求直线方程的几种方法

求直线方程的几种方法
求直线方程的几种方法

求直线方程的几种方法

发表时间:2012-07-05T17:51:27.957Z 来源:《学习方法报.语数教研周刊》2012年第30期供稿作者:陆艾芬[导读] 评注由题意直接选择直线方程五种形式中最恰当的一种形式来假设方程,再求解方程,称为公式法.这里选择了截距式方程.

云南宣威市第七中学陆艾芬

一、知识要点概述

直线是两端都没有端点,并可以无限延长.直线是不可测量的,且经过两点有且只有一条直线;在欧几里得几何学中,直线只是一个直观的几何对象;从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形.常用直线与轴正向的夹角(直线的倾斜角)或该角的正切(直线的斜率)来表示平面上直线(对于x 轴)的倾斜程度.可以通过斜率来判断两条直线是否互相平行或互相垂直.直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距.直线在平面上的位置,由它的斜率和一个截距完全确定.

高中数学中直线是最常见也是最基础的图形,直线方程是高中数学中最基础和最常用方程,高中数学的许多知识都构建在其上,所以该知识点与其他知识点的融合是最紧密的,考查也是最多最广的.因为其基础性和易融性,所以考查的形式与方法与也多式多样, 常见的如直接法,公式法等等.

二、解题方法指导

1.直接写出直线方程;

2.利用公式求直线方程;

3.通过直线系求直线方程;

4.结合向量知识求直线方程;

5.借助相关点求直线方程——轨迹法;

6.利用参数求直线方程;

7.通过分析结构求直线方程.

三、范例剖析

1.直接法.

例1 直线 l在 y轴上的截距为3,且倾斜角 a的正弦值为 4/5,求直线 l的方程.

解 sina=4/5 ,∴.直线的斜率

故所求直线 l的方程为即

评注由题意直接选择直线方程五种形式中的任何一个,写出形式适当的方程即为直接法.同时,求解本例时不要混淆概念,倾斜角应

在内,从而cosa 有两个解.

2.公式法.

例2 过点P(2,1)作直线 l交x 轴、y 轴正方向于A、B,求使的面积最小时的直线l 的方程.

解设所求直线方程为,则由直线 l过点P(2,1),得

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

直线方程与圆的方程

一、直线的方程: 概念:倾斜角 (1)倾斜角的范围:001800<≤α,这样定义的倾斜角可以使平面上的任意一条直线都有唯一的一个倾 斜角. (2)特殊位置:当?=0α时,直线l 与x 轴平行;当?=90α时,直线l 与x 轴垂直. 2.直线的斜率. (1)斜率的概念 当倾斜角不是?90时,它的正切值叫做这条直线的斜率,记作:αtan =k . 说明:当?=90α时,直线l 没有斜率(但是有倾斜角);当?≠90α时,直线l 有斜率,且是一个确定的值.由此可知斜率是用来表示倾斜角不等于?90的直线对于x 轴的 倾斜程度的量. (2)斜率公式:1 212x x y y k --=,其中 ),(,),(2211y x y x 是直线l 上两点的坐标. 例1:已知两点(1,5), (3,2)A B ---,直线l 的倾斜角是直线AB 倾斜角的一半,求直线l 的斜率. 3.直线方程的五种形式: (1)点斜式:()11x x k y y -=-; (2)斜截式:b kx y +=; (3)两点式:1 21121x x x x y y y y --=--; (4)截距式: 1=+b y a x ; (5)一般式:0(,Ax By C A B ++=不同时为0). 例2.过点(2,1)P 作直线l 分别交,x y 轴正半轴于,A B 两点,当AOB ?的面积最小时,求直线l 的方程. 练习: 例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和在x 轴与y 轴上的截距, 并画图. 4.两条直线的位置关系: (1)平行(不重合)的条件: 212121,//b b k k l l ≠=?且;

