储能技术的研究开发现状及展望

储能技术的研究开发现状及展望
储能技术的研究开发现状及展望

飞轮储能技术的现状和发展前景

飞轮储能技术的现状和发展前景 飞轮储能系统(FESS)又称飞轮电池或机械电池,由于它与化学电池相比所具有 的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。 飞轮电池的发展开始于20 世纪70 年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA) 及其后的美国能源部(DoE) 资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究。 Lewis 研究中心(LeRC) 在ERDA 的 协助和美国航空航天局(NASA) 的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA 同时也资助Goddard 空间飞行中心(GSFC) 研究适用于飞行器动量飞轮的电磁轴承。80 年代,DoE 削减了飞轮储能研究的资助,但NASA 继续资助GSFC 研究卫星飞轮系统的电磁轴承,同时还资助了Langley 研 究中心(LaRC) 及Marshall 空间飞行中心(MSFC) 关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10 年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维 复合材料(抗拉强度高达8. 27 GPa) 、磁悬浮技术和高温超导技术、高速电机/ 发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等) 、汽车工业(电动汽车) 、电力行业(如电力质量和电力负载调节等) 、医疗和电信业(作UPS 用) 等1NASA 的应用有航天器(宇宙飞船) 、发射装置、飞行器动力系统、不间断电源(UPS) 和宇宙漫步者。

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

相变储能技术介绍及其展望

相变储能技术介绍及 其展望 能动学院 能动A02 王来升 2010201104

相变储能技术介绍及其展望 摘要:相变储能材料作为一种提高能源利用稳定性以及效率的技术越来越受 到人们重视,如何有效的对相变储能技术进行研究越来越受到人们的重视。 关键词:相变材料;应用;展望 0引言: 能源是人类赖以生存的基础。随着人类生活以及生产活动的高速发展,我们对能源的需求量越来越大,而化石能源的日益枯竭、能源利用带来的污染问题却越来越严重。如何提高能源的利用效率、最大限度的利用低品位能源、开发可利用的新能源成为当今社会的研究热点。 自20世纪七十年代石油危机后,热能存储技术在工业节能和新能源利用领域日益受到重视,在我国2000年前后,全面实行分时计度电价政策后,相变储能技术便成为工业和民用的热点,尤其是随着太阳能、风能和海洋能等间歇性绿色能源的发展,相变储能技术越来越受到人们的重视。 1.相变储能技术的发展概况 1。1国外相变储能技术的发展概况 20世纪六十年代,美国国家航空航天局就非常重视相变技术在航天领域的应用用。1980年美国 Birchenall等提出采用合金作为相变材料[1],提出了三种典型状态平衡图和二元合金的熔化熵和熔化潜热的计算方法。1991年德国Gluck 和Hahne等利用/制成高温蓄热砖,并建立太阳能中央收集塔的蓄能 装置[2]。2001年Faird等以-6O作为相变材料采用微胶囊技术封装制备 了相变储能地板[3]。2006年Hammou等设计了一个含有相变材料的混合热储能存储系统[4]。 1。2国内相变储能技术的发展概况 在我国,二十世纪七十年代末、八十年代初,中国科技大学、华中师范大学、中国科学院广州能源研究所等单位就开始了对无机盐、无机水合盐、金属等相变材料的理论和应用作了详细的研究工作.西藏太阳能研究示范中心和华中师范大学共同利用西藏盐湖盛产的芒硝和硼砂等无机水合盐类矿产加入独特的悬浮剂等成功研制出太阳能高密度储热材料[5]。林怡辉,张正国等人采用溶胶—凝胶法[6],采用二氧化硅作母材,有机酸作相变材料,合成复合相变材料。二浙江大学王永川等人对相变储能材料及其实际应用作了大量相关概述。 2.相变储能技术概念及特点

储能技术研究进展

储能技术研究进展 能源短缺和环境恶化是全球性问题,开发可再生能源,实现能源优化配置, 发展低碳经济,是世界各国的共同选择。但是,可再生能源受天气及时间段的影响较大,具有明显的不稳定、不连续和不可控性。需要开发配套的电能储存装置,来保证发电、供电的连续性和稳定性。国外有关研究表明,如果风电装机占装机总量的比例在10%以内,依靠传统电网技术以及增加水电、燃气机组等手段基本可以保证电网安全。但如果所占比例达到20%甚至更高,电网的调峰能力和安全运行将面临巨大挑战。储能技术在很大程度上解决了新能源发电的随机性、波动性问题,可以实现新能源发电的平滑输出,能有效调节新能源发电引起的电网电压、频率及相位的变化,使大规模风电及太阳能发电方便可靠地并人常规电网。 现有的储能技术主要包括物理储能、电化学储能、电磁储能、氢储能、相变 储能和热化学储能等类型。其中,物理储能、电化学储能、电磁储能和氢储能主 要储存电能,物理储能包括抽水储能、压缩空气储能级飞轮储能等;电化学储能包括铅酸、锂离子、镍镉、液流和钠硫等电池储能;电磁储能包括超导储能和超 级电容储能;为了实现氢储能完整的转换链,就要从氢气的制取、储存、发电等 方面整体规划,在关键技术上进一步突破。而相变储能和热化学储能主要储存热能或由电能转化的热能,相变储能按材料的组成成分可分为无机类、有机类(包括高分子类)以及复合类储能材料;热化学储能基于热化学反应,而热化学反应体系主要包括金属氢化物体系、氧化还原体系、有机体系、无机氢氧化物体系以及氨分解体系。 1. 物理储能 物理储能一般用于大规模储能领域,主要包括抽水储能、压缩空气储能、飞轮储能等,其中抽水储能是主要的储能方式。物理储能是利用天然的资源来实现的一种储能方式,因此更加环保、绿色,而且具有规模大、循环奉命长和运行费 用低等优点。缺点是建设局限性较大,其储能实施的地理条件和场地有特殊要求。而且因为其一次性投资较高,一般不适用于小规模且较小功率的离网发电系统。1.1 抽水储能 目前在电力系统中应用最广泛的一种物理储能技术,即为抽水储能。它是一种间接的储能方式,用来解决电网高峰与低谷之间的供需矛盾。水库中的水被下半夜过剩的电力驱动水从下水库抽到上水库储存起来,然后在第二天白天和前半夜将水闸打开,放出的水用来发电,并流入到下水库。即使在转化间会有一部分能量因此而流失,但在低谷时压荷、停机等情况下,使用抽水储能电站仍然比增建煤电发电设备来满足高峰用电而来得便宜,具有更佳的效果。除此以外,抽水

