QIM ∽△QO 2O 1,得

MI

O O QM QO 2

11= 同理可证

MI

O O RM RO 2

12=

。因此 2

1

RO QO MR QM = ① 因为QO 1∥RO 2,所以有

2

1

1RO QO OR O O = ② 由①,②得MO ∥QO 1。 又由于O 1P =O 1Q ,PO 2=RO 2, 所以

2

1211PO P

O RO Q O OR O O ==, 即OP ∥RO 2。从而MO ∥QO 1∥RO 2∥OP ,故M ,O ,P 三点共线,所以PM ,RO 1,

QO 2三条直线相交于同一点。

3. 塞瓦定理、梅涅劳斯定理及其应用

定理1 (塞瓦(Ceva)定理):

设P ,Q ,R 分别是△ABC 的BC ,CA ,AB 边上的点。若AP ,BQ ,CR 相交于一点M ,则

1=??RB

AR

QA CQ PC BP 。 证 如图,由三角形面积的性质,有

BMC AMC S S RB AR ??=, AMC

AMB

S S PC BP ??=, AMB

BMC

S S QA CQ ??=. 以上三式相乘,得

1=??RB

AR

QA CQ PC BP .

定理2 (定理1的逆定理):

设P ,Q ,R 分别是△ABC 的BC ,CA ,AB 上的点。若

1=??RB

AR

QA CQ PC BP ,则AP

,C

BQ ,CR 交于一点。

证 如图,设AP 与BQ 交于M ,连CM ,交AB 于R ’。

由定理1有

1''=??B R AR QA CQ PC BP . 而1=??RB

AR

QA CQ PC BP ,所以 RB

AR

B R AR =

''. 于是R ’与R 重合,故AP ,BQ ,CR 交于一点。

定理3 (梅涅劳斯(Menelaus)定理):

一条不经过△ABC 任一顶点的直线和三角形三边BC ,CA ,AB (或它们的延长线)分别交于P ,Q ,R ,则

1=??RB

AR

QA CQ PC BP 证 如图,由三角形面积的性质,有

BRP ARP S S RB AR ??=, CPR BRP S S PC BP ??=, ARP

CRP

S S QA CQ ??=. 将以上三式相乘,得

1=??RB

AR

QA CQ PC BP .

定理4 (定理3的逆定理):

设P ,Q ,R 分别是△ABC 的三边BC ,CA ,AB 或它们延长线上的3点。若

1=??RB

AR

QA CQ PC BP , 则P ,Q ,R 三点共线。

定理4与定理2的证明方法类似。

塞瓦定理和梅涅劳斯定理在证明三线共点和三点共线以及与之有关的题目中有着广泛的应用。

例8 如图,在四边形ABCD 中,对角线AC 平分∠BAD 。在CD 上取一点E ,BE 与

AC 相交于F ,延长DF 交BC 于G 。求证:∠GAC =∠EAC 。 证 如图,连接BD 交AC 于H ,

过点C 作AB 的平行线交AG 的延长线于I ,过点C 作AD 的平行线交AE 的

延长线于J 。

对△BCD 用塞瓦定理,可得

1=??EC DE

HD BH GB CG ① 因为AH 是∠BAD 的角平分线, 由角平分线定理知AD AB HD BH =。 代入①式得

A

R

Q B

C

P

H C

A D B

G

I

J

E F

1=??EC

DE

AD AB GB CG ② 因为CI ∥AB ,CJ ∥AD ,则AB CI GB CG =,CJ

AD

EC DE =

。 代入②式得

1=??CJ

AD AD AB AB CI . 从而CI =CJ 。又由于

∠ACI =180°-∠BAC =180°-∠DAC =∠ACJ , 所以△ACI ≌△ACJ ,故∠IAC =∠JAC ,即∠GAC =∠EAC .

例9 ABCD 是一个平行四边形,E 是AB 上的一点,F 为CD 上的一点。AF 交ED

于G ,EC 交FB 于H 。连接线段GH 并延长交AD 于L ,交BC 于M 。求证:DL =BM .

证 如图,设直线LM 与BA 的延长线交于点J ,与DC 的延长线交于点I 。

在△ECD 与△FAB 中分别使用

梅涅劳斯定理,得

1=??HE CH IC DI GD EG , 1=??JA BJ HB FH GF AG . 因为AB ∥CD ,所以

GF AG GD EG =, HB

FH

HE CH =

. 从而JA BJ IC DI =,即=

+CI CI CD AJ

AJ AB +,故CI =AJ . 而 LA

DL

AJ DI CI BJ MC BM =

==, 且BM +MC =BC =AD =AL +LD . 所以BM =DL 。

例10 在直线l 的一侧画一个半圆T ,C ,D 是T 上的两点,T 上过C 和D 的切线

分别交l 于B 和A ,半圆的圆心在线段BA 上,E 是线段AC 和BD 的交点,F 是l 上的点,EF 垂直l 。求证:EF 平分∠CFD 。

证 如图,设AD 与BC 相交于点P ,用O 表示半圆T 的圆心。过P 作PH 丄l

于H ,连OD ,OC ,OP 。

由题意知Rt △OAD ∽Rt △PAH , 于是有

DO HP

AD AH =. 类似地,Rt △OCB ∽Rt △PHB , 则有

CO

HP

BC BH =. G

A E

B J L

D F C I

M

H

D l

A B O F(H)E C

P

由CO =DO ,有

BC BH AD AH =,从而1=??DA

PD

CP BC HB AH .