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

直线系圆系方程

直线系、圆系方程 1、过定点直线系方程在解题中的应用 过定点(0x ,0y )的直线系方程:00()()0A x x B y y -+-=(A,B 不同时为0). 例1求过点(14)P -,圆22(2)(3)1x y -+-=的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1, 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 点评:对求过定点(0x ,0y )的直线方程问题,常用过定点直线法,即设直线方 程为:00()()0A x x B y y -+-=,注意的此方程表示的是过点00()P x y ,的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素的限制,在实际解答问题 时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习: 过点(1 4)P -,作圆22(2)(3)1x y -+-=的切线l ,求切线l 的方程. 解:设所求直线l 的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1, 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 2、过两直线交点的直线系方程在解题中的应用 过直线l :1110A x B y C ++=(11,A B 不同时为0)与m :2220A x B y C ++=(22,A B 不同时

直线和圆的方程知识与典型例题

直线和圆的方程知识关系 直线的方程一、直线的倾斜角和斜率 1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180 α< o o ≤. 2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即 tan kα =. 注:①每一条直线都有倾斜角,但不一定有斜率. ②当ο 90 = α时,直线l垂直于x轴,它的斜率k不存在. ③过两点 111 (,) P x y、 222 (,) P x y 12 () x x ≠的直线斜率公式21 21 tan y y k x x α - == - 二、直线方程的五种形式及适用条件 名称方程说明适用条件 斜截式y=kx+b k—斜率 b—纵截距 倾斜角为90°的直线 不能用此式 点斜式y-y0=k(x-x0) (x0,y0)—直线上已 知点, k ──斜率 倾斜角为90°的直线 不能用此式 两点式1 21 y y y y - - =1 21 x x x x - - (x1,y1),(x2,y2) 是直线上两个已知 点 与两坐标轴平行的直 线不能用此式 截距式 x a + y b =1 a—直线的横截距 b—直线的纵截距 过(0,0)及与两坐 标轴平行的直线不能 用此式 一般式 A x+ B y+C=0 (A、B不全为零) A、B不能同时为零

直线和圆的方程

简单的线性规划例13. 若点(3,1)和(4 -,6)在直线0 2 3= + -a y x的两侧,则实数a的取值范围是 ()724 A a a <-> 或()724 B a -<<()724 C a a =-= 或(D)以上都不对例14. ABC ?的三个顶点的坐标为(2,4) A,(1,2) B-,(1,0) C,点(,) P x y在ABC ?内部及边界上运动,则2 y x -的最大值为,最小值为。 例15. 不等式组: 10 x y x y y -+ + ? ? ? ? ? ≥ ≤ ≥ 表示的平面区域的面积是; 例16.20个劳动力种50亩地,这些地可种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的劳动力和预计产值如下表。问怎样安排才能使每亩都种上农作物,所有的劳动力都有工作且农作物的预计产值最高? 例17.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下: 根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.

第九章 第二节 第1课时 系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系

第二节圆与方程 [考纲要求] 1.掌握确定圆的几何要素. 2.掌握圆的标准方程与一般方程. 3.能根据给定直线、圆的方程判断直线与圆的位置关系. 4.能根据给定两个圆的方程判断两圆的位置关系. 5.能用直线和圆的方程解决一些简单的问题. 6.初步了解用代数方法处理几何问题的思想. 第1课时系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系 圆的方程 1.圆的定义及方程 定义平面内到定点的距离等于定长的点的轨迹叫做圆 标准方程(x-a)2+(y-b)2=r2(r>0)圆心:(a,b) 半径:r 一般方程x2+y2+Dx+Ey+F=0(D2 +E2-4F>0) 圆心:???? - D 2,- E 2 半径:r= D2+E2-4F 2 点M(x0,y0),圆的标准方程(x-a)2+(y-b)2=r2. 理论依据点到圆心的距离与半径的大小关系 三种情况(x0-a)2+(y0-b)2=r2?点在圆上(x0-a)2+(y0-b)2>r2?点在圆外(x0-a)2+(y0-b)2<r2?点在圆内 [提醒]不要把形如x2+y2+Dx+Ey+F=0的结构都认为是圆,一定要先判断D2+E2-4F的符号,只有大于0时才表示圆. [谨记常用结论]

