平面上点的坐标怎样在平面直角坐标系中描点练习解读

平面上点的坐标怎样在平面直角坐标系中描点练习解读

平面上点的坐标怎样在平面直角坐标系中描点练习

1.A(2,3), B(-2,4), C(-1,2), D(-1,-3), E(3,-2), F(2,0), G(-1,0), H(0,2), I(0,-1) 在平面直角坐标系中描出以上各点。

图 12-4

2.A(-4,5), B(-3,-5), C(2,4), D(-2,5), E(3,-2), F(-3,0), G(5,0), H(0,-3), I(0,4) 在平面直角坐标系中描出以上各点。

(完整版)3平面直角坐标系知识点及经典练习题

平面直角坐标系 一、本章的主要知识点 (一)有序数对:有顺序的两个数a 与b 组成的数对。 1、记作(a ,b ); 2、注意:a 、b 的先后顺序对位置的影响。 (二)平面直角坐标系 1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形 ; 2、构成坐标系的各种名称; 3、各种特殊点的坐标特点。 (三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移。 二、平行于坐标轴的直线的点的坐标特点: 平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。 三、各象限的角平分线上的点的坐标特点: 第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。 四、与坐标轴、原点对称的点的坐标特点: 关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数 五、特殊位置点的特殊坐标: 一、判断题 (1)坐标平面上的点与全体实数一一对应( ) (2)横坐标为0的点在 轴上( ) (3)纵坐标小于0的点一定在轴下方( ) (4)到 轴、 轴距离相等的点一定满足横坐标等于纵坐标( ) 坐标轴上 点P (x ,y ) 连线平行于 坐标轴的点 点P (x ,y )在各象限 的坐标特点 象限角平分线上 的点 X 轴 Y 轴 原点 平行X 轴 平行Y 轴 第一象限 第二象限 第三象限 第四象限 第一、 三象限 第二、四象限 (x,0) (0,y) (0,0) 纵坐标相同横坐标不同 横坐标相同纵坐标不同 x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0 (m,m) (m,-m) P (x ,y ) P (x ,y -a ) P (x -a ,y ) P (x +a ,y ) P (x ,y +a ) 向上平移a 个单位 向下平移a 个单位 向右平移a 个单位 向左平移a 个单位

平面直角坐标系经典题含答案

第六章 平面直角坐标系水平测试题(一) 一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.某同学的座位号为(),那么该同学的位置是( ) (A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定 2.下列各点中,在第二象限的点是( ) (A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3) 3.若轴上的点到轴的距离为3,则点的坐标为( ) (A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3) 4.点(,)在轴上,则点坐标为( ). (A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2) 5.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)?,则第四个顶点的坐标为( ) (A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3) 6.线段AB 两端点坐标分别为A (),B (),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( ) (A )A 1(),B 1() (B )A 1(), B 1(0,5) (C )A 1() B 1(-8,1) (D )A 1() B 1() 7、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 8、点P (x,y )位于x 轴下方,y 轴左侧,且x =2 ,y =4,点P 的坐标是( ) A .(4,2) B .(-2,-4) C .(-4,-2) D .(2,4) 9、点P (0,-3),以P 为圆心,5为半径画圆交y 轴负半轴的坐标是 ( ) A .(8,0) B .( 0,-8) C .(0,8) D .(-8,0) 10、将某图形的横坐标都减去2,纵坐标保持不变,则该图形 ( ) A .向右平移2个单位 B .向左平移2 个单位 C .向上平移2 个单位 D .向下平移2 个单位 11、点 E (a,b )到x 轴的距离是4,到y 轴距离是3,则有 ( ) A .a=3, b=4 B .a=±3,b=±4 C .a=4, b=3 D .a=±4,b=±3 12、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数 13、已知P(0,a)在y 轴的负半轴上,则Q(2 1,1a a ---+)在( ) A 、y 轴的左边,x 轴的上方 B 、y 轴的右边,x 轴的上方 14.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 15. 若点P (,)在第二象限,则点Q (,)在第_______象限. 16. 若点P 到轴的距离是12,到轴的距离是15,那么P 点坐标可以是________. 17.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后