由塞瓦定理的逆定理知三条直线AC ,BD ,PH 相交于一点,即E 在PH 上,点H 与F 重合。

因∠ODP =∠OCP =90°,所以O ,D ,C ,P 四点共圆,直径为OP . 又∠PFC =90°,从而推得点F 也在这个圆上,因此

∠DFP =∠DOP =∠COP =∠CFP ,

所以EF 平分∠CFD 。

例11 如图,四边形ABCD 内接于圆,

AB ,DC 延长线交于E ,AD 、BC 延长线交于F ,P 为圆上任意一点,PE ,PF 分别交圆于R ,S . 若对角线AC 与

BD 相交于T .

求证:R ,T ,S 三点共线。 先证两个引理。

引理1:

A 1

B 1

C 1

D 1

E 1

F 1为圆内接六边形,若A 1D 1,B 1E 1,C 1F 1

交于一点,则有

11

11

111111111=??A F F E E D D C C B B A . 如图,设A 1D 1,B 1E 1,C 1F 1交于点O ,根据

圆内接多边形

的性质易知

△ OA 1B 1∽△OE 1D 1,△OB 1C 1∽△OF 1E 1, △OC 1D 1∽△OA 1F 1,从而有

O D O B E D B A 111111=, O B O F C B F E 111111=, O

F O

D A F D C 111111=. 将上面三式相乘即得

11

11

111111111=??A F F E E D D C C B B A , 引理2:

圆内接六边形A 1B 1C 1D 1E 1F 1,若满足

11

11

111111111=??A F F E E D D C C B B A 则其三条对角线A 1D 1,B 1E 1,C 1F 1交于一点。 该引理与定理2的证明方法类似,留给读者。

例11之证明如图,连接PD ,AS ,RC ,BR ,AP ,SD . 由△EBR ∽△EPA ,△FDS ∽△FPA ,知

EP EB PA BR =,FD

FP

DS PA =. 两式相乘,得

E

B

R

C T

A

P

S

D

F

B F A E 1

O

C D 1

1

11

1

FD

EP FP

EB DS BR ??=

. ① 又由△ECR ∽△EPD ,△FPD ∽△FAS ,知EP EC PD CR =,FA FP

AS PD =

. 两式相乘,得

FA

EP FP

EC AS CR ??=

② 由①,②得FD

EC FA

EB CR DS AS BR ??=

??. 故 =??AB SA DS CD RC BR CE

DC

FD AF BA EB ?

?. ③ 对△EAD 应用梅涅劳斯定理,有

1=??CE

DC FD AF BA EB ④ 由③,④得

1=??AB

SA

DS CD RC BR . 由引理2知BD ,RS ,AC 交于一点,所以R ,T ,S 三点共线。

练 习

A 组

1. 由矩形ABCD 的外接圆上任意一点M 向它的两对边引垂线MQ 和MP ,向另两边延长线引垂线MR ,MT 。证明:PR 与QT 垂直,且它们的交点在矩形的一条对角线上。

2. 在△ABC 的BC 边上任取一点P ,作PD ∥AC ,PE ∥AB ,PD ,PE 和以AB ,AC 为直径而在三角形外侧所作的半圆的交点分别为D ,E 。求证:D ,A ,E 三点共线。

3. 一个圆和等腰三角形ABC 的两腰相切,切点是D ,E ,又和△ABC 的外接圆相切于F 。求证:△ABC 的内心G 和D ,E 在一条直线上。

4. 设四边形ABCD 为等腰梯形,把△ABC 绕点C 旋转某一角度变成△A ’B ’C ’。证明:线段A ’D , BC 和B ’C 的中点在一条直线上。

5. 四边形ABCD 内接于圆O ,对角线AC 与BD 相交于P 。设三角形ABP ,BCP ,CDP 和DAP 的外接圆圆心分别是O 1,O 2,O 3,O 4。求证:OP ,O 1O 3,O 2O 4三直线交于一点。