若x 2+y 2+Dx +Ey +F =0表示圆,则有:(1)当F =0时,圆过原点. (2)当D =0,E ≠0时,圆心在y 轴上;当D ≠0,E =0时,圆心在x 轴上. (3)当D =F =0,E ≠0时,圆与x 轴相切于原点;E =F =0,D ≠0时,圆与y 轴相切于原点.(4)当D 2=E 2=4F 时,圆与两坐标轴相切. [小题练通] 1.[人教A 版教材P124A 组T4]圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为____________. 答案:(x -2)2+y 2=10 2.[教材改编题]经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为________________. 答案:(x -1)2+(y -1)2=1 3.[教材改编题]圆心为(1,1)且过原点的圆的方程是________. 答案:(x -1)2+(y -1)2=2 4.[易错题]已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A 的圆的切线有两条,则a 的取值范围是________. 答案:????- 233 ,233 5.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是________. 答案:(-2,2) 6.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________. 答案:x 2+y 2-2x =0 直线与圆的位置关系 1.直线与圆的位置关系(半径r ,圆心到直线的距离为d ) 相离 相切 相交 图形 量 化 方程观点 Δ<0 Δ=0 Δ>0 几何观点 d >r d =r d <r

直线与圆常见公式结论

直线与圆常见公式结论 1、斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2、直线的五种方程(熟练掌握两点和截距式、一般式) (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 点法式和点向式在求直线方程时较直观. 3、两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠;②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠;11112222A B C l l A B C ?==与重合 ②1212120l l A A B B ⊥?+=; 4、到角公式和夹角公式 1l 到2l 的角公式 (1)2121 tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=, 12120A A B B +≠). 夹角公式 (1)2121 tan | |1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2 π. 当12121210k k A A B B =-+=或时, 直线12l l ⊥,直线l 1到l 2的角及l 1及l 2的夹角都是2 π.

全国版2022高考数学一轮复习第9章直线和圆的方程第1讲直线方程与两直线的位置关系试题2理含解析

第九章直线和圆的方程 第一讲直线方程与两直线的位置关系 1.[改编题]下列说法正确的是() A.“a=-1”是“直线a2x-y+1=0与直线x-ay-2=0互相垂直”的充要条件 B.直线ax+2y+6=0与直线x+(a-1)y+a2 -1=0互相平行,则a=-1 C.过(x1,y1),(x2,y2 )两点的所有直线的方程为y-y1 y2-y1=x-x1 x2-x1 D.经过点(1,1) 且在x轴和y轴上截距都相等的直线方程为x+y-2=0 2.[2021湖北宜昌模拟]如图9-1-1,已知A(4,0)、B(0,4), 从点P(2, 0)射出的光线经直线AB反射后再射到直线OB 上,最后经直线OB反射后又回到P点,则光线所经过的路程是() 图9-1-1 A.2√5 B.3√3 C.6 D.2√10 3.[2021天津模拟]已知点A(-1,1)、B(1,2)、C(0,-1), 过点C的直线l与线段AB有公共点,则直线l的斜率k的取值范围是() A. [-2,3] B. [-2,0)∪(0,3] C. (-∞,-2]∪[3,+∞) D.以上都不对 4.[2020江西模拟]“m=4”是“直线mx+(3m-4)y+3=0与直线2x+my+3=0平行”的() A.充分而不必要条件 B.必要而不充分条件 C.充要条件

D.既不充分也不必要条件 5.[2020甘肃模拟]已知直线l 1:x sin α+y -1=0,直线l 2:x -3y cos α+1=0,若l 1⊥l 2,则sin 2α=( ) A.3 5 B.-3 5 C.2 3 D.-2 3 6.已知直线l 1:ax+by+1=0与直线l 2:2x+y -1=0互相垂直,且l 1经过点(-1,0),则b = . 7.[2020福建宁德诊断]我国魏晋时期的数学家刘徽创立了割圆术,即圆内接正多边形的边数无限增加时,其面积可无限逼近圆面积.这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在平面直角坐标系的坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的是( ) A .x+(√2-1)y -√2=0 B .(1-√2)x -y+√2=0 C .x -(√2+1)y+√2=0 D .(√2-1)x -y+√2=0 8.[2020安徽皖江名校第一次联考]过原点O 作直线l :(2m+n )x+(m -n )y -2m+2n =0的垂线,垂足为P ,则点P 到直线 x -y+3=0的距离的最大值为( ) A.√2+1 B.√2+2 C.2√2+1 D.2√2+2 9.[2020安徽十校高三摸底考试]已知直线l 过点(3√3,0)且不与x 轴垂直,圆C :x 2+y 2-2y =0,若直线l 上存在一点M ,使OM 交圆C 于点N ,且OM ?????? =32 NM ??????? ,其中O 为坐标原点,则直线l 的斜率的最小值为( ) A.-1 B .-√3 C.-√6 D.-√3 3 10.[2017全国卷Ⅰ,20,12分]设A ,B 为曲线C :y =x 24 上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率; (2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.