初一数学:平面直角坐标系知识点总结及压轴题练习(附答案解析)

初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习 (含答案解析) 知识点: 1、对应关系:平面直角坐标系内的点与有序实数对一一对应。 2、平面内两条互相垂直、原点重合组成的数轴组成平面直角坐标系。 水平的数轴称为x轴或横轴,习惯上取向右为正方向; 竖直的数轴为y轴或纵轴,取向上为正方向; 两个坐标轴的交点为平面直角坐标系的原点。 坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。 象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内 3、三大规律 (1)平移规律: 点的平移规律左右平移→纵坐标不变,横坐标左减右加; 上下平移→横坐标不变,纵坐标上加下减。 图形的平移规律找特殊点 (2)对称规律 关于x轴对称→横坐标不变,纵坐标互为相反数; 关于y轴对称→横坐标互为相反数,纵坐标不变; 关于原点对称→横纵坐标都互为相反数。 x轴上→纵坐标为0;y轴上→横坐标为0; 第一、三象限夹角平分线上→横纵坐标相等; 常考题: 一.选择题(共15小题) 1.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()

A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4) 2.如图,小手盖住的点的坐标可能为() A.(5,2) B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4) 3.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为() A.(3,2) B.(3,1) C.(2,2) D.(﹣2,2) 4.在平面直角坐标系中,点(﹣1,m2+1)一定在() A.第一象限B.第二象限C.第三象限D.第四象限 5.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B (﹣4,﹣1)的对应点D的坐标为() A.(2,9) B.(5,3) C.(1,2) D.(﹣9,﹣4) 6.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为() A.2 B.3 C.4 D.5 7.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为() A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0) 8.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为() A.(0,2) B.(2,0) C.(4,0) D.(0,﹣4) 9.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()

(完整版)七年级平面直角坐标系知识点大全

初七年级平面直角坐标系知识点大全 1、有序数对:我们把这种有顺序的两个数a与b组成的数队,叫做有序数对。 2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,习惯上取向右为正方向 竖直的数轴称为y轴或纵轴,取向上方向为正方向 两坐标轴的交战为平面直角坐标系的原点 3、象限:坐标轴上的点不属于任何象限 第一象限:x>0,y>0 第二象限:x<0,y>0 第三象限:x<0,y<0 第四象限:x>0,y<0 横坐标轴上的点:(x,0) 纵坐标轴上的点:(0,y) 4、距离问题:点(x,y)距x轴的距离为y的绝对值 距y轴的距离为x的绝对值 坐标轴上两点间距离:点A(x1,0)点B(x2,0),则AB距离为x1-x2的绝对值 点A(0,y1)点B(0,y2),则AB距离为y1-y2的绝对值 5、绝对值相等的代数问题:a与b的绝对值相等,可推出 1)a=b或者 2)a=-b 6、角平分线问题 若点(x,y)在一、三象限角平分线上,则x=y 若点(x,y)在二、四象限角平分线上,则x=-y 7、对称问题:一点关于x轴对称,则x同y反 关于y轴对称,则y同x反 关于原点对称,则x反y反 8、距离问题:坐标系上点(x,y)距原点距离为 坐标系中任意两点(x1,y1),(x2,y2)之间距离为 9、中点坐标:点A(x1,0)点B(x2,0),则AB中点坐标为 10、平移: 在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a,y) 向左平移a个单位长度,可以得到对应点(x-a,y) 向上平移b个单位长度,可以得到对应点(x,y+b) 向下平移b个单位长度,可以得到对应点(x,y-b) 1

平面直角坐标系的简单应用(20201109211742)