6. 求证:过圆内接四边形各边的中点向对边所作的4条垂线交于一点。

7. △ABC为锐角三角形,AH为BC边上的高,以AH为直径的圆分别交AB,AC

于M,N;M,N与A不同。过A作直线l A垂直于MN。类似地作出直线l B与l C。

证明:直线l A,l B,l C共点。

8. 以△ABC的边BC,CA,AB向外作正方形,A1,B1,C1是正方形的边BC,CA,

AB的对边的中点。求证:直线AA

,BB1,CC1相交于一点。

1

9. 过△ABC的三边中点D,E,F向内切圆引切线,设所引的切线分别与EF,FD,

DE交于I,L,M。求证:I,L,M在一条直线上。

B组

10. 设A1,B1,C1是直线l1上的任意三点,A2,B2,C2是另一条直线l2上的任意

三点,A1B2和B1A2交于L,A1C2和A2C1交于M,B1C2和B2C1交于N。求证:L,M,N三点共线。

11. 在△ABC,△A’B’C’中,连接AA’,BB’,CC’,使这3条直线交于一

点S。求证:AB与A’B’、BC与B’C’、CA与C’A’的交点F,D,E在同一条直线上(笛沙格定理)。

12. 设圆内接六边形ABCDEF的对边延长线相交于三点P,Q,R,则这三点在一

条直线上(帕斯卡定理)。

证明三点共线问题的方法

证明三点共线问题的方法 1、利用梅涅劳斯定理的逆定理 例1、如图1,圆内接ΔABC 为不等边三角形,过点A 、B 、C 分别作圆的切线依次交直线BC 、CA 、AB 于1A 、1B 、1C ,求证:1A 、1B 、1C 三点共线。 解:记,,BC a CA b AB c ===,易知1111AC C CC B S AC C B S ??= 又易证1 1 AC C CC B ?? .则112 2 2AC C CC B S AC b S CB a ????== ???. 同理12121212,BA c CB a A C b B A c ==.故111222 1112221AC BA CB b c a C B A C B A a b c ??=??=. 由梅涅劳斯定理的逆定理,知1A 、1B 、1C 三点共线。 2、利用四点共圆(在圆内,主要由角相等或互补得到共线) 例2 、如图,以锐角ΔABC 的一边BC 为直径作⊙O ,过点A 作⊙O 的两条切线,切点为M 、N ,点H 是ΔABC 的垂心.求证:M 、H 、N 三点共线。(96中国奥数 证明:射线AH 交BC 于D ,显然AD 为高。 记AB 与⊙O 的交点为E ,易知C 、H 、E 三点共线。 联结OM 、ON 、DM 、DN 、MH 、NH , 易知090AMO ANO ADO ∠=∠=∠=, ∴A 、M 、O 、D 、N 五点共圆,更有A 、M 、D 、N 四点共圆, 此时,0+180AND ∠∠=AMD 因为2AM AE AB AH AD =?=?(B 、D 、H 、E 四点共圆), 即 AM AD AH AM = ;又MAH DAM ∠=∠,所以AMH ADM ?? ,故AHM AMD ∠=∠ 同理,AHN AND ∠=∠。 因为0180AHM AHN AMD AND ∠+∠=∠+∠=,所以,M 、H 、N 三点共线。 3、利用面积法 如果S S EMN FMN =??,点E 、F 位于直线MN 的异侧,则直线MN 平分线段EF ,即M 、N 与 EF 的中点三点共线。 A B C C 1 B 1A 1

平面向量中三点共线定理探究

平面向量中“三点共线向量定理”探究 三点共线定理在教材中没有作为定理使用,但在各级考试中却应用广泛,笔者尝试通过 聚焦结论,优化思路,多维度揭示定理的价值所在. () 0.a b b a b a b λλ≠=r r r r r r r r 向量共线定理:对平面内的任意两个向量 、 , // 的充要条件是:存在唯一的 实数 ,使由该定理可以得到平面内三点共线定理: ()121212+= OA OB OP OP OA OB R λλλλλλ=+∈u u u r u u u r u u u r u u u r u u u r u u u r 三点共线定理:已知平面内一组基底 , 及任一向量 ,, , 则A ,B ,P 三点共线,当且仅当 1. ()() ()1122121,,1,=1,,+= A B P AP AB OP OA OB OA OP OA O OP OA O B B λλλλλλλλλλλλλ=?-=-?=-+-=+=u u u r u u u r u u u r u u u r u u u r u u u u u u r u u u r u u u r u u u r u u u r u u u r r 证明:如图 , 三点共线,当且仅当有唯一一个实数 , ,且使令则 1. ()()()()()() 1212112212=1,1;2+= OA OP OP OA OB OP OA OB OA AP AB OB OP OA OB λλλλλλλλλλλλλλ?-===-+?-=-?=+u u u r u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u u u r r u ur 的系数之和等于1 即为向量,的变化而变化的定理特.如图, 且1征:向量, 的系数点P 的位置是随着令 , 当点P 在线段AB 内()() ()() ()() 12121212121,1,,=10,10,1=1,01,0=10,,0=0=110 =1=10 1. λλλλλλλλλλλλλλλλλλλλλλλλλ-∈=∈-∈-∞=∈+∞<-<<>∈+∞=∈-∞-===-===此时 此时,0,当点P 在线段AB 的延长线上时, ,点P 在线段AB 反向延长线上时, ,当点P 与点A , ,当点P 与点B 重合时, 时此时此时此时,, ,重合时, 111AP PB OP OA OB λλλλ ?==+++u u u r u u u r u u u r u u u r u u u r 推论:在OAB 中,P 为直线AB 上的一点,且则 O 1()

点共线与三线共点的证明方法

三点共线与三线共点的证明方法 公理 1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2.过不在一条直线上的三点,有且只有一个平面。 推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。 公理 3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 例1.如图,在四面体ABCD中作截图PQR, PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.求证M、N、 K三点共线. 由题意可知,M、N、K分别在直线PQ、