直线与圆的方程公式

第三章 直线与方程 3、1直线的倾斜角与斜率 3、1倾斜角与斜率 1、直线的倾斜角的概念:当直线l 与x轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = ta n0°=0; ⑵当直线l 与x轴垂直时, α= 90°, k 不存在、 由此可知, 一条直线l的倾斜角α一定存在,但就是斜率k不一定存在. 4、 直线的斜率公式: 给定两点P1(x 1,y 1),P2(x2,y 2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它 们平行,即 注意: 上面的等价就是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即:12121l l k k ⊥?=- 3.2.1 直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000 y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与 y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ y -y 1 /y-y2=x-x1/x -x2 2、直线的截距式方程:已知直线l 与 x 轴的交点为 A )0,(a ,与y 轴的交点为 B ),0(b ,其中 0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A,B 不同时为0) 2、各种直线方程之间的互化。 3、3直线的交点坐标与距离公式

直线与圆的方程公式资料

直线与圆的方程公式

第三章 直线与方程 3.1直线的倾斜角和斜率 3.1倾斜角和斜率 1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等, 那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即:12121l l k k ⊥?=-g 3.2.1 直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点), (000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x- x1/x-x2 2、直线的截距式方程:已知直线l 与 x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中 0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程 0=++C By Ax (A ,B 不同时为0)

直线方程与圆的方程(含详细答案)

直线方程与圆的方程 例1(江西理数).直线3y kx =+与圆()()2 2 324x y -+-=相交于M,N 两点, 若 MN ≥k 的取值范围是 A. 304??-????, B. []304??-∞-+∞??? ?,, C. 33?-?? ?, D. 203??-????, 【答案】A 【解析】考查直线与圆的位置关系、点到直线距离公式,重点考察数形结合的运用. 解法1:圆心的坐标为(3.,2),且圆与y 轴相切. 当 |MN |=,由点到直线距离公式,解得3 [,0]4 -; 解法2:数形结合,如图由垂径定理得夹在两直线之间即可, 不取+∞,排除B ,考虑区间不对称,排除C ,利用斜率估值,选A 例2(全国卷1理数)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ?的最小值为 (A) 4- (B)3-+ (C) 4-+ 3-+

真题练习 1.(陕西理)已知圆2 2 :40C x y x +-=,l 过点(3,0)P 的直线,则 ( ) A .l 与C 相交 B .l 与 C 相切C .l 与C 相离 D .以上三个选项均有可能 2.(重庆文)设A,B 为直线y x =与圆2 2 1x y += 的两个交点,则||AB = ( ) A .1 B C D .2 3.(陕西文)已知圆2 2 :40C x y x +-=,l 过点(3,0)P 的直线,则 ( ) A .l 与C 相交 B .l 与 C 相切 C .l 与C 相离 D .以上三个选项均有可 能 4.(山东文)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 ( ) A .内切 B .相交 C .外切 D .相离 5.(辽宁文)将圆x 2 +y 2 -2x-4y+1=0平分的直线是 ( ) A .x+y-1=0 B .x+y+3=0 C .x-y+1=0 D .x-y+3=0 6.(湖北文)过点(1,1)P 的直线,将圆形区域{} 22(,)|4x y x y +≤分两部分,使得这两部分 的面积之差最大,则该直线的方程为 ( ) A .20x y +-= B .10y -= C .0x y -= D .340x y +-= 7.(广东文)(解析几何)在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相 交于A 、B 两点,则弦AB 的长等于 ( ) A . B . C D .1 8.(福建文)直线20x +-=与圆2 2 4x y +=相交于,A B 两点,则弦AB 的长度等于 ( ) A . B . C D .1 9.(安徽文)若直线10x y -+=与圆2 2 ()2x a y -+=有公共点,则实数a 取值范围是 ( ) A .[3,1]-- B .[1,3]- C .[3,1]- D .(,3][1,)-∞-+∞ 10.(重庆理)对任意的实数k,直线y=kx+1与圆22 2 =+y x 的位置关系一定是 ( ) A .相离 B .相切 C .相交但直线不过圆心 D .相交且直线过圆心