全球储能技术发展现状与应用情况

全球储能技术发展现状与应用情况 一、储能技术分类、技术原理、主要特征 针对电储能的储能技术主要分为三类:电化学储能(如钠硫电池、液流电池、铅酸电池、锂离子电池、镍镉电池、超级电容器等) 、物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)和电磁储能(如超导电磁储能等)。 也可以分为功率型和能量型,功率型的特点是功率密度大、充放电次数多、响应速度快、能量密度小的特点,例如飞轮、超级电容、超导;能量型的特点是能量密度大、响应时间长、充放电次数少、功率密度低等特点。例如蓄电池。 从目前的情况来看,两种储能设备混用会产生更大的效果,混用比单一使用更有利于降低成本。(最近的一篇论文介绍的模型计算结果是在微网中使用超级电容和蓄电池两种混合储能成本是单一储能成本的33.8%。) (一)电化学储能技术 1、钠硫电池 钠硫电池的正极活性物质是液态的硫(S);负极活性物质是液态金属钠(Na),中间是多孔性瓷隔板。它利用熔融状态的金属钠和硫磺在300℃以上高温条件下,进行氧化-还原反应,完成充放电过程。 钠硫电池的主要特点是能量密度大(是铅蓄电池的3倍)、充电效率高(可达到80%)、可大电流、高功率放电、循环寿命比铅蓄电

池长。然而钠硫电池在工作过程中需要保持高温,有一定安全隐患。由于钠硫电池中所用的储能介质金属钠和硫磺均为易燃、易爆物质,对电池材料要求十分苛刻,目前只有日本(NGK)公司实现产品的产业化生产。 图1 钠硫电池储能系统原理 (来源:美国储能协会) 2、液流电池 液流氧化还原电池(Redox flow cell energy storage systems),简称液流蓄电站或液流电池,与通常蓄电池活性物质包含在阳极和阴极不同,液流电池作为氧化-还原电对的活性物质分别溶解于装在两个大储液罐中的溶液里,各用一个泵使溶液流经液流电池堆中高选择性离子交换膜的两侧,在其多孔炭毡电极上发生还原和氧化反应。电池堆通过双极板串联,结构类似于燃料电池。目前还发展有在一个或两个电极上发生金属离子(及非金属离子)溶解/沉积反应的液流电池。 由于液流电池的储能容量由储存槽中的电解液容积决定,而输出功率取决于电池的反应面积,通过调整电池堆中单电池的串连数量和电极面积,能够满足额定放电功率要求。两者可以独立设计,因此系

新能源储能系统发展现状及未来发展趋势

新能源储能系统发展现状及未来发展趋势 目录 第一章新能源储能系统相关论述 (1) 新能源相关论述 (1) 新能源定义 (1) 新能源分类 (1) 储能技术相关论述 (1) 储能技术的定义 (1) 储能技术的分类 (1) 第二章国内外新能源储能系统的发展动态分析 (2) 日本新能源储能系统的发展动态分析 (2) 新能源储能电池的发展现状及未来发展趋势 (2) 新能源储能系统的未来发展趋势 (3) 新能源储能系统在实际中的应用 (3) 美国在新能源储能系统的应用中漫漫求索 (4) 政策与投资力度 (4) 储能技术的经济性瓶颈 (5) 我国新能源储能系统的现状 (5) 储能是构建智能电网的关键环节 (6) 商业模式不成熟制约储能发展 (6) 第三章国内外在相关新能源储能技术上的发展现状 (8) 新能源储能系统的实际应用 (8) 创能、节能与储能的完美搭配 (9) 国内新能源储能技术瓶颈解析 (10) 新能源科技发展的核心—储能技术 (10) 新能源无"仓库储能"的尴尬 (10) 储能技术的突破效应 (11) "不能等肚子饿了才去种麦子" (12) 第四章新能源储能系统的发展趋势 (13) 日本新能源储能系统的发展趋势 (13) 储能电池的发展趋势 (13) 我国新能源储能系统的发展趋势 (13) 我国智能电网带动储能产业发展态势研究分析 (13) 新能源并网储能市场发展前景预测分析 (14)

