飞机总体设计 - 设计过程及算例

飞机总体设计 - 设计过程及算例
飞机总体设计 - 设计过程及算例

无人机总体设计算例

任务要求:飞行高度:30-200m,飞行速度:40-90km/h,巡航速度:18m/s,最大飞行速度28m/s,爬升率4m/s,续航时间:1h ,最大过载1.7,任务载荷重量:0.5kg,背包式运输,发射方式:手抛式,回收方式:机腹着陆

设计过程:

1.布局形式及布局初步设计

无尾布局

【方法:参考已有同类无人机】

确定布局形式:主要是机翼、垂尾、动力、起落架等。(1)机翼

根据经验或同类飞机确定:

展弦比5.5-6,尖削比0.4-0.5,后掠角28°,下反角1.5°,

安装角2°

展弦比

【展弦比增大,升致阻力减小,升阻比增大】

【展弦比增大,弦长减小,雷诺数降低,气动效率降低】

【展弦比增大,弦长减小,翼型厚度减小,机翼结构重量上升】

尖削比

【尖削比影响升力展向分布,当展向升力分布接近椭圆时,

升致阻力最小,低速机翼一般取0.4-0.5】

后掠角

【后掠角增加,横向稳定性增大,配下反角】

【后掠角增加,尾翼舵效增加】

【后掠角增加,纵向阻尼增强,纵向动稳定性增强】

下反角

【上反角增加,横向稳定性增加,下反角相反】

安装角

【巡航阻力最小对应机翼的迎角,通用航空飞机和自制飞机的安装角大约为2°,运输机大约为1°,军用飞机大约为0°,在以后的设计阶段,可通过气动计算来检查设计状态所需要的机翼实际的安装角。】

机翼外型草图

(2)垂尾

垂尾形式:翼尖垂尾

尾空系数:Cvt=0.04/2=0.02 【双重尾】

(3)动力系统形式

电动无人机推进系统安装位置主要有:机头拉进式、机尾推进式、单发机翼前缘拉进式、双发形式、单发机翼后缘推进式。下面研究各种布置形式对布局设计的影响。

本方案为:机尾推进式

2.无人机升阻特性(极曲线)估算

前面确定了机翼的基本参数,要确定无人机的具体机翼参数,还需要知道“起飞重量”、“翼载荷”,然后进行布局缩放。

确定起飞重量,关键是电池重量,电池重量由飞机需要的能量决定,能量由飞机升阻特性决定。升阻特性由飞机布局形式决定,可参考同类飞机,进行初步估算。

飞机的极曲线:20,0D D D i D L C C C C KC =+=+

(1) 零升阻力系数

D f e

S C C

S =浸湿

参考

,一般可取为2.X (一张纸打比方) 【参考面积统一为机翼面积】

对于机身:=3.4*(+)/2S S S ????浸湿侧俯

对于机翼、尾翼,一般以翼型最大相对厚度为基础计算。

[]/0.05 =2.003/0.05 =1.977+0.52*(/)t c S S t c S t c S <>浸湿外露

浸湿外露

也可以直接根据各类飞机的统计值,选取参考值。 这里假设:机翼:/0.1t c =,则

2.029S S

=浸湿

; 机身:取=0.05S S S =侧俯,则

3.4*0.1

0.172

S S ==浸湿; 垂尾:0.1S S =外露,则

0.2029S S

=浸湿

; 0.0055*(2.0290.170.2029)0.0132D fe

S C C S ==++=浸湿

参考

(2)升致阻力因子

1K A e

π=

对于后掠翼飞机:0.680.150.68

0.15

4.61*(10.045)(cos ) 3.14.61*(10.045*

5.8

)(cos 28)

3.10.7518

LE e A =-Λ-=--=

110.0735.8*3.14*0.7518

K A e π=

== 至此,可以估算得到飞机的极曲线

2

0.01320.073D L C C =+

(3)飞机极曲线

2

0.01320.073D L C C =+

升阻比最大时,0.4252;0.0264L D C C === 最大升阻比:max (/)/16.1L D L D C C ==

3.功重比与翼载荷的确定

如果飞机重量知道,

获得了升阻特性,根据速度可以得到功率需求, 根据航时要求可以得到能量要求, 即:起飞重量决定功率能量

但是起飞重量主要包括机体结构、任务设备、动力装置、电池。而电池重量又决定它包含的能量的多少。

即:功率能量决定起飞重量

确定其中一个需要依靠对方,从而提出功重比的概念。

起飞重量决定机翼大小,机翼大小又决定起飞重量,从而提出翼载荷的概念。

根据功率需求,可推出飞机功重比与翼载荷的约束分析方程:

???

?

???????

??++=22

220)(g S W q n K C S

W qV gV W P T D T y T 一般情况下,可先根据经验值确定翼载,然后在无人机巡航、爬升、盘旋、最大飞行速度等多个工况下,由翼载计算功重比。

表4-1 无尾布局小型电动无人机参数统计

从统计值可知,翼载可取7kg/m 2 代入上式,可得到

巡航状态:V=18m/s :功重比为:11.19W/kg 爬升状态: 手抛速度V=10m/s :

22max 11

13.422 1.1

L L C W V C V S ρρ<==起飞 V=0.5(人手抛速度+巡航速度)=12m/s ,Vy=4m/s : 功重比为:48.4 W/kg

巡航盘旋状态:V=18m/s ,n=1.73; 功重比为:20.1 W/kg 最大平飞速度状态:V=28m/s; 功重比为:33.9W/kg

由上得出最大功重比为:48.4 W/kg ,巡航功重比为:

11.19W/kg

实际上,各种工况下,翼载与功重比之间关系图可以画出来,然后根据一些限制条件(起飞距离。。。。。),找范围,确定相应满足条件的翼载和功重比若干组。

4.起飞重量确定

1234T W W W W W =+++

其中,1W 是结构重量,2W 是动力装置重量,3W 是电池重量,4W 是航空电子与任务设备。其中,4W 在重量设计中是不变的,是任务要求中

给定的。

(1)飞机结构重量

11T W f W =?

其中,1f 为结构重量系数。一般起飞重量在几公斤范围内的小型无人机结构重量系数在0.25-0.35范围内,作为初步分析,可取为0.3。

常规飞机种类结构重量系数

(2)动力装置重量

动力装置包括电机、减速器、螺旋桨等。电动飞机起飞重量不随飞行发生变化。

22T W f W =?

