数学分析知识点总结

数学分析知识点总结
数学分析知识点总结

第一篇 分析基础 1.1收敛序列

(收敛序列的定义)

定义:设}{n x 是实数序列,a 是实数,如果对任意0>ε都存在自然数N ,使得只要N n >,就有

ε<-a x n

那么}{n x 收敛,且以a 为极限,称为序列}{n x 收敛收敛于a ,记为

a x n =lim 或者)(+∞→→n a x n

定理1:如果序列}{n x 有极限,那么它的极限是唯一的。

定理2(夹逼原理):设}{n x ,}{n y 和}{n z 都是实数序列,满足条件

N n z y x n n n ∈?≤≤,

如果a z x n n ==lim lim ,那么}{n y 也是收敛序列,且有

a y n =lim

定理3:设}{n x 是实数序列,a 是实数,则以下三陈述等价

(1) 序列}{n x 以a 为极限; (2) {}n x a -是无穷小序列; (3) 存在无穷小序列{}n a 使得

,

1,2,.n n x a a n =+=

(收敛序列性质)

定理4:收敛序列}{n x 是有界的。 定理5:

(1)设a x n =lim ,则a x n =lim 。

(2)设a x n =lim ,b y n =lim ,则b a y x n n ±=±)lim(。 (3)设a x n =lim ,b y n =lim ,则ab y x n n =)lim(。

(4)设0≠n x ,0lim ≠=a x n ,则a

x n 11lim

=。 (5)设0≠n x ,0lim ≠=a x n ,b y n =lim ,则lim lim

lim n n n n y y b x x a

==。 (收敛序列与不等式)

定理6:如果lim lim n n x y <,那么存在0N N ∈,使得0n N >时有

n n x y <

定理7:如果}{n x 和{}n y 都是收敛序列,且满足

0,

,n n x y n N ≤?>

那么

lim lim n n x y ≤

1.2 收敛原理

(单调序列定义)

定义:(1)若实数序列}{n x 满足

1,,n n x x n N +≤?∈

则称}{n x 是递增的或者单调上升的,记为

{}.n x ↑

(2)若实数序列{}n y 满足

1,,n n y y n N +≥?∈

则称{}n y 是递减的或者单调下降的,记为

{}n y ↓

(3)单调上升的序列和单调下降的序列统称为单调序列。

定理1:递增序列}{n x 收敛的充分必要条件是它有上界,其上确界记为sup{}n x 。 定理1推论:递减序列{}n y 收敛的充分必要条件是它有下界,其下确界记为inf{}n x 。 扩展:因为一个序列的收敛性及其极限值都只与这序列的尾部(即从某一项之后的项)有关,所以定理1和它的推论中单调性条件可以虚弱为“从某一项之后单调”,即为

10,

,n n x x n N +≤?>

10,

,n n y y n N +≥?>

(自然对数的底e )

自然对数的底e 通过下面这个式子求得

1lim 1n

n e n →+∞

??

=+ ???

我们先来证明序列11n

n x n ??

=+ ???是收敛的。

(1)序列11n

n x n ??

=+ ???

是单调上升的。

111112111(1)(1)(1)

2!3!1121(1)(1)(1)!1121(1)(1)(1)

!n

n x n n n n k k n n n n n n n n

??

=+=++-+-- ???

-++----++---

1

1111112111(1)(1)(1)12!13!111121(1)(1)(1)

!1111121(1)(1)(1)

!111112(1)(1)(1)(1)!111

n n x n n n n k k n n n n n n n n n n n n n ++?

?=+=++

-+-- ?

++++??

-++---+++-++---++++---++++ 对比n x 和1n x +的展开式,1n x +前面1n +项的每一项都比n x 中相应项要大,即

112

1112

1

(1)(1)(1)(1)(1)(1)!11

1!k k k n n n k n n

n

-----

>---

+++ 除此之外1n x +还比n x 在最后多一个正项。因此我们得出n x 是单调上升的,即

1,,n n x x n N +

(2)序列11n

n x n ??

=+ ???

是有上界的。

21111121

111(1)(1)(1)

(1)2!!111

11222

1112

113

111122

n

n n

n

n x n n n n n n

-??

=+=++-++---

???

<+++++??- ?

??=+<+=--

序列11n

n x n ??

=+ ???

是单调上升且有上界,因此必是收敛的,此收敛值用e 表示。通过计算机

模拟,我们可以得到e 的近似值,前几位是2.718281828459045…

在数学中,以e 为底的对数称为自然对数,e 称为自然对数的底,正实数x 的自然对数通常记为ln x ,log x 或者log e x 。

(闭区间套原理)

定理2(闭区间套原理):如果实数序列{}n a 和{}n b (或闭区间序列[]{}

,n n a b )满足条件 (1)[][]11,,n n n n a b a b --?(或者11,1n n n n a a b b n --≤≤≤?>) (2)()lim 0n n b a -= 那么

(i )闭区间序列[]{}

,n n a b 形成一个闭区间套。 (ii )实数序列{}n a 和{}n b 收敛于相同的极限值c 。

lim lim n n a b c ==

(iii )c 是满足以下条件的唯一实数值。

,n n a c b n N ≤≤?∈

证明:

(ii )由条件(1)可得

111n n n n a a b b b --≤≤≤≤≤

我们可以看到{}n a 单调上升而有上界,{}n b 单调下降而有下界,因此{}n a 和{}n b 都是收敛序列。由条件(2)可得()lim lim lim 0n n n n b a b a -=-=,因此实数序列{}n a 和{}n b 收敛于相同的极限值。

lim lim n n a b c ==

(iii )因为

{}{}sup inf n n c a b ==

所以显然有

,n n a c b n N ≤≤?∈

假如还有一个实数'c 满足

',n n a c b n N ≤≤?∈

由于

lim lim n n a b c ==

那么根据夹逼准则,有

'lim 'lim lim n n c c a b c ====

则证明了c 是唯一的。

(Bolzano-Weierstrass 定理) 定义:设{}n x 是实数序列,而

1231k k n n n n n +<<<

<<<

是一串严格递增的自然数,则

1231,,,,,,

k k n n n n n x x x x x +

也形成一个实数序列。我们把序列{}

k n x 叫做序列{}n x 的子序列(或部分序列),要注意的是子序列{}

k n x 的序号是 k 。

定理3:设序列{}n x 收敛于a ,则它的任何子序列{}

k n x 也都收敛于同一极限a 。 证明:对于任意0ε>,存在0N N ∈,使得只要0n N >,就有

n x a ε-<

当0k N >时就有0k n k N ≥>,因而此时有

k n x a ε-<

定理4(Bolzano-Weierstrass ):设{}n x 是有界序列,则它具有收敛的子序列。

(柯西收敛原理)

柯西序列定义:如果序列{}n x 满足条件:对于任意0ε>,存在0N N ∈,使得当0,m n N >时,就有

m n x x ε-<

则此序列为柯西序列,又称基本序列。 引理:柯西序列{}n x 是有界的。

证明:对于任意1ε=,存在0N N ∈,使得当0,m n N >时,就有

1m n x x -<

于是对于0n N >,我们有

0001111n n N N N x x x x x +++≤-+<+

若记

{

}

00121max ,,

,,1N N K x x x x +=+

则有

,n x K n N ≤?∈

定理5(收敛原理):序列{}n x 收敛的必要充分条件是:对任意0ε>,存在0N N ∈,使得当0,m n N >时,就有

m n x x ε-<

换句话说:

序列{}n x 收敛?{}n x 序列是柯西序列

1.3 无穷大

定义:(1)设{}n x 是实数序列,如果对任意正实数E ,存在自然数N ,使得当n N >时就有

n x E >

那我们就说实数序列{}n x 发散于+∞,记为

lim n x =+∞

(2)设{}n y 是实数序列,如果对任意正实数E ,存在自然数N ,使得当n N >时就有

n y E <-

那我们就说实数序列{}n y 发散于-∞,记为

lim n y =-∞

(3)设{}n z 是实数序列,如果序列{}

n z 发散于+∞,即l i m n z =+∞,那么我们就称{}n z 为无穷大序列,记为

lim n z =∞

注记:(1)若集合E R ?无上界,则记

sup E =+∞

(2)若集合F R ?无下界,则记

sup F =-∞

定理1:单调序列必定有(有穷的或无穷的)极限,具体而言是: (1)递增序列{}n x 有极限,且

{}lim sup n n x x =

(2)递减序列{}n y 有极限,且

{}lim inf n n y y =

定理2:设{}n x 和{}n y 是实数序列,满足条件

,

n n x y n N ≤?∈

则有:

(1)如果lim n x =+∞,那么lim n y =+∞; (2)如果lim n y =-∞,那么lim n x =-∞。

定理3:如果lim n x =+∞(或-∞,或∞),那么对于{}n x 的任意子序列{}

k n x 也有

lim k n x =+∞(或-∞,或∞)

定理4:设0,n x n N ≠?∈,则

{}n x 是无穷大序列?1n x ??

?

???

是无穷小序列 扩充的实数系:{,}R R =?-∞+∞

定理5:实数序列{}n x 至多只能有一个极限。 扩充的实数系R 中的运算: (1)如果x R ∈,那么

()()x x +±∞=±∞+=±∞

()x -±∞=∞

(2)如果x R ∈,0x >,那么

()()x x ?±∞=±∞?=±∞

如果y R ∈,0y <,那么

()()y y ?±∞=±∞?=∞

(3)如果x R ∈,那么

0x x ==+∞-∞

(4)()()+∞++∞=+∞,()()+∞--∞=+∞

()()-∞+-∞=-∞,()()-∞-+∞=-∞ ()()+∞?+∞=+∞,()()-∞?-∞=+∞ ()()()()+∞?-∞=-∞?+∞=-∞

(5)除此之外,其余都没有定义。

1.4 函数的极限

0x 点的η领域:00000(,)(,){|||},,,0U x x x x R x x x R ηηηηηη=-+=∈-<∈> 0x 点的去心η领域:

000000(,)(,)\{|0||},,,0U x x x x x R x x x R ηηηηηη=-+=∈<-<∈>

+∞的去心H 领域:(,)(,){|},,0U H H x R x H H R H +∞=+∞=∈>∈> -∞的去心H 领域:(,)(,){|},,0U H H x R x H H R H -∞=-∞-=∈<-∈>