第一章新能源储能系统相关论述 新能源相关论述 新能源定义 新能源的定义为:以新技术和新材料为基础,使传统的可再生能源得到现代化的开发和利用,用取之不尽、周而复始的可再生能源取代资源有限、对环境有污染的化石能源,重点开发太阳能、风能、生物质能、海洋能、地热能和氢能。 新能源分类 新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、水能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等,而已经广泛利用的煤炭、石油、天然气、水能、等能源,称为常规能源。随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特质的新能源越来越得到各国的重视。 储能技术相关论述 储能技术的定义 储能技术是将电力转化成其他形式的能量储存起来,并在需要的时候以电的形式释放。 储能技术的分类 目前全球储能技术主要有物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)和电磁储能(如超导电磁储能等)三大类。目前技术进步最快的是化学储能,其中钠硫、液流及锂离子电池技术在安全性、能量转换效率和经济性等方面取得重大突破,产业化应用的条件日趋成熟。

全球储能技术的发展现状及前景分析

全球储能技术的发展现状及前景分析 北极星储能网讯:一直以来,储能技术的研究和发展备受各国能源、交通、电力、电讯等部门的高度关注,尤其对发展新能源产业具有重大意义。受 环境约束,各国纷纷大力提倡发展新能源,然而由于新能源发电具有不稳定性 和间歇性,大规模开发和利用将使供需矛盾更加突出,全球弃风、弃光问题普遍存在,严重制约了新能源的发展。因此,储能技术的突破和创新就成为新能源能 否顺利发展的关键。从某种意义上说,储能技术应用的程度将决定新能源的发 展水平。 (一)全球各储能技术装机情况 近年来,储能市场一直保持较快增长。据美国能源部全球储能数据库(DOEGlobalEnergyStorageDatabase)2016 年8 月16 日的更新数据显示,全球累计运行的储能项目装机规模167.24GW(共1227 个在运项目),其中抽水蓄能161.23GW(316 个在运项目)、储热3.05GW(190 个在运项目)、其他机械储能1.57GW(49 个在运项目)、电化学储能1.38GW(665 个在运项目)、储氢 0.01GW(7 个在运项目),具体见全球累计运行的储能项目装机量以抽水蓄能占 比最大,约占全球的96%。按照总装机量,中国成为装机位列第一的国家,日 本和美国次之,三国装机分别为32.1GW、28.5GW 和24.1GW,共占全球装机 总量的50%。全球累计运行储能项目装机排名前十的主要是亚洲和欧洲国家, 详见表1。 (二)全球储能技术区域分布情况 全球的储能项目装机主要分布在亚洲、欧洲和北美,见按照储能技术类 型分布来看,抽水蓄能装机占比最大,主要分布在中国、日本和美国。与2014

储能技术手段全展望

储能技术手段全展望 提及新能源,尤其是风力与光伏发电,许多人的第一印象往往就是成排的风车和大片的太阳能板,而很少想到它们所产电能的传输与使用。 由于能源产生方式的不稳定和不连续性,风电尽管资源丰富,电量充沛,却无法直接并入传统电网;光伏因为成本问题,一直以国外市场为主。产业首尾不相接的状况,让供需之间的不平衡,伴随着国内市场的启动与新能源越来越大的投资、扩产而愈益明显。 因而可以说,解决间歇性和随机性是新能源实现自身价值的核心问题之一。而将电力转化成其他形式的能量,并在需要的时候以电的形式释放的储能技术,便成为最理想的钥匙。事实上,储能问题并非伴随新能源而产生的新问题。人们一直都清楚,如果电能得以大规模储存,电网供需不平衡的问题便会迎刃而解,新能源将开始造福人类。 目前,已开发的储能技术主要分为物理储能和化学储能两大类。物理储能主要包括抽水储能、飞轮储能、压缩空气储能等。化学储能主要包括各类蓄电池、超级电容器、可再生燃料电池(如金属—空气电池,氢能:电解水制氢—储氢—燃料电池发电)和液流电池等。 抽水储能:大规模储能首选 “在风电领域,目前普遍使用的是抽水蓄能。”专家说,技术成熟、低成本、循环水利用等优势,使得抽水储能现在广泛应用于风力发电的大规模储能。 抽水储能是目前电力系统中应用最为广泛的一种储能技术,是为了解决电网高峰、低谷之间供需矛盾而产生的,是间接储存电能的一种方式。它利用下半夜过剩的电力驱动水泵,将水从下水库抽到上水库储存起来,然后在次日白天和前半夜将水放出发电,并流入下水库。在整个运作过程中,虽然部分能量会在转化间流失,但相比之下,使用抽水蓄能电站仍然比增建煤电发电设备来满足高峰用电而在低谷时压荷、停机这种情况来得便宜,效益更佳。除此以外,抽水蓄能电站还能担负调频、调相和事故备用等动态功能,成为电网运行管理的重要工具。“最有效的是抽水蓄能电站和风能配套。风能的随机性太大,是最差劲的垃圾电,有了抽水储能电站,垃圾电就变成优质电。”在近期的一次新能源发电入网和抽水蓄能建设座谈会上,明确支持大力发展抽水蓄能电站。他建议从广大农村、小城镇开始,建立起一个结合多种新能源和储能方式的、以分布式供能体系为中心的战略性新兴产业。 目前,世界主要工业国家抽水蓄能装机比例约占总装机容量的5%—10%。专家认为,尽管其他新兴储能方式正在不断取得发展,但短时间,“电池储能的污染,飞轮储能的成本都是需要行业自身考虑的问题。在大规模储能领域,抽水蓄能还将是最主要的方式。”