推导过程:

max

max

2(/)T T dj

dj

P P W W W σσ=

=

?

其中,max P 为电机的最大输出功率,max (/)T P W 为飞机最大功重比,dj σ为动力装置的比功率(功率/动力装置重量)。这一参数可以取统计值。 【分析:最大功重比为48.4w/kg ,小型手抛电动无人机重量不大于

5kg ,因此,最大需求的功率:250W 】

注:通常手抛电动无人机300w 的电机重量约为100g ,电调约为50g ,电机与螺旋桨连接器为30g 。从而有,动力装置的重量约为

20.25W kg =

(3)电池重量

电池重量=能量/能量密度

3/W E e =

其中,E 为飞行中电池提供的能量,e 为电池实际比能量(能量密度)。

/4E P t =?

其中,/4P 为飞行中电池提供的平均功率,t 为飞行时间。

由于飞机在爬升段需要较高功率,在飞行高度不高(相对地面<200米),爬升段时间短,可以忽略,飞行中巡航段时间最长,下滑段可以停车,飞行过程中重量不变,因此,/4P 可表示为

/4///req

T T t dj js lj

t dj js lj

t dj js lj

t dj js lj

t dj js lj

P W g K V

T V

L K V

g K V

P W ηηηηηηηηηηηηηηηηηηηη????=

=

=

=

=

?

其中,t dj js lj ηηηη、、、分别为电机调速器效率、电机效率、减速器效率、

螺旋桨效率。req P 为飞机巡航段的需用功率。K 为巡航段飞机的升阻比。V 为巡航速度。g 为重力加速度。 综上可得:电池重量表达式为

3/43.1

1

//req

req T T t dj js lj t dj js lj

T dc xh

xh P P t W E e P t e W f W e W ηηηηηηηησ??===

=

?=? ?

?? 一般地,0.9,0.7,1()t dj js ηηη===没有使用减速器

螺旋桨效率:在未知转速的前提下,可以利用已有的小型螺旋桨效率-速度曲线,预选一个初值。在巡航速度下,效率0.7lj η=;在起飞爬升段,效率0.5lj η=。

从而得到:

巡航段动力系统效率:0.7*0.7*0.90.44dj lj t ηηηη=== 爬升段动力系统效率:0.7*0.5*0.90.315dj lj t ηηηη=== 另外,还需要知道电池特性:实际比能量与平均比功率

上图可以利用电池的放电特性曲线:电压-放电时间曲线(不同电流下)。(怎么转换,上网查,斜率是放电时间)

从上图中可以看出,MH-Ni比能量较低,但比能量随着比功率增大变化较小,适合大功率短时间情形,即适合飞行时间短、速度大的飞行器。

LiSO2比能量高,但比能量随着比功率增大迅速下降,适用于小功率长时间情形,即适合飞行时间长、速度小的飞行器。

因此,本方案选取LiSO2电池,根据航时要求为1小时,斜线与曲线交点得到,比能量:180Wh/kg,比功率:120W/kg。

另外,也可以根据统计来取值

综上可知:

3.1

11

*11.19/1200.21190.44req t dj js lj T dc xh

xh P f W ηηηησ??=

== ?

?? 通常还要满足: 3,max max

t dj js lj dc P

f d W ηηηη??

< ???,这是电池放电倍率限

制的。

(4)飞机的起飞总重量

4

123

1T W W f f f =

---

其中,4W 为已知条件,在任务书中获取。

综合前面可得:

421312340.50.25

1.5366110.30.2119

0.46100.230.32560.5T W W W kg

f f W k

g W kg W kg W kg

++=

==----====

5.电推进系统设计

主要是根据已经确定的无人机总体参数及性能参数,确定无人机的需用功率,根据需用功率选取合适的螺旋桨和电机。

(1)需用功率/推力曲线

无人机作定常平飞时,需要的功率

/px Wg

P DV V L D

==

取飞行速度:8/30/V m s m s =-,间隔2/m s 。

由T L L W g qSC ==,求出L C ,根据之前初步估计的升阻特性

2

0.01320.073D L C C =+,求出D C ,再利用D D qSC =求出D ,进而求得px P 。

进而画出px P V -图。

V(m/s)

P (W )

海平面下平飞需用功率曲线

5

1015

202530

0.811.21.41.6

1.8

2

2.2

V

D

海平面下的飞机需用推力

(2)螺旋桨选取

要求:

昌敏:以推力作为指标,以巡航作为设计点

a 、螺旋桨必须在整个飞行速度范围内,提供足够的推力,以满足功率需求。最大飞行速度下,功率需求最大,螺旋桨的最大转速功率要大于最大平飞需用功率。

b 、电动无人机以巡航速度飞行时间最长,努力实现螺旋桨在巡航速度下效率最大化,且螺旋桨可用功率大于且接近其需用功率。 从平飞需用功率曲线可知:

最大需用功率为:43.4W ,相应推力为:1.55N 。 (可以自已设计桨,也可以选择现有的桨) 根据经验选择若干桨。 桨的螺距、直径已知。

螺旋桨的拉力系数、扭矩系数、功率系数:

242535

; ; T Q P

T Q P

C C C n

D n D n D ρρρ=

== (以上参数T C 、P C 只跟进前比有关) /2Q P C C π= 螺旋桨的效率:T p C J

C η=,V

J nD

= 【注:转速用r/s 】 以上参数需要通过实验测量、PropCalc 软件仿真来获得。 第一步:通过实验获取前进比J=0(V=0)时的0T C 、0P C 一般情况下,通过六分量天平测试不同转速n 下的螺旋桨的拉力

T ,通过电压电流测螺旋桨的功率P ,从而可得到J=0时的0T C 、0P C 。

所选桨的螺距6吋、直径8吋 (1英寸=0.0254米)

第二步:获取不同前进比J (V )下的T C 、P C

(注意:空速范围要覆盖所设计无人机的飞行速度范围,转速固定为10000r/min )

【方法一】查文献,找桨的C p -V (C p -J ),C T -V (C p -J )曲线。利用文献桨与所选桨在V=0时的系数

0,0,T T C C 文献桨所选桨

0,0,P P C C 文献桨所选桨

,对文献桨的C p -V ,

C T -V 曲线平移,得到所选桨的C p -V ,C T -V 曲线(主要原因:目前没有折算公式)。

【方法二】通过仿真软件PropCalc 计算,并结合静态结果修正 【方法三】风洞测试

所选桨的螺距6吋、直径8吋(1英寸=0.0254米)