统一叙述:对于a R ∈,我们用()U a 表示a 的某个去心邻域,当a 为有穷实数时,()U a 的形式为(,)U a η,当a =±∞时,()U a 的形式为(,)U H ±∞。

函数极限的序列式定义:设,a A R ∈(a 和A 都可以是有穷实数或者±∞),并设函数()f x 在a 的某个去心邻域()U a 上有定义。如果对于任何满足条件n x a →的序列{}()n x U a ?,相应的函数值序列{()}f x 都以A 为极限,那么我们说当x a →时,函数()f x 的极限为A ,记为

lim ()x a

f x A →=

简单例子如:l i m s i n s i n x a

x

a →=;lim cos cos x a

x a →=;lim ||||x a

x a →=;lim x a

x a →=;

1lim sin

0x x x →=,因为1|sin |||x x x ≤;0lim 1sin x x x →=,因为cos 1sin x x x <

<;sin lim 0x x

x

→∞=,因为sin 1

||||

x x x ≤。

定理1:函数极限lim ()x a

f x →是唯一的。

定理2(夹逼原理):设()f x ,()g x 和()h x 在a 的某个去心邻域()U a 上有定义,并且满足不等式

()()(),()f x g x h x x U a ≤≤?∈

如果

lim ()lim ()x a

x a

f x h x A →→==

那么

lim ()x a

g x A →=

定理3:关于函数的极限,有以下的运算法则:

lim(()())lim ()lim ()x a

x a

x a

f x

g x f x g x →→→±=±

lim(()())lim ()lim ()x a

x a

x a

f x

g x f x g x →→→=?

lim ()()lim ()lim ()

x a

x a x a

g x g x f x f x →→→= 定理4(复合函数求极限):设函数g 在b 点的某个去心邻域()U b 上有定义,lim ()y b

g y c →=。

又设函数f 在a 点的某个去心邻域()U a 上有定义,f 把()U a 中的点映射到()U b 之中(用记号表示就是:(())()f U a U b ?)并且lim ()x a

f x b →=,则有

lim (())x a

g f x c →=

多项式函数与有理数分式函数求极限的法则如下: (1)设()P x 是任意多项式,a R ∈,则

lim ()()x a

P x P a →=

(2)设()P x 是任意多项式,()Q x 是非零多项式a R ∈,()Q a 不都是0,则

()()

lim

()()

x a P x P a Q x Q a →=

(3)设

1011

0100(),

(),0,0

m m m n

n n P x a x a x a Q x b x b x

b a b --=+++=++

+≠≠,则

00,

()lim ,()

0,

x m n a P x m n Q x b m n

→∞?+∞>??==???

100100,()lim lim ,()0,

m m m n x x n n

m n a

a a a P x x x x

m n b b Q x b b x x m n

-→∞→∞?

+∞>?

??+++ ??=== ?? ??++

+?

??

1.5单侧极限

定义(序列方式):设R A R a ∈∈,,并设函数)(x f 在),(a a η-有定义。如果对任意满足条件a x n →的序列),(}{a a x n η-?,相应的函数值序列)}({n x f 都以A 为极限,那么我们就说:-

→a x 时函数)(x f 的极限为A ,记为

A x f a x =-

→)(lim

定义(δε-方式):设R A a ∈,,并设函数)(x f 在),(a a η-有定义。如果对任意0>ε,存在0>δ,使得只要

a x a <<-δ

就有

ε<-|)(|A x f

那么我们就说:-

→a x 时函数)(x f 的极限为A ,记为

A x f a x =-

→)(lim

定义(δε-方式,特殊的+∞=?A R A ,):设R a ∈,并设函数)(x f 在),(a a η-有定义。如果对任意0>E ,存在0>δ,使得只要

a x a <<-δ

就有

E x f >)(

那么我们就说:-

→a x 时函数)(x f 的极限为∞+,记为

+∞=-

→)(lim x f a x

可用类似的方式来定义+

→a x 的极限。

定理1:设R a ∈,并设函数)(x f 在a 点的去心邻域),(ηa U

上有定义。则极限)(lim x f a

x →存

在的充分必要条件是两个单侧极限存在并且相等:

A x f x f a

x a x ==+-

→→)(lim )(lim

当这条件满足时,我们有

A x f a

x =→)(lim

单调函数定义:设函数f 在集合R S ?上有定义。

(1)如果对任意S x x ∈21,,21x x <,都有

)()(21x f x f ≤

那么我们就说函数f 在集合S 上是递增的或者单调上升的。 (2)如果对任意S x x ∈21,,21x x <,都有

)()(21x f x f ≥

那么我们就说函数f 在集合S 上是递减的或者单调下降的。 (3)单调上升函数与单调下降函数统称为单调函数。

1.6 连续与间断

定义I :设函数)(x f 在0x 点的邻域),(0ηx U 上有定义。如果对任何满足条件0x x n →的序列),(}{0ηx U x n ?,都有

)()(lim 00

x f x f n x x n =→

那么我们就说函数f 在0x 点连续,或者说0x 点事函数f 的连续点。

定义II :设函数)(x f 在0x 点的邻域),(0ηx U 上有定义。如果对任意0>ε,存在0>δ,使得只要δ<-||0x x ,就有

ε<-|)()(|0x f x f

那么我们就说函数f 在0x 点连续,或者说0x 点事函数f 的连续点。

定理1:设函数f 在0x 点连续,则存在0>δ,使得函数f 在),(0δx U 上有界。(证明过程参考函数极限)