I教学准备 1. 教学目标 根据新课标要求和学生现有的认知水平以及教材内容,我确定了本节课以下三个方面的教学目标: (一)知识与技能目标: 能建立适当的直角坐标系,用坐标表示地理位置 (二)过程与方法目标: 通过学生的动手探究得出实际问题中建立平面直角坐标系的基本方法,并能结合具体情境运用坐标描述地理位置。 (三)情感、态度价值观目标: 1、通过体会平面直角坐标系在解决问题中的作用,加深学生对数学重要性的认识,激发学生学习数学的热情。 2、通过同学之间,师生之间的交流讨论,培养学生与人合作的良好品质。 重点:根据具体情境建立直角坐标系,用坐标描述地理位置 难点:根据具体情境建立适当的平面直角坐标系 2. 教学重点/难点 建立适当的直角坐标系,用坐标表示地理位置 3. 教学用具 4. 标签 |教学过程 环节一:创设情境,导入新课 为了激发学生学习兴趣和求知欲,为学习新知识创造一个最佳的心理和认知环境。为此我设计了以下问题: 问题:同学们,我们在学习地理的时候,曾经学习过经纬网。我这里就有一幅地图,

你能根据地图中所给出的数据,估计我们家乡的经纬度吗?(幻灯片放映) 根据学生们学习的地理知识,学生会估算出一定的范围或大概的位置,可能是北纬37°或38°,东经117°或118°左右,虽然度数不是非常的准确,但大多会估算得比较接近。 根据学生的说法,教师出示准确的经纬度,并提问:我在地图上记录经纬度的方式与数学中我们所学的哪一部分知识很相似呢?学生会联想到有序数对或平面直角坐标系。既然我们可以用这样的方法来表示滨州的位置,那么我们能不能用坐标来表示地理位置呢?这就是我们这节课要探究的问题。出示并板书课题,由此导入新课。 意图: 从学生已知的知识和熟悉的情境入手导入新课,一方面可以激发学生的学习兴趣,同时又能自然的引出本节课要探究的内容。 环节二师生互动,探索新知 问题:我要去三位同学的家,他们家的位置如图所示(出示动画,让学生叙述三名同学家应该如何去走,间接地让学生感受到,数学知识与各学科之间存在着一定的联系)。请根据以下条件建立平面直角坐标系,标出学校和小刚家、小强家、小敏家的位置,并写出坐标. 小刚家:出校门向东走150 米. 小强家:出校门向西走200 米,再向北走100 米. 小敏家:出校门向南走100 米,再向东走300 米,最后向南走50 米. 为激发学生探究的欲望,我用学生熟悉的环境设计问题,而通过这一问题,探究如何建立平面直角坐标系用坐标表示地理位置,是本节课的重点、难点, 为了突出重点、突破难点,我设计了以下五步: 1、学生自己动手实践,亲身体验建系的过程。 本问题是由一个动画开始,让学生先感受一个实际的运动过程,并根据示意图用文字叙述,然后再结合示意图建立坐标系,用坐标描述地理位置。这对学生来说犹如做游戏一般,既清晰直观,又好理解,因此,在此过程中,学生可以独立进行探究,有效地解决问题。 意图:我之所以这样处理是因为解决此问题的过程是一个由实际情境到文字再到图形的过程,因此让学生先通过亲身体验,经历实际问题数学化的过程,来感受数学语言间的相互转化,体验数形结合的思想,同时对用坐标表示地理位置有一个初步的感

(完整)平面直角坐标系练习题(巩固提高篇)