J

第三步:计算不由J(改变V, n=10000r/min)对应下的各螺旋桨效率 ,确定最大效率-前进比曲线。以“巡航速度效率最高,各速度效率普遍较高”为准则,确定所选螺旋桨。(或改进螺旋桨,再提高效

率。)

【注:转速不变,空速变化,相当于改变前进比,也可以用6000转,出来的曲线折算为前进比后,应该是一致的】

螺旋桨的效率:T p C J

C η=,V

J nD

=

【注:效率只跟前进比有关,因为,T p C C 也只与前进比有关,与转速绝对值没关系】

0.2

0.30.40.5

0.60.70.80.91

0.5

0.55

0.6

0.65

0.7

0.75

0.8

J

效率

【分析:从上图中可以看出,螺旋桨最高效率为0.75,对应前进比约为0.5-0.8之间,效率都在0.7以上。这一效率最好在巡航速度下

出现。同时可根据最高效率,可选择最佳的螺旋桨】

第四步:利用C p计算最大飞行速度下的最大转速功率P,并进功率校核。(多个桨则可以的选择:大于且接近需用功率)。

飞机总体设计大作业教学提纲

飞机总体设计大作业

飞机总体设计大作业 作业名称 J-22 战斗机的设计 项目组员靳国涛马献伟张凯郑正路所在班级 01010406班

目录 第一章任务设计书................................................3 第二章 J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2.3.1 零升阻力的估算.......................................12 2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章 J-22飞机部件设计...........................................20

飞机总体设计课程设计解析

南京航空航天大学 飞机总体设计报告——150座级客机概念设计 011110XXX XXX

设计要求 一、有效载荷 –二级布置,150座 –每人加行李总重,225 lbs 二、飞行性能指标 –巡航速度:M 0.78 –飞行高度:35000英尺 –航程:2800(nm) –备用油规则:5%任务飞行用油+ 1,500英尺待机30分钟用油+ 200海里备降用油。 –起飞场长:小于2100(m) –着陆场长:小于1650(m) –进场速度:小于250 (km/h)

飞机总体布局 一、尾翼的数目及其与机翼、机身的相对位置 (一)平尾前、后位置与数目的三种形式 1.正常式(Conventional) 优点:技术成熟,所积累的经验和资料丰富,设计容易成功。 缺点:机翼的下洗对尾翼的干扰往往不利,布置不当配平阻力比较大 采用情况:现代民航客机均采用此布局,大部分飞机采用的位移布局形式2.鸭式(Canard) 优点:1.全机升力系数较大;2.L/D可能较大;3.不易失速 缺点:1.为保证飞机纵向稳定性,前翼迎角一般大于机翼迎角; 2.前翼应先失速,否则飞机有可能无法控制 采用情况:轻型亚音速飞机及军机采用 3.无尾式( Tailless ) 优点:1.结构重量较轻:无水平尾翼的重量。 2.气动阻力较小——由于采用大后掠的三角翼,超音速的阻力更小 缺点:1. 具有稳定性的无尾飞机进行配平时,襟副翼的升力方向向下,引起升力损失 2. 起飞着陆性能不容易保证 采用情况:少量军机采用 综上所述,采用正常式尾翼布局 (二)水平尾翼高低位置选择 (a) 上平尾(b) 中平尾(c) 下平尾(d) 高置平尾(e) “T”平尾 选择平尾高低位置的原则 1.避开机翼尾涡的不利干扰:将平尾布置在机翼翼弦平面上下不超过5%平均气动力弦长的位置,有可能满足大迎角时纵向稳定性的要求。 2.避开发动机尾喷流的不利干扰 综合考虑后,选择上平尾 (三)垂尾的位置和数目 位置 - 机身尾部 - 机翼上部

算法设计与分析课程设计(完整版)

HUNAN CITY UNIVERSITY 算法设计与分析课程设计 题目:求最大值与最小值问题 专业: 学号: 姓名: 指导教师: 成绩: 二0年月日

一、问题描述 输入一列整数,求出该列整数中的最大值与最小值。 二、课程设计目的 通过课程设计,提高用计算机解决实际问题的能力,提高独立实践的能力,将课本上的理论知识和实际有机的结合起来,锻炼分析解决实际问题的能力。提高适应实际,实践编程的能力。在实际的编程和调试综合试题的基础上,把高级语言程序设计的思想、编程巧和解题思路进行总结与概括,通过比较系统地练习达到真正比较熟练地掌握计算机编程的基本功,为后续的学习打下基础。了解一般程序设计的基本思路与方法。 三、问题分析 看到这个题目我们最容易想到的算法是直接比较算法:将数组的第 1 个元素分别赋给两个临时变量:fmax:=A[1]; fmin:=A[1]; 然后从数组的第 2 个元素 A[2]开始直到第 n个元素逐个与 fmax 和 fmin 比较,在每次比较中,如果A[i] > fmax,则用 A[i]的值替换 fmax 的值;如果 A[i] < fmin,则用 A[i]的值替换 fmin 的值;否则保持 fmax(fmin)的值不变。这样在程序结束时的fmax、fmin 的值就分别是数组的最大值和最小值。这个算法在最好、最坏情况下,元素的比较次数都是 2(n-1),而平均比较次数也为 2(n-1)。 如果将上面的比较过程修改为:从数组的第 2 个元素 A[2]开始直到第 n 个元素,每个 A[i]都是首先与 fmax 比较,如果 A[i]>fmax,则用 A[i]的值替换 fmax 的值;否则才将 A[i]与 fmin 比较,如果 A[i] < fmin,则用 A[i]的值替换 fmin 的值。 这样的算法在最好、最坏情况下使用的比较次数分别是 n-1 和 2(n-1),而平均比较次数是 3(n-1)/2,因为在比较过程中,将有一半的几率出现 A[i]>fmax 情况。

计算机算法设计与分析

算法设计与分析 实 验 报 告 班级: 姓名: 学号: (备注:共给出5个参考实验案例,根据学号尾数做对应的实验,即如尾号为1,则模仿案例实验123;尾号2,则模仿案例实验234;尾号3,即345;尾号4,同1.)