定理2:设函数)(x f 和)(x g 在0x 点连续,则 (1))()(x g x f ±在0x 点连续; (2))()(x g x f ?在0x 点连续; (3)

)

()

(x g x f 在使得0)(0≠x g 的0x 处连续; (4))(x cg 在0x 点连续。

定理3:设函数)(x f 在0x 点连续,则函数|)(|x f 也在0x 点连续. 证明:|)()(|||)(||)(||00x f x f x f x f -≤-,余下易证。

定理4:设函数)(x f 和)(x g 在0x 点连续。如果00()()f x g x <,那么存在0δ>,使得对于0(,)x U x δ∈有

()()f x g x <

定理5(复合函数的连续性):设函数)(x f 在0x 点连续,函数()g y 在00()y f x =点连续,那么复合函数(())g f x 在0x 点连续.

定义单侧连续:设函数)(x f 在00(,]x x η-上有定义,如果

0lim ()()x x f x f x -

→=

那么我们就说函数)(x f 在0x 点左侧连续。类似的可以定义右侧连续。引入记号

00()lim (),()lim ()x x x x f x f x f x f x -+

-+→→== 我们知道极限存在的充分必要条件是两个单侧极限存在并且相等(这个相等值为极限值A ,不一定是该点的函数值0()f x ),可以写成

00()()f x f x A -+

==

但是如果在0x 点左连续和右连续,则说明在0x 点两个单侧极限存在并且相等,且这个相等的值一定是该点的函数值0()f x ),可以写成

000()()()f x f x f x -+==

)(x f 在0x 点左连续和右连续是)(x f 在0x 点连续的充分必要条件。

简单的说就是:

00000()()()()()

f x x f x x f x x f x x f x ??在点连续在点左连续,右连续

在点连续在点两个单侧极限存在,且值为

定理6:设函数)(x f 在0(,)U x η上有定义,则)(x f 在0x 点连续的充分必要条件是

000()()()f x f x f x -+==

反过来说,如果)(x f 在0(,)U x η上有定义,但)(x f 在0x 点不连续,则称0x 为间断点。有情形I 和情形II ,这两种情形下0x 点分别成为第一类间断点和第二类间断点。 情形I (第一类间断点):两个单侧极限都存在,但

00()()f x f x -+

或者

000()()()f x f x f x -+=≠

情形II (第二类间断点):至少一个单侧极限不存在。

注意:单侧极限存在并不代表单侧连续,如果)(x f 在0x 点单侧极限存在,并且此极限值等于)(x f 在0x 点的函数值0()f x ,那么就说)(x f 在0x 点单侧连续。

简单的例子,例如函数

sin ,0()0,

0x

x f x x

x ?≠?

=??=? (0)(0)(0)f f f -+=≠,0为第一类间断点。如果改成

sin ,0()1,

0x

x f x x

x ?≠?

=??=? (0)(0)(0)1f f f -+===,则0是连续点。

例如函数

1

sin ,

0()0,

0x f x x

x ?≠?=??=? 左右侧不连续,故0是第二类间断点。

狄里克莱(Dirichlet )函数

1,()0,

x D x x ?=?

?如果是有理数

如果是无理数

任何x R ∈都是函数D 的第二类间断点。 黎曼(Riemann )函数

1,,0()0,

q x p q q R x x >?=?

?如果是既约分数如果是无理数

所有五里店都是黎曼函数的连续点;所有有利点都是第一类间断点。

1.7 闭区间上连续函数的重要性质

函数在闭区间上连续的定义:如果函数f 在闭区间[,]a b 上有定义,在每一点(,)x a b ∈连续,在a 点右侧连续,在b 点左侧连续,那么我们就说函数f 在闭区间[,]a b 上连续。

引理:设{}[,]n x a b ?,0n x x →,则0[,]x a b ∈。

定理1:设函数f 在闭区间[,]a b 上连续。如果()f a 与()f b 异号,那么必定存在一点

(,)c a b ∈,使得

()0f c =

定理2(介值定理):设函数f 在闭区间[,]a b 上连续。如果闭区间的两端点的函数值

()f a α=与()f b β=不相等,那么在这两点之间函数f 能够取得介于α与β之间的任意

值γ。这就是说,如果()()f a f b γ<<,那么存在(,)c a b ∈,使得

()f c γ=

定理3:设函数f 在闭区间[,]a b 上连续,则f 在闭区间[,]a b 上有界。

定理4(最大值与最小值定理):设函数f 在闭区间[,]a b 上连续,M ,m 分别是函数f 在闭区间[,]a b 上的最大值与最小值,记

[,]