能源互联网背景下的电力储能技术展望 刘一思

能源互联网背景下的电力储能技术展望刘一思 发表时间:2018-06-19T16:50:13.807Z 来源:《基层建设》2018年第12期作者:刘一思[导读] 摘要:电能存储技术是实现需求侧能量高效管理、有效提高可再生能源入网的关键技术,被认为是智能电网关键要素之一,其在电力系统中的应用涉及到“采、发、输、配、用、储”各个环节。 国核电力规划设计研究院北京市海淀区 100095 摘要:电能存储技术是实现需求侧能量高效管理、有效提高可再生能源入网的关键技术,被认为是智能电网关键要素之一,其在电力系统中的应用涉及到“采、发、输、配、用、储”各个环节。大规模新能源发电和众多分布式可再生能源接入电网给电力系统运行与规划带来了新的问题和挑战。储能是电力系统实现高比例新能源发电消纳不可或缺的资源。在能源互联网中,燃料网、热力网、交通网、电力网几 大重要网络的联合运行、互通互补将成为趋势。储能技术还可以在能源信息、应用运营层中起到举足轻重的作用,对于应用层各种能源业态的开展具有核心的支持作用。 关键词:能源互联网;电力储能;储能技术引言 随着应用领域的扩展,储能技术已被视为电力系统的又一重要组成部分。近年来风电、太阳能发电等新能源技术的迅速发展带动了储能技术的研究,智能电网建设对于电能质量和供电稳定性的更高要求也将依托于储能技术的发展来实现。随着智能电网的进一步建设、间歇性可再生能源人网需求的扩大,储能技术的研究和发展有待进步。 1能源互联网中储能技术现状能源互联网中存在大规模可再生能源发电送出和消纳、局域多能源系统灵活高效和经济运行、能源市场自由交易等应用需求,为储能技术提供了发展机遇。电能可以转换为化学能、势能、动能、电磁能等形态存储,按照其具体方式可分为物理、电磁、电化学和热能储能四大传统类型。其中一些储能技术可实现大规模的能量存储,在广域能源的调配中发挥重要作用,一些储能技术灵活高效并与用户需求紧密结合,是局域多能源系统中的必要元件。 1.1物理储能 物理储能主要包括抽水蓄能、压缩空气储能和飞轮储能等形式。 1.1.1抽水蓄能是目前电力系统中应用最为广泛、循环寿命周期最长、容量最大的一种储能技术,通过水泵将下水库的水抽送到上水库存储电能,通过上水库水流冲击水轮机组发电释放能量。水蓄能电站技术成熟可靠,单位容量成本相对较低,在各国电力系统中不仅发挥了削峰填谷、黑启动、调频调相等作用,还能够优化电源结构、有效提高电网消纳新能源发电的能力。 1.1.2压缩空气储能电站在充电时用电力压缩空气并将其储藏在高压密封设施内,放电时释放高压气体驱动燃气轮机发电。但其能量密度较低,并受岩层等地形条件的限制。近几年,研究人员进一步优化热力循环,改变介质及其状态,开发出先进绝热压缩空气储能系统、液态空气储能系统、超临界压缩空气储能等多种新型的压缩空气储能系统。这些新系统具有储能规模大、效率高、不需要大的储存装置等优点,可用于消纳新能源、削峰填谷、频率调节等。 1.1.3飞轮储能系统由一个圆柱形旋转质量块和通过磁悬浮轴承组成的支撑机构组成。飞轮充电时运行于电动机状态,发电时运行于发电机状态。飞轮储能的突出优点在于运行维护需求小、设备寿命长、环境友好,适用于高功率、短时间的场合。其缺点主要在于受材料性能制约,单个飞轮的容量难以做大。 1.2电磁储能 电磁储能系统包括超导磁储能和超级电容器等。 1.2.1超导磁储能单元的能源来自于超导线圈中电流产生的磁场。存储的能量能够近乎瞬时地通过功率变换系统释放至电力系统,并且可以根据电力系统的需要对储能线圈进行充放电。超导磁储能具有快速响应特性、极高的储能效率、极长的循环寿命和较大的功率等显著优点,适用于暂态稳定控制和电能质量提升等场景。 1.2.2超级电容器采用多孔的碳或其他表面积很大的材料做电极,正负极板距离极小,可提高容量达2个数量级。其与常规电容器相比具有更高的介电常数、更大的表面积或者更高的耐压能力。 1.3储热 储热技术大体可分为显热储能、潜热储能和化学储热3类。显热储能通过提高介质的温度实现热存储。潜热储能,即相变储能,利用材料相变时吸收或放出热量,目前以固—液相变为主。与显热储能相比,相变储能具有较稳定的温度以及较大的能量密度。化学储热利用可逆化学反应储存热能,可实现宽温域梯级储热,能量密度可达显热和潜热储能的10倍以上。化学储热技术要求储热介质具备可逆的化学反应,储热材料选择难度大。目前储热技术仍以显热和潜热储能为主。 1.4氢储能 氢气是一种蓄能密度很高的物质,具有热值高、环保、无碳排放等优点,是优质的二次能源。电解水制氢是一种成熟的制氢方法,其优点在于制氢纯度高,缺点在于成本很高,但是对于可再生能源丰富的地区,电解水不仅可以制得廉价的氢气,还可以实现资源的再生利用,因此利用新能源电解水制氢被认为是最有前景的技术之一。 1.5电化学储能 电化学储能安装灵活、响应速度快,在为电网提供功率服务和能量服务中都可起到重要作用。其在抑制新能源发电快速波动、电网调频、微电网能量管理和稳定性支撑、分布式电源接入等方面具有显著的技术优势。 2储能技术在能源互联网下的应用作为能源互联网的重要元素之一,储能系统能够实现多种能源的融合运转。物理储能、电磁储能和电化学储能本质上均为电力储能,即电能在富余时转化为其他形式的能量,在需要时再转化为电能。而热能储能和制气储能则是“跨系统”的储能形式,热能和氢气、天然气等能源尽管也可以转化为电能,但是更多地直接满足热负荷和化工负荷。因此,物理储能、电磁储能和电化学储能一般仅用于电力系统,而热能储能和制气储能可实现不同能源系统的互联。 3总结与展望