目录 实验一分治与递归 (1) 1、基本递归算法 (1) 2、棋盘覆盖问题 (2) 3、二分搜索 (3) 4、实验小结 (5) 实验二动态规划算法 (5) 1、最长公共子序列问题 (5) 2、最大子段和问题 (7) 3、实验小结 (8) 实验三贪心算法 (8) 1、多机调度问题 (8) 2、用贪心算法求解最小生成树 (10) 3、实验小结 (12) 实验四回溯算法和分支限界法 (12) 1、符号三角形问题 (12) 2、0—1背包问题 (14) 3、实验小结 (18) 实验五多种排序算法效率比较 1、算法:起泡排序、选择排序、插入排序、shell排序,归并排序、快速排序等 (19) 2、实验小结 (18)

P art1:课程设计过程 设计选题--→题目分析---→系统设计--→系统实现--→结果分析---→撰写报告 P art2:课程设计撰写的主要规范 1.题目分析:主要阐述学生对题目的分析结果,包括题目描述、 分析得出的有关模型、相关定义及假设; 2.总体设计:系统的基本组成部分,各部分所完成的功能及相互 关系; 3.数据结构设计:主要功能模块所需的数据结构,集中在逻辑设 计上; 4.算法设计:在数据结构基础上,完成算法设计; 5.物理实现:主要有数据结构的物理存储,算法的物理实现,系 统相关的实现。具体在重要结果的截图,测试案例的结果数据,核心算法的实现结果等; 6.结果分析:对第五步的分析,包括定性分析和定量分析,正确 性分析,功能结构分析,复杂性分析等; 7.结论:学生需对自己的课程设计进行总结,给出评价,并写出 设计体会; 8.附录:带有注释的源代码,系统使用说明等; 9.参考文献:列出在撰写过程中所需要用到的参考文献。

飞行器设计与工程专业(卓越工程师)培养方案

飞行器设计与工程专业(卓越工程师)2017级本科培养方案一、专业简介 飞行器设计与工程专业依托航空宇航科学与技术学科及力学学科,将无人机、通用航空飞机、民用航空飞机、战斗机等飞行器作为重点对象,具有突出的专业特色。现具有专职教师9名,其中副教授2名,讲师7名,硕士生导师5名。近年来,完成多项省、市、国家级科研课题,完成航天科技集团、航天科工集团、中国商用飞机有限公司等重点专项课题,建立航空航天工程学部“创新飞行器设计实践基地,学生在实践基地完成创新型飞行器设计、制造和控制仿真等实践工作。 本专业注重工程教育与工程训练相结合,注重对学生创新精神和实践能力的培养,特别是在加强学生工程实践能力和综合能力培养方面取得了很好的实效,得到有关用人单位的高度评价。多年来招生和就业情况良好。 二、培养目标及服务面向 培养适应社会主义现代化建设和国家战略性航空航天产业迅猛发展需要的德、智、体、美等全面发展,具备较好的数学、力学基础知识和航空航天工程基本理论,具有较强的工程实践能力、技术创新意识、工程管理能力和综合素质的高级工程技术人员和研究人员。 毕业生应掌握空气动力、飞行器总体设计、强度分析、结构设计和飞行力学等方面的专业知识,熟悉间飞行器设计与制造相关领域的新技术,能够在航空航天企业、民航部门、科研院所、通用航空及相关领域中从事科研、设计、制造和开发等高级工程技术和管理方面的工作。 三、培养要求 1、具有较强的社会责任感、较好的人文素养和良好的职业道德,健全的人格和健康的体魄; 2、具有从事领域工作所需的自然科学知识和社会科学知识; 3、系统地掌握本专业领域宽广的基础知识,掌握飞行器设计基础、力学基础、机械设计、自动控制原理、电工与电子技术等方面的基础理论。 4、掌握本专业领域内所需的飞行器设计的空气动力、强度分析、结构设计和

飞机总体设计大作业

飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速:0.7Ma 最大飞行高度:10000m 航程:2300km 待机时间:45分钟 爬升率:0~10000m<25分钟 起飞距离:1600m 接地速度<220km/h 一、相近飞机资料收集: 二、飞机构型设计 正常式布局:技术成熟,所积累资料丰富 T型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数0.7,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波

阻 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a=576.4kts=296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) –升阻比L/D =14 3.根据Breguet 航程方程: ? ?? ? ? ??? ??= D L M C a R a n g e W W f i n a l i n i t i a l )l n ( 代入数据: Range = 1242nm ; a = 581 Knots (巡航高度35000ft) C = 0.5lb/hr/l b (涵道比为5) L/D = 14 M = 0.7 计算得: 115 .1=f i n a l i n i t i a l W W

北航-飞行器总体设计期末整理

1.飞机设计的三个主要阶段是什么?各有些什么主要任务? ?概念设计:飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能、方案评估、参数选择与权衡研究、方案优化 ?初步设计:冻结布局,完善飞机的几何外形设计,完整的三面图和理论外形(三维CAD模型),详细绘出飞机的总体布置图(机载设备、分系统、载荷和结构承力系统),较精确的计算(重量重心、气动、性能和操稳等),模型吹风试验 ?详细设计:飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产 2.飞机总体设计的重要性和特点主要体现在哪些方面? ?重要性:①总体设计阶段所占时间相对较短,但需要作出大量的关键决策②设计前期的失误,将造成后期工作的巨大浪费③投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本?特点(简要阐述) ①科学性与创造性:飞机设计要应用航空科学技术相关的众多领域(如空气动力学、材料学、自动控制、动力技术、隐身技术)的成果;为满足某一设计要求,可以由多种可行的设计方案。 ②反复循环迭代的过程 ③高度的综合性:需要综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调 3.B oeing的团队协作戒律 ①每个成员都为团队的进展与成功负责 ②参加所有的团队会议并且准时达到 ③按计划分配任务 ④倾听并尊重其他成员的观点 ⑤对想法进行批评,而不是对人⑥利用并且期待建设性的反馈意见 ⑦建设性地解决争端 ⑧永远致力于争取双赢的局面(win-win situations) ⑨集中注意力—避免导致分裂的行为 ⑩在你不明白的时候提问 4.高效的团队和低效的团队 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常、坦诚的和建设性的,不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题1. 氛围-互不关心/无聊或紧张/对抗 2. 少数团队成员居于支配地位 3. 旁观者难以理解团队的目标 4. 团队成员不互相倾听,讨论时各执一词 5. 分歧没有被有效地加以处理 6. 在真正需要关注的事情解决之前就贸然行动 7. 行动:不清晰-该做什么?谁来做? 8. 领导者明显表现出太软弱或太强硬 9. 提出批评的时候令人尴尬,甚至导致对抗 10. 个人感受都隐藏起来了 11. 集团对团队的成绩和进展不进行检查 5.飞机的设计要求有哪些基本内容? ①飞机的用途和任务 ②任务剖面 ③飞行性能 ④有效载荷⑤功能系统 ⑥隐身性能要求 ⑦使用维护要求 ⑦机体结构方面的要求 ⑦研制周期和费用 ⑦经济性指标 11环保性指标 6.飞机的主要总体设计参数有哪些? ①设计起飞重量W0 (kg)②动力装置海平面静推力T (kg)③机翼面积S (m2) 组合参数④推重比T/W0⑤翼载荷W0 /S (kg/m2) 7.毯式图的 步骤 ①保持推重比不变,改变翼载(x轴变量),获得总重曲线(y轴变量) ②推重比更改为另一个值后确定不变,改变翼载(x轴变量),获得总重(y轴变量)。同时需将y轴向左移动一任意距离。