平面直角坐标系练习题(巩固提高篇) 一、选择题: 1、下列各点中,在第二象限的点是() A.(2,3) B.(2,-3) C.(-2,3) D.(-2, -3) 2、已知点M(-2,b)在第三象限,那么点N(b, 2 )在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 3、若点P(a,b)在第四象限,则点M(b-a,a-b)在() A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4、已知点P(a,b),且ab>0,a+b<0,则点P在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 5、如果点P(a,b)在第二象限内,那么点P(ab,a-b)在() A、第一象限 B、第二象限 C、第三象限 D、第四象限 6、若点P(x ,y)的坐标满足xy=0(x≠y),则点P在() A.原点上 B.x轴上 C.y轴上 D.x轴上或y轴上 7、平面直角坐标中,和有序实数对一一对应的是() A.x轴上的所有点 B.y轴上的所有点 C.平面直角坐标系内的所有点 D.x轴和y轴上的所有点 8、将点A(-4,2)向上平移3个单位长度得到的点B的坐标是() A. (-1,2) B. (-1,5) C. (-4,-1) D. (-4,5) 9、线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(-4,–1)的对应点D的 坐标为() A.(2,9) B.(5,3) C.(1,2) D.(– 9,– 4) 10、点P(m+3,m+1)在x轴上,则P点坐标为() A.(0,-2)B.(2,0)C.(4,0)D.(0,-4) 11、点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是() A. (5,-3)或(-5,-3) B. (-3,5)或(-3,-5) C. (-3,5) D. (-3,-5) 12、已知点P(x,y)在第四象限,且│x│=3,│y│=5,则点P的坐标是() A.(-3,5)B.(5,-3)C.(3,-5)D.(-5,3) 13、点P(x,y)位于x轴下方,y轴左侧,且x=2 ,y=4,点P的坐标是() A.(4,2) B.(-2,-4) C.(-4,-2) D.(2,4) 14、点P(0,-3),以P为圆心,5为半径画圆交y轴负半轴的坐标是() A.(8,0) B.( 0,-8) C.(0,8) D.(-8,0) 15、点E(a,b)到x轴的距离是4,到y轴距离是3,则有() A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±3

完整版平面直角坐标系典型例题含答案

平面直角坐标系 一、知识点复习 1.有序数对:有顺序的两个数与组成的数对,记作。注意与的先后顺序对位置的aa)b(a,bb影响。 2.平面直角坐标系 (1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。这个平面叫做坐标平面。 (2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴a(a,b)b叫做点A,有序实数对上的坐标为,过点A作纵轴的垂线,垂足在纵轴上的坐标为的坐标,其中a b叫做纵坐标。叫横坐标,

1 6.点到坐标轴的距离: yx。轴距离为到轴的距离为点,到y)yxP(,X 简单记为“左减右加,上加下减”7.点的平移坐标变化规律: 2

二、典型例题讲解:点的坐标与象限的关系考点1 )象限.)在第( 1.在 平面直角坐标系中,点P(-2,3 .四 C.三 DA.一 B.二) 在第四象限,则的取值范围是( 2.若点a)2,a?P(a C. B. D.A.0a?2a?2?2?a?0?0?a2))所在的象限是(在平面直角坐标系中,点P(-2, 3.1?x .第四象限.第三象限 DA.第一象限 B.第二象限 C 考点2:点在坐 标轴上的特点点坐标为()1.点在轴上,则x)1P(m?3,m?P C. D. B.A.)4(0,2,0)?(4,0)(0,?2)(。2.已知点在轴上,则点的坐 标是y)P(m,2m?1P) y),则点P必在((x,y)的坐标满足xy=0 (x≠3.若点P y轴上(除原点) D.x轴上或 B.原点上.x轴上 C.y 轴上A 3:对称点的坐标考点1.平面直角坐标系中,与点关于原点中心对称的点 是())3,?(2A. B. C. D.(2,3))2)3(?2(?3,2),(3,?2. 已知点A的坐标为(-2,3),点B与点A关于x轴对称,点C与点B关于y轴对 称,则点C关于x轴对称的点的坐标为() A.(2,-3) B.(-2,3) C.(2,3) D.(-2,-3) 3.若坐标平面上点P(a,1)与点Q(-4,b)关于x轴对称,则() A.a=4,b=-1 B.a=-4,b=1 C.a=-4,b=-1 D.a=4,b=1 考点4:点的平移 1.已知点A(-2,4),将点A往上平移2个单位长度,再往左平移3个单位长度 得到点A′,则点A′的坐标是() A.(-5,6) B.(1,2) C.(1,6) D.(-5,2) 2.已知A(2,3),其关于x轴的对称点是B,B关于y轴对称点是C,那么相当 于将A经过()的平移到了C. A.向左平移4个单位,再向上平移6个单位 B.向左平移4个单位,再向下平移6个单位 C.向右平移4个单位,再向上平移6个单位 D.向下平移6个单位,再向右平移4个单位 3 )bAB平移至AB,则a+的值为(3.如图,),A,B的坐标为(2,0(0,1), 若将线段11