高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程 一、直线的方程 1、倾斜角: ,范围0≤α<π, x l //轴或与x 轴重合时,α=00。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 1、 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --' (2)点关于线的对称:设p(a 、b)

考点:直线与圆的方程综合测试(教师版)

直线与圆的方程 (时间:90分钟__分数:120分) 一、选择题(共10小题,每小题5分,共50分) 1.(2015·河南安阳期末,3)x cos α+y sin α+1=0,α∈? ? ???0,π2的倾斜角为( ) A .α B.π2+α C .π-α D.π 2-α 【答案】 B 设直线x cos α+y sin α+1=0的倾斜角为θ, 则斜率 k =tan θ=-cos αsin α=sin ? ??? ?π2+αcos ? ?? ?? π2+α=tan ? ???? π2+α. 又α∈? ? ???0,π2,所以θ=π2+α. 2.(2015·山西太原二模,3)“a =2”是“直线y =-ax +2与y =a 4x -1垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】 A 由a =2得两直线斜率满足(-2)×2 4=-1,即两直线垂直;由两直线垂直得(-a )×a 4=-1,解得a =±2,故选A. 3.(2014·吉林长春调研,5)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.17 5 C .8 D .2 【答案】 D ∵直线3x +4y -3=0与直线6x +my +14=0平行, ∴63=m 4≠-14 3,∴m =8,即直线6x +my +14=0为3x +4y +7=0,∴两平行直线间的距离为|7+3| 32+42 =2.故选D. 4.(2015·福建泉州一模,5)已知圆C :x 2+y 2=25,直线l 在x 轴、y 轴上的截距分别为6和8,则圆上的点到直线l 的最大值为( ) A.245 B .5 C .10 D.495 【答案】 D 由题意知,直线l 的方程为4x +3y -24=0,则圆心到直线的距离为d = |0+0-24| 42+32

聚焦直线系、圆系方程的应用

聚焦直线系、圆系方程的应用 【直线系方程的应用】 一、过定点直线系方程在解题中的应用 过定点(0x ,0y )的直线系方程:00()()0A x x B y y -+-=(A,B 不同时为0). 例 1 求过点(14)P -,圆2 2 (2)(3)1x y -+-=的切线的方程. 分析:本题是过定点直线方程问题,可用定点直线系法. 解析:设所求直线的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04 A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 点评:对求过定点(0x ,0y )的直线方程问题,常用过定点直线法,即设直线方程为: 00()()0A x x B y y -+-=,注意的此方程表示的是过点00()P x y ,的所有直线(即直线系),应用这种直线方程可以不受直线的斜率、截距等因素的限制,在实际解答问题时可以避免分类讨论,有效地防止解题出现漏解或错解的现象. 练习: 过点(1 4)P -,作圆22 (2)(3)1x y -+-=的切线l ,求切线l 的方程. 解:设所求直线l 的方程为(1)(4)0A x B y ++-=(其中A B ,不全为零), 则整理有40Ax By A B ++-=, ∵直线l 与圆相切,∴圆心(23)C ,到直线l 的距离等于半径1 1=, 整理,得(43)0A A B -=,即0A =(这时0B ≠),或3 04 A B =≠. 故所求直线l 的方程为4y =或34130x y +-=. 二、过两直线交点的直线系方程在解题中的应用 过直线l :1110A x B y C ++=(11,A B 不同时为0)与m :2220A x B y C ++=(22,A B 不同时为0)交点的直线系方程为:111222()0A x B y C A x B y C λ+++++=(R λ∈,λ为参数). 例2 求过直线:210x y ++=与直线:210x y -+=的交点且在两坐标轴上截距相等的直线方程. 分析:本题是过两直线交点的直线系问题,可用过交点直线系求解. 解析:设所求直线方程为:21(21)0x y x y λ+++-+=,

相关文档
最新文档