飞机总体设计课程设计报告

国内使用的喷气式公务机设计 班级: 0111107 学号: 011110728 姓名:于茂林

一、公务机设计要求 类型 国内使用的喷气式公务机。 有效载重 旅客6-12名,行李20kg/人。 飞行性能: 巡航速度: 0.6 - 0.8 M 最大航程: 3500-4500km 起飞场长:小于1400-1600m 着陆场长:小于1200-1500m 进场速度:小于230km/h 据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。 根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。 由此,从中选出一些较主流机型作为参考 二、确定飞机总体布局 1、参考机型 庞巴迪航空:里尔45xr、里尔60xr 巴西航空:飞鸿300、 塞斯纳航空:奖状cj3 机型座位数巡航速度M 起飞场长m 着陆场长m 航程km 最大起飞重量kg 里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择: 正常式 前三点起落架 T型平尾 / 高置平尾 + 单垂尾 尾吊双发涡轮喷气发动机 / 翼吊双发喷气发动机 / 尾吊双发喷气发动机 小后掠角梯形翼+下单翼 / 小后掠角T型翼+中单翼 / 直机翼+上单翼 3、最终定型及改进 1)正常式、T型平尾、单垂尾 ①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化 ②“失速”警告(安全因素) ③外形美观(市场因素) ④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大 2)小后掠角梯形翼(带翼梢小翼)、下单翼 ①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。 ②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。 ③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。 3)尾吊双发涡轮喷气发动机,稍微偏上 ①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。 ②机翼升力系数大 ③单发停车时,由于发动机离机身近,配平操纵较容易; ④起落架较短,可以减轻起落架重量。 ⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。 4)前三点起落架,主起落架安装在机翼上 ①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。 ②具有起飞着陆时滑跑的稳定性。 ③飞行员座舱视界的要求较容易满足。 ④可使用较强烈的刹车,缩短滑跑距离。

超音速客机概念设计项目组工作报告

超音速客机的概念设计——团队工作报告 专业名称航空学院—飞行器设计与工程 团队成员龚雪淳潘环龚德志李亮 指导教师张科施杨华保李斌宋科范宇 完成时间 2008年6月15日

摘要 本项目是进行一款新型的超音速客机的概念设计,项目团队成员由来自西北工业大学航空学院2004级飞行器设计与工程专业的四名本科生及四名指导教师和一名研究生组成。 该项目完成了一款载客量200人,巡航马赫数2.0,航程10000~12000公里的超音速客机概念设计。项目团队成员分别是龚雪淳(团队组长)、潘环、龚德志、李亮,项目指导教师分别是杨华保、张科施、李斌、宋科、范宇。 21世纪,人类对航空器的研究将更加关注,航空技术将成为世界各个国家经济发展的一个最重要的标志!5年前,“协和”客机最后一次让乘客感受突破音障的激动瞬间,由于事故频发,这种高科技产物被迫退出历史舞台。然而,人类追逐超音速旅行的梦想并没有像流星一样,一闪即逝。现在,包括美国、英国、法国、日本、中国、俄罗斯等在内的多个具有航空研发能力的国家都在积极投入大量经费,来研制自己的超音速客机方案,以求在未来的航空领域中占有一席之地,一场没有硝烟的战争已经打响。 通过该项目的团队合作研究,提高了我们的创新能力和分析问题、解决问题的能力,培养了我们严谨认真的工作态度和团队协作的精神,让我们懂得了团队的重要性,懂得了如何与人沟通,协作。同时,项目的实施也让我们提前适应了将来的工作模式和工作氛围,认识上更进一层。

目录 摘要 (1) 第一章项目简介 (3) 1.1 项目选题背景 (3) 1.2 项目团队成员及指导老师情况 (5) 1.3 项目创新点与特色 (6) 1.4 项目成员工作协调情况介绍 (7) 第二章项目研究成果 (8) 2.1 总体研究成果 (8) 2.2 气动研究成果 (12) 2.3 结构研究成果 (14) 2.4 人机环境与关键技术研究 (18) 2.5 项目成果评价 (20) 总结与体会 (21) 附录Ⅰ项目团队例会记录单 (25) 附录Ⅱ设计参数更改记录单 (34)

算法设计与分析(第2版)-王红梅-胡明-习题答案.