(完整版)平面直角坐标系知识点归纳.doc

平面直角坐标系知识点归纳 1 、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系; 2 、 坐标平面上的任意一点 P 的坐标,都和惟一的一对 有序实数对 ( a,b ) 一一对应;其中, a 为横坐标, b 为纵坐标坐标; 3 、 x 轴上的点,纵坐标等于 0 ; y 轴上的点,横坐标等于 0 ; Y 坐标轴上的点 不属于 任何象限; b P(a,b) 4 、四个象限的点的坐标具有如下特征: 1 象限 横坐标 x 纵坐标 y -3 -2 -1 0 1 a x -1 第一象限 正 正 -2 第二象限 负 正 -3 第三象限 负 负 第四象限 正 负 小结:( 1 )点 P ( x, y )所在的象限 横、纵坐标 x 、 y 的取值的正负性; ( 2 )点 P ( x, y )所在的数轴 横、纵坐标 x 、 y 中必有一数为零; y 5 、在平面直角坐标系中,已知点 P (a,b) ,则 a 点 P 到 x 轴的距离为 b P ( a, b ) (1 ) b ; ( 2 )点 P 到 y 轴的距离为 a ; (3 ) 点 P 到原点 O 的距离为 PO = a 2 b 2 b 6 、平行直线上的点的坐标特征: O a x a) 在与 x 轴平行的直线上, 所有点的纵坐标相等; Y A B 点 A 、 B 的纵坐标都等于 m ; m X b) 在与 y 轴平行的直线上,所有点的横坐标相等; Y C 点 C 、 D 的横坐标都等于 n ; n D X

第07章 重点突破训练:平面直角坐标系应用问题举例-简单数学七年级下册同步讲练(原卷版)(人教版)

第07章重点突破训练:平面直角坐标系应用问题举例 典例体系(本专题39题27页) 考点1:平面直角坐标系中的规律探究 典例:(2020·山西晋中市·八年级期末)在平面直角坐标系中,横、纵坐标均为整数的点叫做整数点,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题: (1)填表: 点P从O点出发的时间可以到达的整坐标可以到达整数点的个数 1秒(0,1),(1,0)2 2秒(0,2),(2,0),(1,1)3 3秒()()(3)当点P从O点出发____________秒时,可得到整数点(10,5).

方法或规律点拨 此题考查的是点坐标的平移规律,设到达的整坐标为(x ,y ),推导出点P 从O 点出发的时间=x +y 是解决此题的关键. 巩固练习 1.(2021·青岛实验学校九年级期末)在平面直角坐标系中,点A 从原点O 出发,沿x 轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1个单位长度,这时点1234,,,A A A A 的坐标分别 为()()()()12340,0,1 ,12,03,1A A A A -,按照这个规律解决下列问题: ()1写出点5678,,,,A A A A 的坐标; ()2点2018A 的位置在_____________(填“x 轴上方”“x 轴下方”或“x 轴上”); ()3试写出点n A 的坐标(n 是正整数). 【答案】()()514,0A ,()65,1A ,()76,0A ,()87,1A -;()2x 轴上方;()3 A (n -1,0)或()1,1A n -或2.(2020·涡阳县高炉镇普九学校八年级月考)如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点A(1,2)处出发去看望格点B 、C 、D 等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A 到B 记为:A→B ( +1,+3 ),从B 到A 记为:B→A ( -1,-3 ),其中第一个数表示左右方向,第二个数表示上下方向. 填空: (1)图中A→C ( , ) C→ ( , ) (2)若这只蚂蚁从A 处去M 处的蚂蚁的行走路线依次为(+3,+3),(+2,-1),(-3,-3),(+4,+2),则点M 的坐标为( , ) (3)若图中另有两个格点P 、Q ,且P→A ( m+3,n+2),P→Q(m+1, n -2),则从Q 到A 记为( , )