储能行业发展分析报告

特变电工新疆新能源股份有限公司 储能行业发展分析报告 市场管理部 二零一五年八月十八日 目录 一、储能产业发展状况...................................... (一)国外储能产业发展情况............................ (二)中国储能产业发展情况............................ 二、储能市场分析.......................................... (一)全球市场 ....................................... (二)国内市场 ....................................... 三、政策支持.............................................. (一)国内现有政策分析................................ (二)国外政策经验借鉴................................ 四、存在的问题和挑战...................................... (一)产业政策和行业标准缺失问题亟待解决.............. (二)自主技术有待工程应用验证和进一步完善............ (三)产品成本过高,推广力度不足...................... (四)商业模式模糊 ................................... 五、国内主要储能变流器生产企业分析........................

储能技术的发展及分析

【摘要】储能技术已被视为电网运行过程中中的重要组成部分。系统中引入储能环节后可以有效地利用电力设备,降低供电成本,提高系统运行稳定性、调整频率、补偿负荷波动。储能技术的应用将在电力系统设计、规划、调度、控制等方面带来重大变革。 【关键词】储能技术;现状;前景;应用 1 储能技术在电力系统中的应用 储能技术已被视为电网运行过程中“采――发――输――配――用――储”六大环节中的重要组成部分。系统中引入储能环节后,可以有效地实现需求侧管理,消除昼夜间峰谷差,平滑负荷,可以更有效地利用电力设备,降低供电成本,也可作为提高系统运行稳定性、调整频率、补偿负荷波动的一种手段。储能技术的应用必将在传统的电力系统设计、规划、调度、控制等方面带来重大变革。 2 储能技术原理及特点 储能系统一般由两大部分组成:由储能元件(部件)组成的储能装置;由电力电子器件组成的电网接入系统。主要实现能量的储存、释放或快速功率交换。 储能系统的容量范围宽,从几十千瓦到几百兆瓦;放电时间跨度大,从毫秒级到小时级;应用范围广,贯穿发输变配用电系统。 储能系统的主要作用如下:(1)用于电力调峰,解决用电矛盾;(2)用于用户侧,提高供电可靠性;(3)用于可再生能源优化,推动可再生能源开发应用;(4)用于电力系统稳定控制,提高电网安全性。 大规模储能技术是对传统“即发即用”的电力模式的革命性突破,它可以减少用于发电设备的投资,提高电力设备的利用率,安装在用电设备附近可以降低线损,安装在大城市附近可以提高供电可靠性。 3 储能技术研究现状 电能储存的形式可分为四类:机械储能(如抽水蓄能、压缩空气储能、飞轮储能等)、化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)、电磁储能(如超导电磁储能等)和相变储能(如冰蓄冷等)。 长久以来,电力系统中储能技术的研究集中于大规模储能技术以解决系统调峰问题。近来,储能电池、超级电容器、超导电磁储能和高效率飞轮等中小规模储能技术取得长足的进步,有力拓展了储能技术的应用范围。凭借这些不同规模的储能技术,其应用可贯穿电力系统发输变配用电各个环节,以全面提升电力系统的运行效率、可靠性、电能质量和资产价值。 4 电力储能方式和发展现状 4.1 压缩空气储能电站 4.2 超导磁储能系统 超导磁储能系统(superconducting magnetic energy storage,smes)利用超导体制成的线圈储存磁场能量,功率输送时无需能源形式的转换,具有响应速度快,转换效率高、比容量/比功率大等优点,可以实现与电力系统的实时大容量能量交换和功率补偿。smes可以充分满足输配电网电压支撑、功率补偿、频率调节、提高系统稳定性和功率输送能力的要求。 4.3 飞轮储能 飞轮储能系统由高速飞轮、轴承支撑系统、电动机/发电机、功率变换器、电子控制系统和真空泵、紧急备用轴承等附加设备组成。谷值负荷时,飞轮储能系统由工频电网提供电能,带动飞轮高速旋转,以动能的形式储存能量;出现峰值负荷时,高速旋转的飞轮作为原动机拖动电机发电,经功率变换器输出电流和电压。飞轮储能功率密度大,效率高,循环使用寿命长,无污染,维护简单,可连续工作,主要用于不间断电源/ 应急电源、电网调峰和频率控制。