[,]

sup (),inf ()x a b x a b M f x m f x ∈∈==

则存在',''[,]x x a b ∈,使得

('),

('')f x M f x m ==

一致连续定义:设E 是R 的一个子集,函数f 在E 上有定义,如果对任意0ε>,存在0δ>,使得只要

1212,,||x x E x x δ∈-<

就有

12|()()|f x f x ε-<

那么j 我们就说函数f 在E 上是一致连续的。

定理5(一致连续性定理):如果函数f 在闭区间[,]I a b =连续,那么它在I 上是一致连续的。

1.8 单调函数和反函数

引理:集合J R ?是一个区间的充分必要条件为:对于任意两个实数,J αβ∈,介于α和β之间的任何实数γ也一定属于J 。

定理1:如果函数f 在区间I 上连续,那么

(){()|}J f I f x x I ==∈

也是一个区间。

定理2:如果函数f 在区间I 上单调。则函数f 在区间I 上连续的充分必要条件为:()f I 也是一个区间。

反函数定义:设函数f 在区间I 上连续,则()J f I =也是一个区间。如果函数f 在区间I 上严格单调,那么f 是从I 到()J f I =的一一对应。这时,对任意()y J f I ∈=,恰好只有一个x I ∈能使得()f x y =。我们定义一个函数g 如下:对任意的y J ∈,函数值()g y 规定为由关系()f x y =所决定的唯一的x I ∈。这样定义的函数g 称为是函数f 的反函数,记为

1g f -=

我们看到,函数f 及其反函数1

g f -=满足如下关系:

()()g y f f x y =?=

定理3:设函数f 在区间I 上严格单调并且连续,则它的反函数1

g f -=在区间()J f I =上

严格单调并且连续。

1.9 指数函数,对数函数和初等函数连续性小结

定理1:设,1a R a ∈>,则有 (1)lim x

x a →∞

=+∞

(2)lim 0x

x a →-∞

=

定理2:初等函数在其有定义的范围内是连续的。

高考文科数学知识点总结

原命题若p 则q 逆命题 若q 则p 互为逆否 互 逆否互 为逆 否否 互 集合与简易逻辑 知识回顾: (一) 集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 3 ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. (二)含绝对值不等式、一元二次不等式的解法及延伸 1.含绝对值不等式的解法 (1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论. (3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 特例① 一元一次不等式ax>b 解的讨论; 2 (三)简易逻辑 1、命题的定义:可以判断真假的语句叫做命题。 2、逻辑联结词、简单命题与复合命题: “或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 3、“或”、 “且”、 “非”的真值判断 (1)“非p ”形式复合命题的真假与F 的真假相反;

(2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; (3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真. 4、四种命题的形式: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 函数 知识回顾: (一) 映射与函数 1. 映射与一一映射 2.函数 函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. (二)函数的性质 ⒈函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性 4. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如: 指数函数与对数函数 指数函数及其性质 2 212221212 2 2 22121) ()()(b x b x x x x x b x b x x f x f x ++++-= +- += -)(

高中数学知识点总结(精华版)

高中数学必修+选修知识点归纳新课标人教A版 一、集合 1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集合相等。 3、常见集合:正整数集合: 或 ,整数集合: ,有理数集合: ,实数集合: . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作 .

2、如果集合 ,但存在元素 ,且 ,则称集合A是集合B的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作: .并规定:空集合是任何集合的子集. 4、如果集合A中含有n个元素,则集合A有 个子集, 个真子集. §1.1.3、集合间的基本运算 1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作: . 2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作: . 3、全集、补集? §1.2.1、函数的概念

1、设A、B是非空的数集,如果按照某种确定的对应关系 ,使对于集合A中的任意一个数 ,在集合B中都有惟一确定的数 和它对应,那么就称 为集合A到集合B的一个函数,记作: . 2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设 那么 上是增函数; 上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设

人教版七年级数学知识点归纳总结

第一章有理数 (一)正负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 (二)有理数 1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。 (四)有理数的加减法 1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。 3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。 4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 5. a?b = a +(?b)减去一个数,等于加这个数的相反数。 (五)有理数乘法(先定积的符号,再定积的大小) 1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。2.乘积是1的两个数互为倒数。 3.乘法交换律:ab= b a 4.乘法结合律:(ab)c = a (b c) 5.乘法分配律:a(b +c)= a b+ ac (六)有理数除法 1.先将除法化成乘法,然后定符号,最后求结果。 2.除以一个不等于0的数,等于乘这个数的倒数。 3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。 (七)乘方 1.求n个相同因数的积的运算,叫做乘方。写作a n 。(乘方的结果叫幂,a 叫底数,n叫指数) 2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是

高考理科数学知识点整理

高中数学知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 (答:,,)-? ?? ???1013 3. 注意下列性质: (3)德摩根定律: 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 若为真,当且仅当、均为真p q p q ∧ 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型?