RQ 、RP 上,根据公理1可知M 、N 、K 在平面PQR 上,同理,M 、N 、K 分别在直线CB 、DB 、DC 上,可知M 、N 、K 在平面BCD 上,根据公理3可知M 、N 、K 在平面PQR 与平面BCD 的公共直线上,所以M 、N 、K 三点共线. 例2.已知长方体1111ABCD A B C D -中,M 、N 分别为1AA 与AB 的中点,求证:1 D M 、DA 、CN 三线共点. 由M 、N 分别为1AA 与AB 的中点知1//MN A B 且112MN A B =,又1A B 与1D C 平行且相等,所以1//MN D C 且112MN D C =,根据推论3可知M 、N 、C 、1D 四点共面,且1D M 与CN 相交,若1D M 与CN 的交点为K ,则点K 既在平面11ADD A 上又在平面ABCD 上,所以点K 在平面11ADD A 与平面ABCD 的交线DA 上,故1 D M 、DA 、CN 三线交于点K ,即三线共点. 从上面例子可以看出,证明三线共点

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其扩展应用详解 一、平面向量中三点共线定理的扩展及其应用 一、问题的提出及证明. 1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是: .O A xOB yOC =+(O 为平面内任意一点),其中1x y +=. 那么1x y +<、1x y +>时分别有什么结证?并给予证明. 结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A 与O 点在直线BC 同侧,1x y +>时, A 与O 点在直线BC 的异侧,证明如下: 设 O A xOB yOC =+ 且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点 设 1O A O A λ=(λ≠0、λ≠1)A 1与B 、C 共线 则 存在两个不全为零的实数m 、n 1 O A m O B n O C =+ 且1m n += 则 OA mOB nOC λ=+ m n OA OB OC λ λ ?=+ m x λ ∴= 、n y λ = 1 m n x y λ λ ++= = (1)1λ> 则 1x y +< 则 11 1 OA OA OA λ = < ∴A 与O 点在直线BC 的同侧(如图[1]) (2)0λ<,则1 01x y λ +=<<,此时OA 与1OA 反向 A 与O 在直线BC 的同侧(如图[2]) 图[2] B C A 1 O A O A 1 B C A 图[1]

(3)1o λ<<,则1x y +> 此时 111 OA OA OA λ => ∴ A 与O 在直线BC 的异侧(如图[3]) 图[3] 2、如图[4]过O 作直线平行AB , 延长BO 、AO 、将AB 的O 侧区 域划分为6个部分,并设OP xOA yOB =+, 则点P 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:0001x y x y ??<+??>??<+?? ????-<+

三点共线与三线共点的证明办法

三点共线与三线共点的证明方法 公理1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2.过不在一条直线上的三点,有且只有一个平面。 推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。 公理3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 例1.如图,在四面体ABCD 中作截图PQR ,PQ 、CB 的延长线交于M ,RQ 、DB 的延长线交于N ,RP 、DC 的延长线交于K .求证M 、N 、K 三点共线. 由题意可知,M 、N 、K 分别在直线PQ 、RQ 、RP 上,根据公理1可知M 、N 、K 在平面PQR 上,同理,M 、N 、K 分别在直线CB 、 DB 、DC 上,可知M 、N 、K 在平面BCD 上, 根据公理3可知M 、N 、K 在平面PQR 与平面BCD 的公共直线上,所以M 、N 、K 三点共线. 例2.已知长方体1111ABCD A B C D -中,M 、N 分别为1AA 与AB 的中点,求证:1D M 、DA 、CN 三线共点. 由M 、N 分别为1AA 与AB 的中点知1//MN A B 且112MN A B =,又1A B 与1D C 平行且相等,所以1//MN D C 且112MN D C =,根据推论3可知M 、N 、C 、1D 四点共面,且1D M 与CN 相交,若1D M 与CN 的交点为K ,则点K 既在平面11ADD A 上又在平面ABCD 上,所以点K 在平面11 ADD A

与平面ABCD的交线DA上,故 D M、DA、CN三线交于点K,即三线 1 共点. 从上面例子可以看出,证明三线共点的步骤就是,先说明两线交于一点,再证明此交点在另一线上,把三线共点的证明转化为三点共线的证明,而证明三点共线只需要证明三点均在两个相交的平面上,也就是在两个平面的交线上。

向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用 蒋李萍 2011年10月24日 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =)得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+ ∴()OB OA μOC OA -=- ∴AB μAC = ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+,且1λμ+=.揭示了三点共线的又一个性质; 3. 特别地,12λμ== 时,1 ()2 OB OA OC =+,点B 为AC 的中点,揭示了OAC 中线OB 的一个向量公式,应用广泛. 应用举例: 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且1 3 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+,且1λμ+=. 证明:由已知BD BA BC =+,又点N 在BD 上,且1 3 BN BD = ,得 1111()3333BN BD BA BC BA BC ==+=+ 又点M 是AB 的中点, 1 2BM BA ∴=,即2BA BM = 21 33BN BM BC ∴=+ 而21133 += ∴M 、N 、C 三点共线. D A B C M N

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点 共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线, (设直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则y x 4 1 的最小值是 解:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线 AP xAB yAC u u u r u u u r u u u r Q 1x y 且x>0,y>0 14141444()1()()145y x y x x y x y x y x y x y x y   Q x>0,y>040,0y x x y 由基本不等式可知:4424y x y x x y x y ,取等号时