熔融盐储能技术及应用现状汇总

熔融盐储能技术及应用现状 随着全球新能源产业的快速发展,风力发电与太阳能等随机性和间歇性很强的发电方式对电网的正常运行管理提出了相当高的挑战,相应地,各类储能(储热)技术也逐渐纳入了人们的视角。熔融盐储能技术是利用硝酸盐等原料作为传热介质,通过新能源发出的热能与熔盐的内能转换来存储或发出能量,一般与太阳能光热发电系统结合,使光热发电系统具备储能和夜间发电能力,满足电网调峰需要,具有很强的经济优势,已经在西班牙、意大利等欧洲地区和部分北美地区等发达国家得到了实际的商业化应用。 一、熔融盐介绍 1.1 熔融盐的特性 熔融盐是盐的熔融态液体,通常说的熔融盐是指无机盐的熔融体,广义上的熔融盐还包括氧化物熔体及熔融有机物。除了单一无机盐外,将同一类熔融盐按照一定比例混合,或者将不同种类的熔融盐按照一定的配方混合,可以形成多种新型混合共晶熔融盐。这些混合熔融盐可以根据成分配比的不同,获得各种熔点和使用温区的熔融盐工质,能够避免硝酸盐使用温度低、氯化盐熔点温度高等缺点,同时保留熔融盐热稳定性和化学稳定性好、饱和蒸汽压低、比热容大等一系列优点,因此在工业上获得了广泛应用。目前,寻找性能优越的混合熔融盐成为熔融盐传热蓄热研究的主要方向之一。 熔融盐有不同于水溶液的诸多性质,主要包括:①熔融盐为离子熔体,通常由阳离子和阴离子组成,具有良好的导电性能,其导电率比电解质溶液高1个数量级;②具有广泛的使用温度范围,通常的熔融盐使用温度在300~1000℃之间,新研发的低熔点混合熔融盐使用温度更是扩大到了60~1000℃;③饱和蒸汽压低,保证了高温下熔融盐设备的安全性;④热容量大;⑤对物质有较高的溶解能力;⑥低粘度;⑦化学稳定性好;⑧原料易获得,价格低廉,与常见的高温传热蓄热介质——导热油和液态金属相比,绝大多数熔融盐的价格都非常低廉,且容易获得。这些优异的特性使熔融盐被广泛用作热介质、化学反应介质以及核反应介质,尤其近些年来在太阳能热发电系统中,熔融盐得到了广泛的应用。

储能技术总结

储能技术 能源是人类赖以生存的基础,随着人类生活以及生产活动的高速发展,能源的需求量越来越大,由此,能源因开采或利用而引起的环境问题日益凸显。 (1)如何提高能源的利用效率? (2)如何最大限度地利用低品位能源? 随着太阳能、风能和海洋能等间歇性绿色能源的发展,储能技术在工业节能和新能源利用领域日益受到关注。 一、储能技术概述 储能技术是能源科学技术中的重要分支,可解决在能量供求在时间与空间不匹配的问题,可以作为提高能源利用效率的有效手段。如: (1)电力负荷的峰谷差; (2)太阳能、风能和海洋能的间歇性; (3)工业窑炉的间断运行等。 ●储能技术分类(依据:储能技术能量存储原理的不同) (1)物理储能,如:飞轮储能、水储能和压缩空气储能方式; (2)电磁储能,如:超导储能方式; (3)电化学储能,如:蓄电池储能、超级电容器储能方式; (4)相变储能:相变储能技术是以相变材料为基础的高薪技术,具有熔化、潜热高,相变过程可逆性好等特点。 ●材料 (1)储能材料:储能材料主要是储热材料为主,储热材料主要包括有机相变储热材料、熔融盐类相变储热材料、合金相变储热材料及复合类储热材料。 (2)微胶囊相变储能材料:是应用微胶囊技术在固液相变材料表面包覆一层性能稳定的高分子膜而构成的具有核壳结构的复合材料。 ●储能技术发展历史 储能技术名称领域原理 水储能技术 抽水蓄能电站利用电力负荷低谷时的电能抽水至上水库,在电力负荷高峰期再放水至下水库发电的水电站,从而达到储能的目的。 冰储能技术(蓄冷技术) 冰蓄冷空调系统利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,从而避免中央空调争用高峰电力。 相变储能技术化工、航天、电子、建 筑物的集中空调、采暖 及被动式太阳房等。 利用相变材料在一定温度范围内通过 改变物理状态而达到储能的目的。