10. 如何求复合函数的定义域? 义域是_____________。[] - a a (答:,) 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么?(一一对应函数) 求反函数的步骤掌握了吗? (①反解x;②互换x、y;③注明定义域) 13. 反函数的性质有哪些? ①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性; 14. 如何用定义证明函数的单调性?(取值、作差、判正负) 如何判断复合函数的单调性? ∴……)

15. 如何利用导数判断函数的单调性? 值是() A. 0 B. 1 C. 2 D. 3 ∴a的最大值为3) 16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 注意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

高一数学集合知识点归纳

高一数学集合知识点归纳及典型例题 一、知识点: 本周主要学习集合的初步知识,包括集合的有关概念、集合的表示、集合之间的关系及集合的运算等。在进行集合间的运算时要注意使用Venn图。 本章知识结构 1、集合的概念 教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。 对象――即集合中的元素。集合是由它的元素唯一确定的。 整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。 确定的――集合元素的确定性――元素与集合的“从属”关系。 不同的――集合元素的互异性。 2、有限集、无限集、空集的意义 有限集和无限集是针对非空集合来说的。我们理解起来并不困难。 我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”

的关系。 几个常用数集N、N*、N+、Z、Q、R要记牢。 3、集合的表示方法 (1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合: ①元素不太多的有限集,如{0,1,8} ②元素较多但呈现一定的规律的有限集,如{1,2,3, (100) ③呈现一定规律的无限集,如{1,2,3,…,n,…} ●注意a与{a}的区别 ●注意用列举法表示集合时,集合元素的“无序性”。 (2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。 另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。 4、集合之间的关系 ●注意区分“从属”关系与“包含”关系 “从属”关系是元素与集合之间的关系。 “包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn图描述集合之间的关系是基本要求。 ●注意辨清Φ与{Φ}两种关系。 5、集合的运算 集合运算的过程,是一个创造新的集合的过程。在这里,我们学习了三种创造新集合的方式:交集、并集和补集。 一方面,我们应该严格把握它们的运算规则。同时,我们还要掌握它们的运算性质

人教版七年级下册数学知识点归纳完整版

人教版七年级下册数学课本知识点归纳 第五章相交线与平行线 一、相交线两条直线相交,形成4个角。 1.邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。具有这种关系的两个角,互为邻补角。如:∠1、∠2。 2.对顶角:两个角有一个公共顶点,并且一个角的两条 边,分别是另一个角的两条边的反向延长线,具有这种 关系的两个角,互为对顶角。如:∠1、∠3。 3.对顶角相等。 二、垂线 1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。 3.垂足:两条垂线的交点叫垂足。 4.垂线特点:过一点有且只有一条直线与已知直线垂直。 5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。 三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。 2.内错角:在在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。如:∠3和∠5。 3.同旁内角:在在两条直线之间,又在直线EF的同侧, 具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。 四、平行线 (一)平行线 1.平行:两条直线不相交。互相平行的两条直线,互为平行线。a∥b (在同一平面内,不相交的两条直线叫做平行线。) 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 3.平行公理推论:①平行于同一直线的两条直线互相平行。 ②在同一平面内,垂直于同一直线的两条直线互相平行。 (二)平行线的判定: 1.同位角相等,两直线平行。 2.内错角相等,两直线平行。 3.同旁内角互补,两直线平行。 (三)平行线的性质 1.两条平行线被第三条直线所截,同位角相等。 2.两条平行线被第三条直线所截,内错角相等。 3.两条平行线被第三条直线所截,同旁内角互补。 4.两条平行线被第三条直线所截,外错角相等。

高中数学知识点总结超全

高中数学 必修1知识点 第一章 集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等 (7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集, 它有2 2n -非空真子集.

【1.1.3】集合的基本运算 (8)交集、并集、补集 名称记号意义性质示意图 交集A B {|, x x A ∈且 } x B ∈ (1)A A A = (2)A?=? (3)A B A ? A B B ? B A 并集A B {|, x x A ∈或 } x B ∈ (1)A A A = (2)A A ?= (3)A B A ? A B B ? B A 补集 U A{|,} x x U x A ∈? 且 1() U A A=?2() U A A U = 【补充知识】含绝对值的不等式与一元二次不等式的解法 (1)含绝对值的不等式的解法 不等式解集 ||(0) x a a <>{|} x a x a -<< ||(0) x a a >>|x x a <-或} x a > ||,||(0) ax b c ax b c c +<+>> 把ax b+看成一个整体,化成||x a<, ||(0) x a a >>型不等式来求解 判别式 24 b ac ?=- ?>0 ?=0 ?<二次函数 2(0) y ax bx c a =++> 的图象O 一元二次方程 20(0) ax bx c a ++=> 的根 2 1,2 4 2 b b ac x a -±- = (其中 12 ) x x < 122 b x x a ==-无实根 ()()() U U U A B A B = ()()() U U U A B A B =

高考数学集合专项知识点总结

高考数学集合专项知识点总结为了帮助大家能够对自己多学的知识点有所巩固,下文整理了这篇数学集合专项知识点,希望可以帮助到大家! 一.知识归纳: 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则A B(或A B); 2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且) 3)交集:A∩B={x| x∈A且x∈B} 4)并集:A∪B={x| x∈A或x∈B}