初中数学竞赛:证明三点共线

初中数学竞赛:证明三点共线 【内容提要】 1.要证明A,B,C三点在同一直线上, 常用方法有:①连结AB,BC证明∠ABC是平角 ②连结AB,AC证明AB,AC重合 ③连结AB,BC,AC证明AB+BC=AC ④连结并延长AB证明延长线经过点C 2.证明三点共线常用的定理有: ①过直线外一点有且只有一条直线和已知直线平行 ②经过一点有且只有一条直线和已知直线垂直 ③三角形中位线平行于第三边并且等于第三边的一半 ④梯形中位线平行于两底并且等于两底和的一半 ⑤两圆相切,切点在连心线上 ⑥轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 【例题】 例1.已知:梯形ABCD中,AB∥CD,点P是形内的任一点,PM⊥AB, PN⊥CD 求证:M,N,P三点在同一直线上 ∵AB∥CD,∴EF∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM⊥AB,PN⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴M,N,P三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直线上 已知:平行四边形ABCD中,M,N分别是AD和BC的中点,O是AC和BD的交点

求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行 ∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON , ∥AB ∴BN , =N , C ,即N , 是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 ,

向量证明三线共点与三点共线问题.doc

用向量证明三线共点与三点共线问题 山东徐鹏 三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则 简捷得多. 证明A、 B、 C 三点共线,只要证明AB 与AC 共线即可,即证明AB AC .证明三线共点一般须证两线交点在第三条直线上. 例 1.证明:若向量OA 、OB 、OC 的终点A、B、C 共线,则存在实数、,且1, A B C O 图1 使得OC OA OB ;反之,也成立. 的终点 A 、 B 、 C 共线,则证明:如图 1 ,若OA 、OB 、 OC AB BC BC m AB BC OC OB AB OB OA OC OB m(OB OA) OC mOA (1 m)OB m, 1 m, , ,且1, OC OA OB OC OA OB 1, 1 OC OA (1 )OB OC OB OA OB BC BA BC和 BA OA OB OC 例 2.证明:三角形的三条中线交于一点. 证明:如图 2,D、E、F 分别是ABC三边上的中

C D E G A F B 图2 点. 设 CA a, CB b, AD BE G.设 AG AD, BG BE .则 AG AB BG (b a) BE (b a) ( BC 1 CA) b a ( 1 a b) 1 ( 2 1 b) 2 1 b 1)a (1 )b ,又 AG AD (AC CD) ( a a 2 2 2 1 1 2 2 3 所以解得 1 2 1 2 3 则 CG CA AG a 2 AD a 2 ( a 1 b) 1 a 1 b 1 1 3 2 3 2 3 3 CF a b,所以 CG CF ,所以G在中线CF上,所以三角形三条中线交于一点. 2 2 3

平面向量中“三点共线定理”妙用教学文稿

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使 b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且 1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线,(设直线不过点O ),则S 200= ( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选 A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则 y x 4 1

三点共线经典题型

三点共线经典题型 例1如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD. 分析 由三角形的中位线得,MS∥AE,MS=0.5AE,HS∥CF,HS=0.5CF 由已知得HS=SM,从而得出∠SHM=∠SMH,则得出∠TGH=∠THG,GT=TH,最后不难看出AB=CD. 解答: 证明:取BC中点T,AF的中点S,连接GT,HT,HS,SM, ∵GHM分别为BD,AC,EF的中点, ∴MS∥AE,MS=0.5AE,HS∥CF,HS=0.5CF ∵GT∥CD,HT∥AB,GT=0.5CD,HT=0.5AB, ∴GT∥HS,HT∥SM ∴∠SHM=∠TGH,∠SMH=∠THG, ∴∠TGH=∠THG, ∴GT=TH,

∴AB=CD. 例2如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC与AM交于点Q,求证:P,D,Q三点共线. 资料个人收集整理,勿做商业用途 分析 求证:P,D,Q三点共线就是证明平角的问题,可以求证∠PDA+∠ADC+∠CDQ=180°,根据△PAC∽△AMC,△AMC∽△ACQ,可以得出∠PAD=∠DCQ=60°;进而证明△PAD∽△DCQ,得出∠APD=∠CDQ,则结论可证资料个人收集整理,勿做商业用途 解答连接PD,DQ, 由已知∠PAC=120°,∠QCA=120°, ∴△PAC∽△AMC,△AMC∽△ACQ.资料个人收集整理,勿做商业用途 ∴PA/AM=AC/MC,AC/AM=QC/MC ∴AC2=PA?QC,又AC=AD=DC. ∴PA/DC=AD/QC,又∠PAD=∠DCQ=60°, ∴△PAD∽△DCQ,∴∠APD=∠CDQ. 资料个人收集整理,勿做商业用途 ∴∠PDA+∠ADC+∠CDQ=180°,

平面向量补充讲义----三点共线定理(修改版)