习题1 1. 图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫 加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草图。请将该问题的数据模型抽象出来,并判断此问题是否有解。 七桥问题属于一笔画问题。 输入:一个起点 输出:相同的点 1, 一次步行 2, 经过七座桥,且每次只经历过一次 3, 回到起点 该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。 2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。请用伪代码描述这个版本的欧几里德算法 =m-n 2.循环直到r=0 m=n n=r r=m-n 图 七桥问题 南区

3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代码和C++描述。 编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。 #include using namespace std; int main() { double value=0; for(int n=1;n<=10000 ;++n) { value=value*10+1; if(value%2013==0) { cout<<"n至少为:"< using namespace std; int main () {

抗震与设计计算题目解析

高层建筑结构抗震与设计(练习题1) 1. 某单跨单层厂房如图1所示,集中于屋盖的重力荷载代表值为G =2800kN ,柱抗侧移刚 度系数k1=k2=2.0×104kN/m,结构阻尼比ζ=0.03,Ⅱ类建筑场地,设计地震分组为第一组,设计基本地震加速度为0.15g 。分别求厂房在多遇地震和罕遇地震时水平地震作用。 图1 单层厂房 计算简图 2 k 1k k G G 2. 图2为两层房屋计算简图,楼层集中质量分别为m1=120t,m2=80t,楼板刚度无穷大,楼 层剪切刚度系数分别为k1= 5×104kN/m , k2= 3×104kN/m 。求体系自振频率和振型,并验算振型的正交性。 图2 两层房屋计算简图 1 m 2 m 1 k 2 k 3. 钢筋混凝土3层框架计算简图如图3所示。分别按能量法和顶点位移法计算结构的基本 自振周期(取填充墙影响折减系数为0.6)。

图3 3层框架计算简图 kg m 3310180?=kg m 3 210270?=kg m 3 110270?=m kN k /98003=m kN k /1950002=m kN k /2450001= 4. 钢筋混凝土3层框架经质量集中后计算简图如图4所示。各层高均为5米,各楼层集中 质量代表值分别为:G1=G2=750kN ,G3=500kN ;经分析得结构振动频率和振型如图4所示。结构阻尼比ζ=0.05,Ⅰ类建筑场地,设计地震分组为第一组,设计基本地震加速度为0.10g 。试按振型分解反应谱法确定结构在多遇地震时的地震作用效应,绘出层间地震剪力图。 s rad /22.101=ωs rad /94.272=ωs rad /37.383=ω1 2 图4 计算简图 5. 已知条件和要求同上题,试按底部剪力法计算。 1、表1为某建筑场地的钻孔资料,试确定该场地的类别。 表1

飞机降落曲线课程设计

中北大学理学院 课 程 设 计 题目:飞机降落曲线绘制 课程:数值分析

成员:1408024133 邢栋 1408024129 肖锦柽 目录 一.飞机降落问题介绍 (3) 二、问题分析 (4) 三.实验方法: (5) 方法一(多项式求解) (5) I思路 (5) II程序 (5) III运行结果 (6) IV图像 (6) 方法二(Hermite差值法) (7) I思路 (7) II程序 (7) III运行结果 (7) IV图像 (8) 四.实际案例: (8) 五.设计总结: (9) 六.心得体会: (10)

二.问题分析: 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线.根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线,已知飞机的飞行高度为1000m,开始降落时距原点的横向距离为12000m飞机的着陆点为原点O,且在整个降落过程中,飞机的水平速度始终保持为常数540km/h. 飞机降落图像有:

由此,我们假定降落曲线方程为:且该曲线方程满足已知条件

三.实验方法: 1.方法一(多项式求解): I思路.运用多项式求解方程组(Gauss),即将四个已知条件代入一般三次曲线方程中,得出关于a,b,c,d的新的方程组: II程序.在MATLAB中编写M文件如下: A=[12000^3,12000^2,12000,1;3*12000^2,2*12000,1,0;0 0 1 0;0 0 0 1]; b=[1000;0;0;0]; x=inv(A)*b y=poly2sym(x') x=0:12000; y=vectorize(y) y=eval(y);

150座客机总体设计毕业设计论文

南京航空航天大学课程作业题目150座客机总体设计负责人杨天鹏 负责人学号011110715 学院航空宇航学院 专业飞行器设计与工程 班级0111107 指导教师罗东明讲师 二〇一四年十一月

150座客机总体设计 摘要 本课程作业根据设计要求与适航条例进行了150座客机的总体设计,完成了包括全机布局设计,机身外形初步设计,确定主要参数,发动机选择等工作。实践了飞机总体设计的课程相关内容,为进一步进行飞机总体设计课程设计打下基础。 关键词:150座,客机,总体设计

目录 摘要 (ⅰ) 第一章设计要求 (1) 第二章全机布局设计 (2) 2.1 设计要求 (2) 2.2 飞机布局形式设计 (2) 2.3 飞机平尾设计 (3) 2.4 飞机机翼设计 (3) 2.5 机翼位置设计 (4) 2.6 发动机设计 (4) 2.7 起落架设计 (6) 2.8 小结 (6) 第三章机身外形初步设计 (7) 3.1 机身设计要求 (7) 3.2 中机身设计 (7) 3.3 前机身设计 (9) 3.4 后机身设计 (12) 3.5 小结 (12) 第四章飞机主要参数的确定 (13) 4.1飞机重量的估算 (13) 4.2 翼载荷与推重比设计 (15) 4.3 小结 (16) 第五章发动机设计 (18) 5.1 发动机设计要求 (18) 5.2 发动机类型的选择 (18) 5.3 发动机型号选择 (20) 组内分工 (21)

参考文献 (22) 致谢 (23)

第一章设计要求 要求设计150座民用客机,指标如下: (1)有效载荷:每人重75kg,每人行李总重20kg,机组7人,每人重85kg (2)巡航速度:Ma0.8 (3)飞行高度:35000英尺-41000英尺(10.668 km-12.4968km) (4)航程:5500km (5)备用油规则:5%任务飞行用油+ 1500英尺待机30分钟用油+ 200海里备降用油 (6)起飞场长:小于2200m (7)着陆场长:小于1700m (8)进场速度:70m/s 要求经济性高,安全性高,符合客户需求。