新型储能技术发展现状

变电设备SUBSTATION EQUIPMENT [2]B.S.Ram,PhD,CEng .MlEE.Loss and current distribution in foil winding of transformers[J].IEE Proc,gener,1998:1098-1101.[3]曲德宇,刘文里,韩波.干式变压器绕组温度场的二维数值分析[J].变压器,2011(12):21-25. [4]路长柏.干式电力变压器理论与计算[M].沈阳:辽宁科学 技术出版社,2003.[5]曲德宇.干式变压器漏磁场及温度场分布的研究[D].哈尔滨:哈尔滨理工大学,2011.[6]赵峰,王凯.大容量变压器局部过热问题分析[J].变压器,2009(7):74-75.[7]柴建云,大型变压器三维涡流漏磁场计算[D].北京:清华大学,1989.[8]程志光,高生,李琳.电气工程涡流问题的分析与验证[M]. 北京:高等教育出版社.2001.[9]颜寒,郭永基,林兆庄.树脂绝缘干式变压器内部温度场分布仿真研究[J].清华大学学报,1999,39(7):1-4.[10]王世山,王德林,李彦明.大型有限元软件ANSYS 在电磁 领域的使用[J].高压电器,2002(6):27-30.收稿日期:2012-11-18 作者简介: 曲德宇(1984-),硕士,从事变电一次设备的状态评价和 故障分析方面的研究。 (责任编辑喻银凤) 在电力系统中,有近百年历史且目前应用最广的储能技术是抽水蓄能储能,其巨大的能量存储能力能够很好地解决电力系统运行中负荷和可再生能源的调峰需求。最近十多年来,多种新型储能技术在全球范围内,尤其是在美国获得了技术及应用上的长足发展。最新发展起来的储能技术包括锂离子电池、飞轮储能、超级电容、钠硫电池、钒液流电池等,这些储能系统在使用寿命、功率和容量的规模化、运行可靠性、系统制造成本等方面已经获得了突破,具备了进入电力行业应用的基础条件。具体而言,当前世界上先进的储能技术具有了如下几个基本特点:一是功率外特性好,以成熟的电力电子技术为基础,实现快速、精确的有功无功灵活的功率输出;二是系统规模大,单个系统规模已经可以达到20MW 以上,目前在美国西弗吉尼亚投运的最大储能项目规模为32MW ;三是运行寿命长,用于电网AGC 调频的储能系统设计寿命已经可以达到10年以上,其中电力电子设备的设计寿命超过15年;四是运行可靠性高,美国纽约州的20MW 飞轮储能系统投运2年以来,系统可用率已达97%以上。 相对于传统发电机组,储能技术最突出的优点是快速精确的功率响应能力。在电力系统运行中, 自动发电控制(AGC )主要通过实时调节电网中的调频电源的有功出力,实现对电网频率及联络线功率进行控制,解决区域电网的短时随机功率不平衡问题,因此调节速率快、调节精度高的电源能够帮助电网更高效地完成AGC 控制目标。储能系统能够在1s 之内完成AGC 调度指令,与此相对的,由于传 统电源均为具有旋转惯性的机械器件组成,并且将一次能源转换成电能需要经历一系列复杂过程,尤其是火电机组对有功功率的调节响应速度较慢,通常需要1min 以上才能完成调节要求,反应时间相差超过60倍。新型储能技术发展现状42

中国储能技术发展及应用情况

中国储能技术发展及应用情况 ——卢强院士的演讲主题 1. 中国应大规模建设储能项目。 中国现在风电总装机容量已经超过100GW,但是70~80%的风能没有很好利用,特别是后半夜的风能全部放弃,损失的能量即使收回50%,也相当于重建三到四个三峡发电站。虽然大规模储能技术中抽水蓄能是首选,但抽水蓄能严格受到地理条件限制,并存在水库漏水和蒸发等问题。所以不能指望抽水蓄能来解决大量弃风和弃光等问题。 2. 废弃电池污染环境是大规模电池储能发展的主要风险。 现在中国大量用的磷酸铁锂电池寿命太短,浅充浅放为八年,深充深放最多四年,废弃电池对环境造成了大量污染。此外,锂电池的工作环境温度要求严格(温度不超过摄氏27度(正负2~4度)的温度区域才能有效运用),这也进一步增加了电池的使用成本。 3. 中国可以大规模部署自主研发的非补燃压缩空气储能技术。 该技术的优点是: 1.系统配置灵活,系统效率可以达到70%以上; 2.投资成本低,与抽水蓄能几乎相当; 3.适用于大规模储能和分散式储能,不发电的时候可以调峰使用; 4.碳排放为零; 5.可以提供天然的热、电、冷三联供,不但可以提供不间断热水,而且可以提供2~3摄氏度的制冷环 境用于保鲜水果和粮食,在东北和中国很多地方都可以使用; 6.可以在电压不足时提供自然支撑调压。 由国网公司支持、清华大学研发的“非补燃压缩空气储能”相关技术已经获得中美发明专利受理,一个500kW的示范项目已经在安徽芜湖建成,连续18个月运行效果良好。该项目电对电的转换效率是33%,加上冷热利用的系统效率可达72%。 目前,国网和清华团队正在筹划一个20MW的示范项目,并对该技术进行改良,将“电转电”效率从33%提高到55%,系统效率(热+电+冷)达到80%。