平面向量补充讲义----三点共线定理 班级:__________姓名:___________ 三点共线定理:若平面内,向量12,OP OP 不共线,向量12OP OP OP λμ=+, 则12,,P P P 三点共线的等价条件是1λμ+=.(如图,共线时λ满足:221P P P P λ=) 说明1:若12,,P P P 三点共线,设221P P P P λ=,则11OP OP PP =+,则 例1.如图,在△ABC 中,13 AN NC =,点P 是BN 上的一点,若211 AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211 练习 例2.,点在边上,,设,则( ) 例3.如图,点是△的重心,、分别是边、上的动点, 且、、三点共线.设,,求: 的值 推论:如图,若平面内,向量12,OP OP 不共线,点P 为直线12P P 的 平行线上任意一点,且向量 12OP OP OP λμ=+,则λμ+为定值. (这条平行线称为等和线) 例4 .已知点G 为ABC ?重心,P 为GBC ?内动点(不包括边界),且AP AB AC λμ=+,则λμ+的取 值范围是__________________;2λμ+的取值范围是_______________________. OAB ?P AB 3AB AP =,OA a OB b ==OP =12.33A a b +21.33 B a b +. C 1233a b -. D 2133a b -G OAB P Q OA OB P G Q x =y =y x 11+2 12P 1

点共线问题的证明方法

一、点共线问题 证明点共线,常常采用以下两种方法:①转化为证明这些点是某两个平面的公共点,然后根据公理3证得这些点都在这两个平面的交线上;②证明多点共线问题时,通常是过其中两点作一直线,然后证明其他的点都在这条直线上. 1.如图1,正方体1111ABCD A BC D -中,1AC 与截面1DBC 交O 点,AC BD ,交M 点,求证:1C O M ,,三点共线. 证明:连结11AC ,1C ∈ 平面11A ACC ,且1C ∈平面1DBC , 1C ∴是平面11A ACC 与平面1DBC 的公共点. 又M AC M ∈∴∈ , 平面11A ACC . M BD M ∈∴∈ ,平面1DBC . M ∴也是平面11A ACC 与平面1DBC 的公共点. 1C M ∴是平面11A ACC 与平面1DBC 的交线.O 为1AC 与截面1DBC 的交点, O ∴∈平面11A ACC O ∈,平面1DBC ,即O 也是两平面的公共点. 1O C M ∈∴,即1C M O ,,三点共线. 2.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线(在同一条直线上). 分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线. 证明 ∵ AB//CD , AB ,CD 确定一个平面β. 又∵AB ∩α=E ,AB β,∴ E ∈α,E ∈β, 即 E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵ 两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴ E ,F ,G ,H 四点必定共线. 点 评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.

向量法证明三点共线的又一方法及应用 -

向量法证明三点共线的又一方法及应用 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+u u u r u u u r u u u r ,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =u u u r u u u r )得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+u u u r u u u r u u u r u u u r u u u r ∴()OB OA μOC OA -=-u u u r u u u r u u u r u u u r ∴AB μAC =u u u r u u u r ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+u u u r u u u r u u u r ,且1λμ+=.揭示了三点贡献的又一个性质; 3. 特别地,12λμ==时,1()2 OB OA OC =+u u u r u u u r u u u r ,点B 为AC u u u r 的中点,揭示了OAC V 中线OB 的一个向量公式,应用广泛. 应用举例 例 1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明 BN λBM μBC =+u u u r u u u u r u u u r ,且1λμ+=. D A B C M N

向量证明三线共点与三点共线问题

用向量证明三线共点与三点共线问题 山东 徐鹏 三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则简捷得多. 证明A 、B 、C 三点共线,只要证明AB 与AC 共线即可,即证明AC AB λ=.证明三线共点一般须证两线交点在第三条直线上. 例1. 证明:若向量OA 、OB 、OC 的终点A 、B 、C 共线,则存在实数λ、μ, 且1=+μλ,使得OB OA OC μλ+=;反之,也成立. 证明:如图1,若OA 、OB 、OC 的终点A 、B 、C 共线,则AB //BC ,故存在实数m,使得AB m BC =,又OB OC BC -=,OA OB AB -=,故)(OA OB m OB OC -=-, OB m OA m OC )1(++-=.令,1,m m +=-=μλ则存在,1,,=+μλμλ且使得 OB OA OC μλ+=. 若OB OA OC μλ+=,其中,1=+μλ则λμ-=1,OB OA OC )1(λλ-+=.从而有OC -OB =λ(OA -OB ),即BA BC λ=.又因为BA BC 和有公共点B,所以A 、B 、C 三点共线,即向量OA 、OB 、OC 的终点A 、B 、C 共线. 例2. 证明:三角形的三条中线交于一点. 证明:如图2,D 、E 、F 分别是ABC ?三边上的中 A O B C 图1

点. 设BE BG AD AG G BE AD b CB a CA μ===?==,,,.设.则 =-+-=++-=+-=+=)2 1( )2 1()()(b a a b CA BC a b BE a b BG AB AG μμμ b a )1(1(2 1μμ-+-),又b a b a CD AC AD AG λλλλλ2 1)2 1()(+-=+-=+== ?????? ? ==??????? -=-=-323 2121121μλμλμλ解得 所以 则b a b a a AD a AG CA CG 3131)21(323 2+ = + -+=+ =+= b a CF 2 121+ = ,所以CF CG 3 2=,所以G 在中线CF 上,所以三角形三条中线交于一点. A B C E D F 图2 G