5)补集:CUA={x| x A但x∈U} 注意:①? A,若A≠?,则? A ; ②若,,则; ③若且,则A=B(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。 4.有关子集的几个等价关系 ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB; ④A∩CuB = 空集CuA B;⑤CuA∪B=I A B。 5.交、并集运算的性质 ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A; ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n 个子集,2n-1个非空子集,2n-2个非空真子集。 二.例题讲解: 【例1】已知集合 M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系 A) M=N P B) M N=P C) M N P D) N P M 分析一:从判断元素的共性与区别入手。

七年级下册数学知识点总结(人教版)

七年级下册数学知识点总结(人教版) 一、相交线相交线:如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。如直线A B、CD相交于点O。ADCOB对顶角:两条直线相交出现对顶角。顶点相同,角的两边互为反向延长线、,满足这种关系的角,互为对顶角,对顶角相等。对顶角是成对出现的。邻补角:有一条公共边,角的另一边互为反向延长线、满足这种关系的两个角,互为领补角。邻补角与补角的区别与联系v 1、邻补角与补角都是针对两个角而言的,而且数量关系都是两角之和为180v 2、互为邻补角的两个角一定互补,但是互为补角的两个角不一定是邻补角即:互补的两个角只注重数量关系而不谈位置,而互为邻补角的两个角既要满足数量关系又要满足位置关系。领补角与对顶角的比较 二、垂线垂直:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。baO从垂直的定义可知,判断两条直线互相垂直的关键:要找到两条直线相交时四个交角中一个角是直角。垂直的表示:用“⊥”和直线字母表示垂直例如:如图,a、b互相垂直,O叫垂足、a叫b的垂线,b也叫a的垂线。则记为:

a⊥b或b⊥a;若要强调垂足,则记为:a⊥b, 垂足为O、垂直的书写形式: 如图,当直线AB与CD相交于O点,∠AOD=90时,AB⊥CD,垂足为O。书写形式:DAO∵∠AOD=90(已知)∴AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90。C书写形式:∵ AB⊥CD (已知)B∴ ∠AOD=90 (垂直的定义)应用垂直的定义:∠AOC=∠BOC=∠BOD=90垂线的画法:BAl如图,已知直线 l 和l上的一点A ,作l的垂线、则所画直线AB 是过点A的直线l的垂线、工具:直尺、三角板1放:放直尺,直尺的一边要与已知直线重合;2靠:靠三角板,把三角板的一直角边靠在直尺上;3移:移动三角板到已知点;4画线:沿着三角板的另一直角边画出垂线、垂线的性质: 1、同一平面内,过一点有且只有一条直线与已知直线垂直、 2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。F EDCBA87654321 三、同位角、内错角、同旁内角(出现在一条直线与两条直线分别相交的情形)同位角:一边都在截线上而且同向,另一边在截线同侧的两个角。如∠1和∠5,∠4和∠8。内错角:一边都在截线上而且反向,另一边在截线两侧的两个角。(两个角在两条截线内)如∠3和∠5,∠4和∠6。同旁内角:一边都在截线上

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

关于高考数学高考必备知识点总结归纳精华版

高考前重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补.{|,} {|}{,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?I U U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。 ③、原命题为真,它的逆否命题一定为真。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称; c.求)(x f -; d.比较)()(x f x f 与-或)()(x f x f --与的关系。 (4)函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 指数函数 )10(≠>=a a a y x 且的图象和性质 对数函数y=log a x (a>0且a ≠1)的图象和性质:

高中数学集合基础知识及题型归纳复习

集合基础知识及题型归纳总结 1、集合概念与特征: 例:1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 例:下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合; (3)36 11,,,,0.5242 -这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。 A .0个 B .1个 C .2个 D .3个 2、元素与集合、集合与集合间的关系 元素集合的关系:∈?或 集合与集合的关系=?或 例:下列式子中,正确的是( ) A .R R ∈+ B .{}Z x x x Z ∈≤?-,0| C .空集是任何集合的真子集 D .{}φφ∈ 3、集合的子集:(必须会写出一个集合的所有子集) 例:若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是 4、集合的运算:(交集、并集、补集) 例1:已知全集}{5,4,3,2,1,0=U ,集合}{5,3,0=M ,}{5,4,1=N ,则=N C M U I 例2:已知 {}{}=|3217,|2A x x B x x -<-≤=< (1)求A ∩B ; (2)求(C U A )∪B 例3:已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围 例4:某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人 例5:方程组? ??=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-

七年级下册数学知识点总结人教版

第五章相交线与平行线 一、相交线 相交线:如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。如直线AB、CD相交于点O。 A D C O B 对顶角:两条直线相交出现对顶角。顶点相同,角的两边互为反向延长线、,满足这种关系的角,互为对顶角,对顶角相等。对顶角就是成对出现的。 邻补角:有一条公共边,角的另一边互为反向延长线、满足这种关系的两个角,互为领补角。 邻补角与补角的区别与联系 ?1、邻补角与补角都就是针对两个角而言的,而且数量关系都就是两角之与为180° ?2、互为邻补角的两个角一定互补,但就是互为补角的两个角不一定就是邻补角即:互补的两个角只注重数量关系而不谈位置,而互为邻补角的两个角既要满足数量关系又要满足位置关系。 领补角与对顶角的比较 二、垂线 垂直:当两条直线相交所成的四个角中,有一个角就是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。 从垂直的定义可知,判断两条直线互相垂直的关键:要找到两条直线相交时四个交角中一个角就是直角。 垂直的表示:用“⊥”与直线字母表示垂直 例如:如图,a、b互相垂直,O叫垂足、a叫b的垂线, b也叫a的垂线。则记为:a⊥b或b⊥a; 若要强调垂足,则记为:a⊥b, 垂足为O、 垂直的书写形式:如图,当直线AB与CD相交于O点,∠ 为O。 b a O