算法分析与设计部分含计算的复习题及参考答案

二、简答题: 1.备忘录方法和动态规划算法相比有何异同简述之。 2.简述回溯法解题的主要步骤。 3.简述动态规划算法求解的基本要素。 4.简述回溯法的基本思想。 5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。 6.简要分析分支限界法与回溯法的异同。 7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面 8.贪心算法求解的问题主要具有哪些性质简述之。 9.分治法的基本思想是什么合并排序的基本思想是什么请分别简述之。 10.简述分析贪心算法与动态规划算法的异同。 三、算法编写及算法应用分析题: 1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。 2.按要求完成以下关于排序和查找的问题。 ①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。 ②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。 ③给出上述算法的递归算法。 ④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。 3.已知1()*() i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。 4.根据分枝限界算法基本过程,求解0-1背包问题。 已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。 5.试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n 公里,而旅途中有若干个加油站。试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少,请写出该算法。 6.试用动态规划算法实现下列问题:设A 和B 是两个字符串。我们要用最少的字符操作,将字符串A 转换为字符串B ,这里所说的字符操作包括: ①删除一个字符。 ②插入一个字符。 ③将一个字符改为另一个字符。 请写出该算法。 7.对于下图使用Dijkstra 算法求由顶点a 到顶点h 的最短路径。 8.试写出用分治法对数组A[n]实现快速排序的算法。 9.有n 个活动争用一个活动室。已知活动i 占用的时间区域为[s i ,f i ],活动i,j 相容的条件是:sj ≥f i ,问题的解表示为(x i | x i =1,2…,n,),x i 表示顺序为i 的活动编号活动,求一个相容的活动子集,且安排的活动数目最多。 10.设x 1、x 2、x 3是一个三角形的三条边,而且x 1+x 2+x 3=14。请问有多少种不同的三角形给出解答过程。 11.设数组A 有n 个元素,需要找出其中的最大最小值。 ①请给出一个解决方法,并分析其复杂性。 ②把n 个元素等分为两组A1和A2,分别求这两组的最大值和最小值,然后分别将这两组的最大值和

飞机总体设计大作业

— 飞机设计要求 喷气支线飞机 有效载荷:70人,75kg/人,每人行李重20kg 巡航速: 最大飞行高度:10000m " 航程: 2300km 待机时间:45分钟 爬升率: 0~10000m<25分钟 起飞距离: 1600m \ 接地速度 <220km/h 一、相近飞机资料收集: 二、飞机构型设计 ^

正常式布局:技术成熟,所积累资料丰富 T 型尾翼:避开发动机喷流的不利干扰,但重量较重 机身尾部单垂尾 后掠翼:巡航马赫数,后掠翼能有效提高临界马赫数,延缓激波的产生,避免过早出现波阻 【 下单翼 :气动干扰经整流后可明显降低,结构布置容易,避免由于机翼离地太高而出现的问题 -发动机数目和安装位置:双发短舱式进气、尾吊布局,可以保持机翼外形的干净,流过机翼的气流免受干扰。 -起落架的型式和收放位置 :前三点 可以显著提高飞机的着陆速度,具有滑跑稳定性,飞行员视界要求易于满足,可以强烈刹车,有利于减小滑跑距离。安装于机身 三、确定主要参数 < 重量的预估 1.根据设计要求: –航程:Range =2800nm=5185.6km –巡航速度:0.8M –巡航高度:35000 ft=10675m ;声速:a==296.5m/s 2.预估数据(参考统计数据) –耗油率C =0.6lb/hr/lb=0.0612kg/(h·N)(涵道比为5) ¥ –升阻比L/D =14 3.根据Breguet 航程方程: ??? ????? ??=D L M C a Range W W final initial )ln( 代入数据: Range = 1242nm ;

专业课程设计-大客飞机后缘襟翼运动机构设计

飞机总体设计 专业课程设计 计算说明书 设计题目大客飞机后缘襟翼运动机构设计分析航空科学与工程学院学院班设计者 指导教师 2012年9月20日

目录 第一章前言 (1) 第二章设计任务书及背景分析 (2) 2.1 课题题目与设计要求 (2) 2.1.1 课题题目 (2) 2.1.2 设计要求 (2) 2.1.3 原始技术资料 (2) 2.2 课题背景分析 (2) 第三章设计方案机构分析 (3) 3.1常见后缘襟翼运动机构类型及特点分析 (3) 3.1.1 常见后缘襟翼运动机构类型 (3) 3.1.2 常见后缘襟翼运动机构特点分析 (3) 3.2设计方案机构特点及尺寸分析 (4) 3.2.1 设计方案特点分析 (4) 3.2.2 设计方案尺寸设计及机构简图 (4) 第四章设计方案载荷及传力分析 (5) 4.1大客飞机后缘襟翼运动机构的载荷分析 (5) 4.1.1 大客飞机后缘襟翼及其运动机构基本参数设计 (5) 4.1.2 大客飞机后缘襟翼气动载荷分析 (5) 4.2大客飞机后缘襟翼运动机构的传力分析 (6) 第五章轴的设计计算 (8) 5.1驱动轴(O轴)设计 (8) 5.1.1驱动轴的材料和热处理的选择 (8) 5.1.2驱动驱动轴的设计计算与强度校核 (8) 5.1.3驱动轴的受力图及弯矩图 (9) 5.2连杆传动轴(A、B、C轴)设计 (9) 5.2.1连杆传动轴的材料和热处理的选择 (9) 5.2.2连杆传动轴的设计计算与强度校核 (9) 5.2.3连杆传动轴的受力图及弯矩图 (9) 第六章螺纹连接件的设计与校核 (11) 6.1 机翼后梁与O轴铰支座的连接设计及校核 (11)

飞机总体设计-课程设计讲课稿

飞机总体设计-课程设 计

南京航空航天大学 飞机总体设计报告——150座级客机概念设计 011110XXX XXX 设计要求

一、有效载荷 –二级布置,150座 –每人加行李总重,225 lbs 二、飞行性能指标 –巡航速度: M 0.78 –飞行高度:35000英尺 –航程: 2800(nm) –备用油规则:5%任务飞行用油 + 1,500英尺待机30分钟用油+ 200海里备降用油。 –起飞场长:小于2100(m) –着陆场长:小于1650(m) –进场速度:小于 250 (km/h) 飞机总体布局