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】 考点一:平面直角坐标系中点的特征 例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围. 解:由第一象限点的坐标的特点可得: 20 m m > ? ? -> ? , 解得:m>2. 故答案为:m>2. 点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正. 例1 如果m是任意实数,则点P(m-4,m+1)一定不在() A.第一象限B.第二象限C.第三象限D.第四象限 思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5, ∴点P的纵坐标一定大于横坐标, ∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P一定不在第四象限. 故选D. 点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是() A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1) 分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;

初中七年级下册数学平面直角坐标系知识点

初中七年级下册数学平面直角坐标系知识点 初中七年级下册数学平面直角坐标系知识点 一、目标与要求 1.解有序数对的应用意义,了解平面上确定点的常用方法。 3.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面 图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。 4.发展学生的形象思维能力,和数形结合的意识。 5.坐标表示平移体现了平面直角坐标系在数学中的应用。 二、重点 掌握坐标变化与图形平移的关系; 有序数对及平面内确定点的方法。 三、难点 利用坐标变化与图形平移的关系解决实际问题; 利用有序数对表示平面内的点。 四、知识框架 五、知识点、概念总结 1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。 2.平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴

分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数 轴的正方向。水平的数轴叫做X轴或横轴,竖直的数轴叫做Y轴或 纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标 系的原点。 3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴 称为y轴或纵轴;两坐标轴的'交点为平面直角坐标系的原点。 4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线, 垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵 坐标。 5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的 点不在任何一个象限内。 6.特殊位置的点的坐标的特点 (1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。 (2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。 (3)在任意的两点中,如果两点的横坐标相同,则两点的连线平 行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。 (4)点到轴及原点的距离。 点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为 x的平方加y的平方再开根号; 7.在平面直角坐标系中对称点的特点 (2)关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同) (3)关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反) 8.各象限内和坐标轴上的点和坐标的规律

平面直角坐标系和应用

平面直角坐标系(基础)知识讲解 【学习目标】 1.理解平面直角坐标系概念,能正确画出平面直角坐标系. 2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征. 3.由数轴到平面直角坐标系,渗透类比的数学思想. 【要点梳理】 要点一、有序数对 定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b). 要点诠释: 有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号. 要点二、平面直角坐标系与点的坐标的概念 1. 平面直角坐标系 在平面画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1). 要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的. 2. 点的坐标 平面任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2. 要点诠释: (1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.

(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离. (3) 对于坐标平面任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面都有唯一的一点与它对应,也就是说,坐标平面的点与有序数对是一一对应的. 要点三、坐标平面 1. 象限 建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图. 要点诠释: (1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限. (2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方. 2. 坐标平面的结构 坐标平面的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点. 要点四、点坐标的特征 1.各个象限和坐标轴上点的坐标符号规律 要点诠释: (1)对于坐标平面任意一个点,不在这四个象限,就在坐标轴上. (2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0. (3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况. 2.象限的角平分线上点坐标的特征 第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a); 第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a). 3.关于坐标轴对称的点的坐标特征 P(a,b)关于x轴对称的点的坐标为 (a,-b); P(a,b)关于y轴对称的点的坐标为 (-a,b); P(a,b)关于原点对称的点的坐标为 (-a,-b). 4.平行于坐标轴的直线上的点