书写形式: ∵∠AOD=90°(已知) ∴AB ⊥CD(垂直的定义) 反之,若直线AB 与CD 垂直,垂足为O,那么,∠AOD=90°。 书写形式: ∵ AB ⊥CD (已知) ∴ ∠AOD=90° (垂直的定义) 应用垂直的定义:∠AOC=∠BOC=∠BOD=90° 垂线的画法: 如图,已知直线 l 与l 上的一点A ,作l 的垂线、 则所画直线AB 就是过点A 的直 线l 的垂线、 工具:直尺、三角板 1放:放直尺,直尺的一边要与已知直线重合; 2靠:靠三角板,把三角板的一直角边靠在直尺上; 3移:移动三角板到已知点; 4画线:沿着三角板的另一直角边画出垂线、 垂线的性质: 1、同一平面内,过一点有且只有一条直线与已知直线垂直、 2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 三、同位角、内错角、同旁内角(出现在一条直线与两条直线分别相交的情形) 同位角:一边都在截线上而且同向,另一边 在截线同侧的两个角。 如∠1与∠5,∠4与∠8。 内错角:一边都在截线上而且反向, 另一边在截线两侧的两个角。 (两个角在两条截线内) 如∠3与∠5,∠4与∠6。 同旁内角:一边都在截线上而且反向, 另一边在截线同旁的两个角。 (两个角在两条截线内) 如∠3与∠6,∠4与∠5。 同位角、内错角、同旁内角的比较 A O C B A l 1 2 4 3 5 7 6 C B D A 8 E F

[全国通用]高中数学高考知识点总结

高一数学必修1知识网络 集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ?????????? ????????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ?? ?? ?????????? ???????? ??????????????????????? ?????????????????????=???????

[全国通用]高中数学高考知识点总结

[全国通用]高中数学高考知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-?????? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??==I Y (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x a M M M a --<∈?50352 的取值范围。

()(∵,∴ ·∵,∴ ·,,)335305555015392522∈--

高中数学必修一集合知识点总结大全90302

高中数学必修1知识点 集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ??????????? ???????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ?? ?? ?????????? ???????? ??????????????????????? ?????????????????????=??????? 第一章集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系

初一下册数学知识点总结归纳

`
2、在同一平面,不相交的两条直线叫平行线。 如果两条直线只有一个公共点,称这两条直线相交;如果两条直 线没有公共点,称这两条直线平行。 3、两条直线相交所构成的四个角中,有公共顶点且有一条公共 边的两个角是邻补角。 邻补角的性质邻补角互补。 如图 1 所示,与互为邻补角,与互为邻补角。 +=180°;+=180°;+=180°;+=180°。 4、两条直线相交所构成的四个角中,一个角的两边分别是另一 个角的两边的反向延长线,这样的两个角互为对顶角。 对顶角的性质对顶角相等。 如图 1 所示,与互为对顶角。 =;=。 5、两条直线相交所成的角中,如果有一个是直角或 90°时,称 这两条直线互相垂直,其中一条叫做另一条的垂线。 如图 2 所示,当=90°时,⊥。 垂线的性质性质 1 过一点有且只有一条直线与已知直线垂直。 性质 2 连接直线外一点与直线上各点的所有线段中,垂线段最 短。 性质 3 如图 2 所示,当⊥时,====90°。 点到直线的距离直线外一点到这条直线的垂线段的长度叫点到 直线的距离。
Word 文档

`
6、同位角、错角、同旁角基本特征①在两条直线被截线的同一 方,都在第三条直线截线的同一侧,这样的两个角叫同位角。
图 3 中,共有对同位角与是同位角;与是同位角;与是同位角; 与是同位角。
②在两条直线被截线之间,并且在第三条直线截线的两侧,这样 的两个角叫错角。
图 3 中,共有对错角与是错角;与是错角。 ③在两条直线被截线的之间,都在第三条直线截线的同一旁,这 样的两个角叫同旁角。 图 3 中,共有对同旁角与是同旁角;与是同旁角。 7、平行公理经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论如果两条直线都与第三条直线平行,那么这两条 直线也互相平行。 平行线的性质性质 1 两直线平行,同位角相等。 如图 4 所示,如果∥,则=;=;=;=。 性质 2 两直线平行,错角相等。 如图 4 所示,如果∥,则=;=。 性质 3 两直线平行,同旁角互补。 如图 4 所示,如果∥,则+=180°;+=180°。 性质 4 平行于同一条直线的两条直线互相平行。 如果∥,∥,则 ∥
Word 文档

整理全面《高中数学知识点归纳总结》

整理全面《高中数学知识点归纳总结》

教师版高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向 量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用

相关文档
最新文档