一、尾翼的数目及其与机翼、机身的相对位置 (一)平尾前、后位置与数目的三种形式 1.正常式(Conventional) 优点:技术成熟,所积累的经验和资料丰富,设计容易成功。 缺点:机翼的下洗对尾翼的干扰往往不利,布置不当配平阻力比较大 采用情况:现代民航客机均采用此布局,大部分飞机采用的位移布局形式2.鸭式(Canard) 优点:1.全机升力系数较大;2.L/D可能较大;3.不易失速 缺点:1.为保证飞机纵向稳定性,前翼迎角一般大于机翼迎角; 2.前翼应先失速,否则飞机有可能无法控制 采用情况:轻型亚音速飞机及军机采用 3.无尾式 ( Tailless ) 优点:1.结构重量较轻:无水平尾翼的重量。 2.气动阻力较小——由于采用大后掠的三角翼,超音速的阻力更小 缺点:1. 具有稳定性的无尾飞机进行配平时,襟副翼的升力方向向下,引起升力损失 2. 起飞着陆性能不容易保证 采用情况:少量军机采用 综上所述,采用正常式尾翼布局 (二)水平尾翼高低位置选择 (a) 上平尾(b) 中平尾(c) 下平尾(d) 高置平尾(e) “T”平尾 选择平尾高低位置的原则 1.避开机翼尾涡的不利干扰:将平尾布置在机翼翼弦平面上下不超过5%平均气动力弦长的位置,有可能满足大迎角时纵向稳定性的要求。 2.避开发动机尾喷流的不利干扰 综合考虑后,选择上平尾 (三)垂尾的位置和数目 位置 - 机身尾部 - 机翼上部 数目 单垂尾:多数飞机采用单垂尾,高速飞机加装背鳍和腹鳍 双垂尾:1.压力中心的高度显著降低,可以减小由侧力所造成的机身扭矩。

飞机总体设计大作业

飞机总体设计大作业 作业名称 J-22 战斗机的设计 项目组员靳国涛马献伟张凯郑正路所在班级 01010406班

目录 第一章任务设计书................................................3 第二章J-22初始总体参数和方案设计................................5 2.1重量估算................................................5 2.2确定翼载和推重比..........................................6 2.1.1确定推重比............................................9 2.1.2 确定翼载..............................................10 2.3 飞机升阻特性估算.........................................12 2. 3.1 零升阻力的估算.......................................12

2.3.2 飞机升阻比的估算.....................................14 2.4 确定起飞滑跑距离.........................................15 2.5 飞机气动布局的选择.......................................17 2.6 J-22隐身设计.............................................18 第三章J-22飞机部件设计...........................................20 3.1 机翼设计..................................................21 3.1.1机翼安装形式的选择.....................................22 3.1.2机翼具体参数的计算.....................................24 3.2 机身设计..................................................28

飞机总体设计_武哲_试卷1

一、填空题………………………………………………………(每空0.5分,共15分) 1. 按照三个主要阶段的划分方式,飞机设计包括___________, __________, __________; 其中第一个阶段的英文名称为 ______________. 2. 飞机的主要总体设计参数是__________, ____________, ___________.相对参数是__________,___________. 3. 在机翼和机身的各种相对位置中,二者之间的气动干扰以_________的气动干扰最小,从结构布置的情况看_________,_________的中翼段比较容易布置. 4. 对于鸭式飞机而言,机翼的迎角应_______前翼的迎角. 5. 机翼的主要平面形状参数中的组合参数为_________, _________. 6. 假设某型战斗机的巡航马赫数为1.3,若使其在巡航时处于亚音速前缘状态,则机翼前缘后掠角的范围应为__________. 7. 武器的外挂方式包括(列举4种)________,_________, __________,___________. 8. 根据衡量进气道工作效率的重要参数,一个设计良好的进气道应当___________, ____________, __________, __________.

9. 布置前三点式起落架时应考虑的主要几何参数包括 ___________,___________,____________,___________, ___________,____________. 二、简答题:………………………………………………………………………(65分) 1. 飞机总体设计有什么主要特点(需简要阐述)?(6分) 2. 飞机型式选择的主要工作有哪几个方面? (9分) 3. 简述鸭式布局的设计特点(5分) 4. 在综合界限线围成的可选平面域中选取设计点对应的推重比与翼载荷时,应考虑哪些基本原则?(6分) 5. 对比圆形和多圆形机身剖面的构型特点及优缺点(5分) 6. 民机机身剖面直接影响飞机的经济性和舒适性,请列举出剖面设计中的主要参数(10分) 7. 机翼下吊舱式进气道有哪些主要的优点? (4分) 8. 列举机身外形设计的基本步骤并进行简要阐述(6分) 9. 飞机的型式选择和外形设计中可采取哪些措施提高隐身性能?(6分)

计算材料学与材料设计

贵金属 PRECIOUS METALS 1999年 第20卷 第4期 Vol.20 No.4 1999 计算材料学与材料设计 郭俊梅 邓德国 潘健生 胡明娟 摘 要 由于传统材料科学面临着研究对象的复杂性及新的实验手段和仪器难以满足研究条件等问题,计算材料学用于研究复杂材料和材料设计受到重视。本文针对材料研究的发展趋势,介绍了计算材料学的研究范畴及材料设计的基本思想。然后,介绍了用计算材料学进行材料设计的理论依据、研究方法、结构分析技术等相关内容。还列举了计算材料学的一些应用成果。 关键词 计算材料学,材料设计 分类号 TG113.14 Computer Materials Science and Materials Design Guo Junmei,Deng Deguo (Kunming Institute of Precious Metals,Kunming 650221,China) Pan Jiansheng,Hu Mingjuan (Shanghai Jiaotong University,Shanghai 200030,China) Abstract Science the traditional materials science faced with two difficulties,one is the complexity of researched objects,another is new experimental means and instruments are insufficient to meet the need of research,more and more researchers focus attention on using computer materials science(CMS)to study complex materials and to do materials design. Aiming at the development of materials research,we review the research category of CMS and the basic ideas of materials design,then,introduce the research foundations,methods and structural analysis etc.At last,we display some examples of applications. Keywords Computer materials science,Materials design 1 传统材料科学面临的问题 当今材料科学的发展面临着两大问题:①由于研究对象的复杂性,现有理论手段很难处理一些极为复杂的问题,求解1个比较复杂的分子的薛定谔方程都很难实现;②新的实验手段、仪器、设备虽然不断涌现,在一定范围内为实验研究提供了新方法。但大都极为昂贵,只为个别或少数拥有,研究的问题也极为有限。 当传统研究方法不能满足新材料制备的需求时,人们的目光转向理论辅助的材料设计。随着计算机技术的发展,计算材料学正成为材料研究领域的重要分支。除日益增多的流程参数的计算机控制外,通过计算机摸拟,深入研究材料的结构、组成及其在各物理、化学过程中微观变化机制以达到材料成份、结构及制备参数的最佳组合,即以材料设计为目的已成为材料科学发展的前沿热点,这是由于:①计算机可以模拟

相关文档
最新文档