七年级下册平面直角坐标系练习题

平面直角坐标系 一、选择题:(每小题3分,共12分) 1.如图1所示,点A 的坐标是 ( ) A.(3,2); B.(3,3); C.(3,-3); D.(-3,-3) 2.如图1所示,横坐标和纵坐标都是负数的点是 ( ) 点 点 点 点 3.如图1所示,坐标是(-2,2)的点是 ( ) A.点A B.点B C.点C D.点D 4.若点M 的坐标是(a,b),且a>0,b<0,则点M 在( ) A.第一象限; B.第二象限; C.第三象限; D.第四象限 二、填空题:(每小题3分,共15分) 1.如图2所示,点A 的坐标为_______,点A 关于x 轴的对称点B 的坐标为______, 点B 关于y 轴的对称点C 的坐标为________. 2.在坐标平面内,已知点A(4,-6),那么点A 关于x 轴的对称点A ′的坐标为_____,点A 关于y 轴的对称点A″的坐标为_______. 3.在坐标平面内,已知点A(a,b),那么点A 关于x 轴的对称点A ′的坐标为______,点A 关于y 轴的对称点A″的坐标为_____. 4.点A(-3,2)在第_______象限,点D(-3,-2)在第 _______象限,点C( 3, 2) 在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F( 2, 0) 在______轴上. 5.已知点M(a,b),当a>0,b>0时,M 在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M 在第四象限;当a<0,b<0时,M 在第______象限. 三、基础训练:(共12分) 如果点A 的坐标为(a 2+1,-1-b 2),那么点A 在第几象限?为什么? 四、提高训练:(共15分) 如果点A(t-3s,2t+2s),B(14-2t+s,3t+2s-2)关于x 轴对称,求s,t 的值. 五、探索发现:(共15分) 如图所示,C,D 两点的横坐标分别为2,3,线段CD=1;B,D 两点的横坐标分别为-2,3,线段BD=5;A,B 两点的横坐标分别为-3,-2,线段AB=1. (1)如果x 轴上有两点M(x 1,0),N(x 2,0)(x 1

平面直角坐标系---坐标方法的简单应用(含答案)

平面直角坐标系---坐标方法的简单应用 学习要求 能建立适当的平面直角坐标系描述物体的位置. 在同一直角坐标系中,感受图形变换后点的坐标的变化. (一)课堂学习检测 1.回答下面的问题. (1)如图表示赵明同学家所在社区的主要服务办公网点.点O表示赵明同学家,点A表示存车处,点B表示副食店.点C表示健身中心,点D表示商场,点E表示医院,点F表示邮电局,点H表示银行,点L表示派出所,点G表示幼儿园. 请以赵明同学家为坐标原点,建立平面直角坐标系,并用坐标分别表示社区的主要服务网点的位置.(图中的1个单位表示50m) (2)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程是 ①建立______选择一个____________为原点,确定x轴、y轴的____________; ②根据具体问题确定适当的______在坐标轴上标出____________; ③在坐标平面内画出这些点,写出各点的______和各个地点的______. 2.如图是某乡镇的示意图,试建立直角坐标系,取100米为一个单位长,用坐标表示各地的位置:

3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1). ①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐 标; ②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2 的坐标; ③写出以AB、BC为两边的平行四边形ABCD的顶点D的坐标. (二)综合运用诊断 一、填空 4.在坐标平面内平移图形时,平移的方向一般是平行于______或平行于______. 5.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______; 将点(x,y)向上或向下平移b(b>0)个单位长度,得对应点的坐标为______或______.6.把一个图形上各点的横坐标都加上或减去一个正数a,则原图形向______或向______平移______.把一个图形上各点的纵坐标都加或减去一个正数b,则原图形向______或向______平移______. 7.把点(-2,3)向上平移2个单位长度所到达位置的坐标为______,向左平移2个单位长度所到达位置的坐标为______. 8.把点P(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达位置的坐标为______. 9.点M(-2,5)向右平移______个单位长度,向下平移______个单位长度,变为M′(0,1). 10.把点P1(2,-3)平移后得点P2(-2,3),则平移过程是__________________________ _______________________________________________________________________.