储能技术的发展现状与展望

储能技术的发展现状与展望 发表时间:2019-01-16T14:34:42.493Z 来源:《电力设备》2018年第26期作者:苏佳冯仁军 [导读] 摘要:储能技术是满足可再生能源大规模接入的重要手段,也是分布式能源系统.电动汽车产业的重要组成部分.在能源互联网中具有举足轻重的地位。 (国网新疆电力有限公司哈密供电公司新疆哈密 839000) 摘要:储能技术是满足可再生能源大规模接入的重要手段,也是分布式能源系统.电动汽车产业的重要组成部分.在能源互联网中具有举足轻重的地位。本文阐述了什么是储能技术以及为什么要加大对储能技术的研究,指出了几种储能方式的优、缺点和我国储能产业发展的现状。 关键词:电力储能;储能方式;储能产业;扶持 引言 储能是智能电网、可再生能源高占比能源系统、“互联网+”智慧能源的重要组成部分和关键支撑技术。储能能够为电网运行提供调峰、调频、备用、黑启动、需求响应支撑等多种服务,是提升传统电力系统灵活性、经济性和安全性的重要手段;储能能够显著提高风、光等可再生能源的消纳水平,支撑分布式电力及微网,是推动主体能源由化石能源向可再生能源更替的关键技术;储能能够促进能源生产消费开放共享和灵活交易、实现多能协同,是构建能源互联网,推动电力体制改革和促进能源新业态发展的核心基础。在当今能源紧张的情况下,储能没有时间和空间上的限制,因此储能技术的研究和发展需要更大的进步。 1储能技术 1.1抽水蓄能电站 抽水蓄能电站的工作原理是在用户用电的低谷的时候运用水泵把水从下游水库抽到上游水库,通过这种方法可以把水的势能存起来;在用户用电量较高时,利用水的重力势能带动水轮机发电。它的优点是:技术成熟,容量可以做到很大,缺点:受地形的影响,远离负荷,输送的损耗大。主要适用于削峰填谷和系统备用。 1.2蓄电池储能 蓄电池蓄能是一种常规的储能技术。蓄电池储能就是通过化学反应实现化学能和电能的相互转换。蓄电池储能具有效率高、动态特性好、能用的年数高、几乎不受地形的影响等优点,其额定功率和额定容量可以独立配置,但其能量密度较低、自漏电率较高。主要适用于电动汽车或当作备用电源等。 (1)钠硫电池 优点是它的比能量高、寿命长、运行的成本低、充电时间短、充放电效率高等。它的缺点是对温度比较敏感、后续处理困难,同时运行时需要保持300℃左右的温度。 (2)液流电池 液流电池的种类主要有铁铬、全钒和多硫化钠/溴电池3种,其中全钒电池用到的最多。它的优点是功率输出比较高、快响应、易于维护、安全稳定等,它的缺点是材料受限、成本高。 (3)锂电池 锂电池大致可分为钴酸锂电池、锰酸锂电池和磷酸锂电池等多种电池体系。锂电池的优点:能量密度高、寿命长、安全性高等。 1.3压缩空气储能 压缩空气储能系统的原理是在用电低谷的时候,用电把空气高压密封在报废的矿井等中,在用户用电高峰的时候,运用这些压缩的空气推动汽轮机发电。其优点是电站的投资和发电成本都低于抽水蓄能电站,安全性和可靠性较高,缺点是能量密度低、受岩层等地理条件的限制。主要用于控制频率。 1.4飞轮储能 飞轮储能的原理是利用电动机带动飞轮高速旋转,将电能以机械能的形式存起来,在需要用到这部分电能的时候,由飞轮带动发电机发电。其优点:①飞轮系统在高真空度的环境中工作,因此可以认为没有摩擦损耗、风阻小、寿命长。②不会对环境产生任何影响,基本上用不到维护。③效率高,可达到90%以上。缺点是能量密度低,自放电率高。主要用于调峰调频、平滑功率的输出。 1.5超导储能 超导储能的原理是将一个超导体圆环放在磁场中,先把温度降到圆环材料的临界温度下,然后撤掉磁场,由于电磁感应,圆环中就会有感应电流产生,只要温度保持不变电流就会一直存在。由此可见,超导储能是一种理想情况下的储能方式。主要用于提高电能的质量和稳定性。很显然这是一种理想的储能方式。其优点:①功率大、体积小、损耗小。②可以达到很高的储能密度。③反应时间快,毫秒级。其缺点是成本较高,应用受到限制。 2储能技术发展现状 储能技术主要分为物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如铅酸电池、氧化还原液流电池、钠硫电池、锂离子电池等)和电磁储能(如超导电磁储能、超级电容器储能等)三大类。物理储能是目前最为成熟、成本最低、使用规模最大的储能方式,化学储能是应用范围最为广泛、发展潜力最大的储能技术。不同的储能技术目前所处的开发和应用的阶段也不尽相同。从澳大利亚可再生能源署绘制的储能技术成熟度曲线看,水力蓄能是最成熟的技术,全球并网的储能技术应用中,水力蓄能占比达到99%,其次是气压缩技术、钠硫电池和锂离子电池,其未来的成本有望进一步降低。其中已应用或正处于研发阶段的锂离子电池的种类也各不相同,包括铅酸锂电池、镍钴锰酸锂电池、锂锰氧化物电池、氧化钛酸锂电池、磷酸铁锂电池、锂聚合物电池等。相比其他处于应用阶段的储能技术,锂离子电池储能技术的响应时间更快,能够及时并持续向电网供电,确保电网的稳定性。目前,锂离子电池技术的研究热点在于提高能源密度,从而降低成本,符合商业应用的经济性要求。铅酸蓄电池的制造商正在优化其技术,通过合并电极中的碳,结合超级电容或者其他方式开发“先进铅酸蓄电池”。其他新兴技术包括液态空气储能系统、非/低燃料压缩空气储能、地下水力蓄能和纳米超级电容,这些储能设备具有低成本、充电快、高功率密度、高能效、高可靠性、髙循环次数、低碳以及低放射性等特征。上述储能技术均有各自的技术优势与劣势,因此将不同形式储能技术组合使用,充分利用各自的技术优势优化应用效果正成为业内的另一研究与应用趋势。如超级电容

相关文档
最新文档