证明三点共线的几种方法

证明三点共线的几种方法 贵阳市三十九中学 李明 在高中数学学习中,许多同学感觉到对所学的基本概念,基本公式已经理解,熟练。但解题时却力不从心,无从入手。究其原因:是学生缺乏对解题策略的探究。所以,多种方法解题,是可以帮助学生消化基础知识,优化思维素质,提高分析问题和解决问题能力的。 现就人教版高中第二册(上)第87页第3题的多种解法如下: 题目:证明三点A (-2,12),B(1,3),C (4,-6)在同一条直线上。 一、用解析法解题: 解(1): ∵两点确定一条直线, ∴直线AB 的斜率K AB =Y B -Y A X B -X A = -3 直线AC 的斜率K AC = Y C -Y A X C -X A = -3 ∵K AB = K AC 则直线AB,AC 平行,两直线共起点A 点, ∴直线AB,AC 重合, ∴A,B,C 三点共线。 解(2): 由直线方程的两点式求得直线AB 的方程:3x+y -6=0 把点C 坐标代入直线AB 的方程,得: 3×4-6-6=0 ∵C 点在直线AB 上, ∴A,B,C 三点共线。 解(3): 直线夹角为0来证明三点共线 直线AB 的斜率K AB = Y B -Y A X B -X A = -3 直线AC 的斜率K AC = Y C -Y A X C -X A = -3 设直线AB 与直线AC 的的夹角为 θ,则 tan θ=|K AB -K AC 1+ K AB ?K AC |= 0 又∵0≤θ<1800 ∴θ=0 ∴A,B,C 三点共线。 解(4)的面积为0证明三点共线 ∵直线AB 的方程为:3x+y-6=0 ∴点C (4,-6)到直线AB 的距离d= |3×4-6-6| 32+12 = 0 又∵|AB|=(3-12)2+(1+2)2 =310

三点共线,线共点

第三讲 点共线、线共点 在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。 1. 点共线的证明 点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n (n ≥4)点共线可转化为三点共线。 例1 如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平行四边形AECD , BFCG 。又作平行四边形CFHD ,CGKE 。求证:H ,C ,K 三点共线。 证 连AK ,DG ,HB 。 由题意,AD EC KG ,知四边形AKGD 是平行四边形,于是AK DG 。同样可证AK HB 。四边形AHBK 是平行四边形, 其对角线AB ,KH 互相平分。而C 是AB 中点,线段KH 过C 点,故K ,C ,H 三点共线。 A B C D E F H K G

例2 如图所示,菱形ABCD 中,∠A =120 O 为△ABC 外接圆,M 为其上 一点,连接MC 交AB 于E ,AM 交CB 延长线于F 。求证:D ,E ,F 三点共线。 证 如图,连AC ,DF ,DE 。 因为M 在 O 上, 则∠AMC =60°=∠ABC =∠ACB , 有△AMC ∽△ACF ,得 CD CF CA CF MA MC = =。 又因为∠AMC =BAC ,所以△AMC ∽△EAC ,得 AE AD AE AC MA MC = =。 所以 AE AD CD CF = ,又∠BAD =∠BCD =120°,知△CFD ∽ △ADE 。所以∠ADE =∠DFB 。因为AD ∥BC ,所以∠ADF =∠DFB =∠ADE ,于是F , E ,D 三点共线。 例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q 。由Q 作该圆的两条 切线QE 和QF ,切 点分别为E ,F 。求证:P ,E ,F 三点共线。 证 如图。 连接PQ ,并在PQ 上取一点M ,使得 B , C ,M ,P 四点共圆,连CM ,PF 。设PF 与圆的另一交点为E ’, C E (E ')A B D F P M Q G

(完整word版)高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA u u u r 、OB uuu r 、OP uuu r 是三个有共同起点的不共线向量,求证: 它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==u u u r u u u r u u u r . 【思路点拨】本题包含两个问题:(1)A 、B 、P 共线?m+n=1,且OP mOA nOB ==u u u r u u u r u u u r 成立;(2)上述条件成立?A 、B 、P 三点共线. 【证明】(1)由三点共线?m 、n 满足的条件. 若A 、B 、P 三点共线,则AP u u u r 与AB u u u r 共线,由向量共线的条件知存 在实数λ使AP AB λ=u u u r u u u r ,即()OP OA OB OA λ-=-u u u r u u u r u u u r u u u r ,∴(1)OP OA OB λλ=-+u u u r u u u r u u u r . 令1m λ=-,n=λ,则OP mOA nOB =+u u u r u u u r u u u r 且m+n=1. (2)由m 、n 满足m+n=1?A 、B 、P 三点共线. 若OP mOA nOB =+u u u r u u u r u u u r 且m+n=1,则(1)OP mOA m OB =+-u u u r u u u r u u u r . 则()OP OB m OA OB -=-u u u r u u u r u u u r u u u r ,即BP mBA =u u u r u u u r . ∴BP u u u r 与BA u u u r 共线,∴A 、B 、P 三点共线. 由(1)(2)可知,原命题是成立的. 【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一. 举一反三: 【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-u u u r , 12BC e e =+u u u r ,1269CD e e =-u u u r ,求证:A ,C ,D 三点共线. 【解析】 因为1212121(4)()233AC AB BC e e e e e e CD =+=-++=-=u u u r u u u r u u u r u u u r ,所以AC u u u r 与CD uuu r 共线.