《平面直角坐标系》经典练习题88272

《平面直角坐标系》章节复习 考点1:考点的坐标与象限的关系 知识解析:各个象限的点的坐标符号特征如下: (特别值得注意的是,坐标轴上的点不属于任何象限.) 1、在平面直角坐标中,点M (-2,3)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ). A .-2<a <0 B .0<a <2 C .a >2 D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A .x 轴正半轴上 B .x 轴负半轴上 C .y 轴正半轴上 D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在.. ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8、如果a -b <0,且ab <0,那么点(a ,b)在( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限. 考点2:点在坐标轴上的特点 x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0) 1、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。

平面直角坐标系经典练习题

@ 《平面直角坐标系》章节复习 考点1:考点的坐标与象限的关系 知识解析:各个象限的点的坐标符号特征如下: (特别值得注意的是,坐标轴上的点不属于任何象限.) 1、在平面直角坐标中,点M (-2,3)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 / 2、在平面直角坐标系中,点P (-2,+1)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A .x 轴正半轴上 B .x 轴负半轴上 C .y 轴正半轴上 D .y 轴负半轴上 4、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 6、对任意实数x ,点2(2)P x x x -,一定不在.. ( ) · A .第一象限 B .第二象限 C .第三象限 D .第四象限 7、如果a -b <0,且ab <0,那么点(a ,b)在( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限. 考点2:点在坐标轴上的特点 轴上的点纵坐标为0, 轴上的点横坐标为0.坐标原点(0,0) 1、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。 : 考点3:考对称点的坐标 知识解析: 1、关于x 轴对称: A (a ,b )关于x 轴对称的点的坐标为(a ,-b )。 2、关于y 轴对称: A (a ,b )关于y 轴对称的点的坐标为(-a , b )。

平面直角坐标系知识点归纳

平面直角坐标系知识点归纳 1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系; 2、坐标平面上的任意一点P 的坐标,都和惟一的一对有序实数对 (b a ,) 一一对应;其,a 为横坐标,b 为纵坐标坐标; 3、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0 坐标轴上的点 不属于任何象限; 4、四个象限的点的坐标具有如下特征:

小结:(1)点P ( y x ,)所在的象限横、纵坐标x 、y 的取值的正负性; (2)点P (y x ,)所在的数轴横、纵坐标x 、y 必有一数为零; 在平面直角坐标系,已知点P ),(b a ,则(1) 点P 到x 轴的距离 为b ; (2)点P 到y 轴的距离为a ; (3) 点P 到原点O 的距离为PO = 2 2b a + 5、平行直线上的点的坐标特征: a) 在与x 轴平行的直线上, 所有点的纵坐标相等; 点A 、B 的纵坐标都等于m ;

y 点C 、D 的横坐标都等于n ; 6、对称点的坐标特征: a) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; P (b a ,) a b x y O X Y A B m B X a b b) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;

关于x 关于y 轴对称关于原点对称 7、两条坐标轴夹角平分线上的点的坐标的特征: a) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; b) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数; 在第一、三象限的角平分线上在第二、四象限的角平分线上基本练习: 练习1:在平面直角坐标系,已知点P (2,5-+m m )在x 轴上,则P 点坐标为 练习2:在平面直角坐标系,点P ( 4,22 -+m )一定在象限; 练习3:已知点P ( )9,12 --a a 在x 轴的负半轴上,则P 点坐标为 ; 练习4:已知x 轴上一点 A (3,0),y 轴上一点 B (0,b ),且AB=5,则 b 的值为; 练习5:点M (2,-3)关于x 轴的对称点N 的坐标为 ; 关于y 轴的对称点P 的坐标为 ;关于原点的对称点Q 的坐标为。

相关文档
最新文档