再议平面向量中三点共线定理

再议平面向量中三点共线定定理 三点共线向量定理:已知平面内一组基底OA ,OB 及任一向量OP ,OB OA OP 21λλ+=, ()12,R R λλ∈∈,则A,B,P 三点共线,当且仅当121=+λλ.如图(1)所示. 提出问题:当121≠ +λλ时,点P 应在什么位置呢? 预备知识:点P 的位置是随着1λ,2λ的变化而变化的.如图(2)所示,点P 在直线AB 上, 等价于,AP AB R λλ=∈u u u r u u u r ,所以,OP OA OB OA λλ-=-u u u r u u u r u u u r u u u r ,所以()1OP OA OB λλ∴=-+u u u r u u u r u u u r 所以11=λ12=1,λλλλ∴-=, (1)当 0<λ,即12=11,0λλλλ->=<时点P 在线段AB 的反向延长线上; (2)当 0=λ,即12=1=1,=0λλλλ-=时点P 与点A 重合; (3)当 10<<λ,即()()12=10,1,0,1λλλλ-∈=∈时点P 在线段AB 的内部; (4)当 1=λ,即12=1=0,=1λλλλ-=时点P 与点B 重合; (5)当 1>λ,即12=10,1λλλλ-<=>时点P 在线段AB 的延长线上. 问题分析 (1)当OP 在直线AB 的同侧且AB OP //时,如图(3)所示,OP AB OB OA λλλ==-u u u r u u u r u u u r u u u r , 此时,1212=,+=0λλλλλλ-=,.

(2)当OP 在直线AB 的同侧且0P AB OP =I 时,如图(4)所示 () 01212OP OP OA OB OA OB λλμμλμλμ==+=+u u u r u u u r u u u r u u u r u u u r u u u r ,121+=1λμμ<,且 此时,()11221212=,+=+=1λλμλλμλλλμμλ=< ,. 过点O 直线OE//AB ①当点P 位于直线OE 与直线AB 之间时,如图(5)所示, () 01212OP OP OA OB OA OB λλμμλμλμ==+=+u u u r u u u r u u u r u u u r u u u r u u u r ,1201+=1λμμ<<,且, 此时,()()11221212=,+=+=0,1λλμλλμλλλμμλ=∈ ,. ②当点P 位于直线OE 上方时,如图(6)所示, () 01212OP OP OA OB OA OB λλμμλμλμ==+=+u u u r u u u r u u u r u u u r u u u r u u u r ,120+=1λμμ<,且, 此时,()11221212=,+=+=0λλμλλμλλλμμλ=< ,. (3)当OP 在直线AB 的两侧且0P AB OP =I 时,如图(7)所示 () 01212OP OP OA OB OA OB λλμμλμλμ==+=+u u u r u u u r u u u r u u u r u u u r u u u r ,121+=1λμμ>,且, 此时,()11221212=,+=+=1λλμλλμλλλμμλ=> , 综上讨论可知,已知平面内一组基底,及任一向量,21λλ+=,

三点共线与三线共点的证明方法之欧阳光明创编

三点共线与三线共点的证明方法 欧阳光明(2021.03.07) 公理 1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2.过不在一条直线上的三点,有且只有一个平面。 推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。 公理 3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 例 1.如图,在四面体ABCD 中作截图PQR ,PQ 、CB 的延长线交于M ,RQ 、DB 的延长线交于N ,RP 、DC 的延长线交于K .求证M 、N 、K 三点共线. 由题意可知,M 、N 、K 分别在直线PQ 、RQ 、RP 上,根据公理1可知M 、N 、K 在平面PQR 上,同理,M 、N 、K 分别在直线CB 、DB 、DC 上,可知M 、N 、K 在平面BCD 上,根据公理3可知M 、N 、K 在平面PQR 与平面BCD 的公共直线上,所以M 、N 、K 三点共线. 例 2.已知长方体1111ABCD A B C D -中,M 、N 分别为1AA 与AB 的中点,求证:1D M 、DA 、CN 三线共点. 由M 、N 分别为1AA 与AB 的中点知1//MN A B 且 112MN A B =,又1A B 与1D C 平行且相等,所以1//MN D C 且112MN D C =,根据推论 3可

知M 、N 、C 、1D 四点共面,且1D M 与CN 相交,若1D M 与CN 的交点为K ,则点K 既在平面11ADD A 上又在平面ABCD 上,所以点K 在平面11ADD A 与平面ABCD 的交线DA 上,故1D M 、DA 、CN 三线交于点K ,即三线共点. 从上面例子可以看出,证明三线共点的步骤就是,先说明两线交于一点,再证明此交点在另一线上,把三线共点的证明转化为三点共线的证明,而证明三点共线只需要证明三点均在两个相交的平面上,也就是在两个平面的交线上。

相关文档
最新文档