台达PLC控制伺服电机实现原点回归和定位说课讲解

台达PLC控制伺服电机实现原点回归和定位说课讲解
台达PLC控制伺服电机实现原点回归和定位说课讲解

台达P L C控制伺服电机实现原点回归和定

台达PLC控制伺服电机实现原点回归和定位所有范例仅供初学者参考。范例的目的仅仅是说明指令的用法!

ASD伺服常见问题处理方式

ASD伺服常见问题处理方式 1,伺服驱动器输出到电机的UVW三相是否可以互换? 不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 2,伺服电机为何要Servo on之后才可以动作? 伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。 3,伺服驱动器报警ALE01如何处理? 检查UVW线是否有短路。如果把UVW线与驱动器断开再通电仍然出现ALE01则是驱动器硬件故障。 4,ALE02过电压/ALE03低电压报警发生时如何处理? 首先使用万用表测量输入电压是否在允许范围内;再次是通过驱动器或伺服软件示波器监视“主回路电压”,这是直流母线电压,电压伏数应该是输入交流电压的1.414倍,正常来讲应该不会有太大的偏差。如果偏差很大需返厂重新校准。ALE02/ALE03报警是以“主回路电压”来判断的。 5,在高速运行时机台在中途有很明显的一钝,观察发现是中途有ALE03报警产生,但是一闪就消失了,如何解决这个问题? 在高速运行时会消耗很大能量,母线电压会下降,如果输入电压偏低此时就会出现ALE03报警。报警发生时伺服马上停止,母线电压恢复正常,报警自动消失,伺服会继续运行,因此看起来就是明显的一钝。这种情况多发生在使用单相电源供电时,建议主回路使用三相电源供电。参数P2-65 bit12置ON可使ALE03报警发生时,母线电压恢复后报警不会自动消失。 6,伺服驱动器报警ALE04如何处理? AB系列伺服驱动器配ECMA马达时功率不匹配上电会报警ALE04,除这种情况外刚一上电就报警ALE04就是电机编码器故障。如果在使用过程中出现ALE04报警是因为编码器信号被干扰,请查看编码器线是否是屏蔽双绞、驱动器与电机间地线是否连接,或者在编码器线上套磁环。通过ALE04.EXE软件可以监测每次Z脉冲位置AB脉冲计数是否变化,有变化则会报

台达伺服调试经验故障排除

Q1:伺服电机与普通电机有何区别? A1:伺服电机与普通电机最大的区别在于电机转子和反馈装置。伺服电机转子表面贴有强力磁钢片,因此可以通过定子线圈产生的磁场精确控制转子的位置,并且加减速特性远高于普通电机。反馈装置可以精确反馈电机转子位置到伺服驱动器,伺服电机常用的反馈装置有光学编码器、旋转变压器等。 Q2:伺服驱动器输入电源是否可接单相220V ? A2:台达伺服1.5KW(含)以下可接单相/三相220V电源,2.0KW(含)以上只能接三相220V电源。三相电源整流出来的直流波形质量更好,质量不好的直流电源会消耗母线上电容的能量,电机急加减速时电容会对母线充放电来保持母线电压稳定,因此三相电源输入比单相电源输入伺服的特性会好一些,三相电源输入提供的电流也更大。 Q3:伺服驱动器输出到电机的UVW三相是否可以互换? A3:不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW

接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 Q4:伺服电机为何要Servo on之后才可以动作? A4:伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。

台达伺服电机常见问题

ASDA-A2的 PUU 單位的意義?如何使用? 所謂的PUU (Pulse of User Unit)使用者單位,為一個經過電子齒輪比的使用者單位,這樣的設計,可以讓使用者不必自行轉換外部實際物理Encoder 回授量與電子齒輪間的關係。例如:ASDA-A2的encoder ,每轉一圏,物理量將回授1280000個脈波,如果想要改變馬逹走一圏時的回授脈波數,例如100000個脈波當作一圏,則可以設P1-44(N) =128;P1-45(M) =10,當馬逹轉完一圏時,ASDA-A2會收到100000個脈波,這個經過電子齒輪比運算的100000,其單位即為PUU ,如果要在控制器內部下逹馬逹走兩圏的命令時,只需根據所定義的PUU 下200000個PUU 命令,控制器內部會自動換回其實際的物理量,這個用法很直覺,下圖為其運算原理。 一般一直認為同樣的負載、同樣的慣量(切刀伺服),使用同等轉速的2kW 馬達,慣量比大的馬達應該只有好處沒有壞處,但事實上在實驗過程中發現:切刀驅動不換,原來使用130框號, 2kW 的馬達,負載率約120 ~ 140%,負載慣量比1%的馬達總是過熱,因此當嘗試將馬達更換為180框號, 2kW ,結果換上去後發現速度只要開到800r/min ,就會發生ALE02(過電壓)或ALE05(回生異常)警示。兩台馬達的扭力是一樣的,但是原來使用130框號, 2kW 的馬達,當轉速達到1200r/min 才會達到極限。 從這個例子來看,並不是馬達慣量越大越好,那麼請問在那些應用場合下慣量比發揮的作用影響大,那些應用場合下扭力的影響大? 1. 並不是高慣量就一定好,低慣量就一定差,要看其應用場合。 T= I x α (扭力 = 慣量 x 角加速度) P= T x ω (功率 = 扭力 x 角速度) P = I x α x ω 所以,同樣的功率之下,若慣量提升,加速度必下降,即加減速的特性變差了,當然,角速度也會相對變化,在此我們先假設其運轉速度不變。 I 是固定的,當一個系統設定好後 (如飛刀系統,因為飛刀不變,但如果用於輸送帶,慣量則會變,當輸送帶上的物品變多時,

ASD伺服常见问题处理方式优选稿

A S D伺服常见问题处理 方式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

ASD伺服常见问题处理方式 1,伺服驱动器输出到电机的UVW三相是否可以互换 不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 2,伺服电机为何要Servo on之后才可以动作? 伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。 3,伺服驱动器报警ALE01如何处理? 检查UVW线是否有短路。如果把UVW线与驱动器断开再通电仍然出现ALE01则是驱动器硬件故障。 4,ALE02过电压/ALE03低电压报警发生时如何处理?

首先使用万用表测量输入电压是否在允许范围内;再次是通过驱动器或伺服软件示波器监视“主回路电压”,这是直流母线电压,电压伏数应该是输入交流电压的1.414倍,正常来讲应该不会有太大的偏差。如果偏差很大需返厂重新校准。ALE02/ALE03报警是以“主回路电压”来判断的。 5,在高速运行时机台在中途有很明显的一钝,观察发现是中途有ALE03报警产生,但是一闪就消失了,如何解决这个问题? 在高速运行时会消耗很大能量,母线电压会下降,如果输入电压偏低此时就会出现ALE03报警。报警发生时伺服马上停止,母线电压恢复正常,报警自动消失,伺服会继续运行,因此看起来就是明显的一钝。这种情况多发生在使用单相电源供电时,建议主回路使用三相电源供电。参数P2-65 bit12置ON可使ALE03报警发生时,母线电压恢复后报警不会自动消失。 6,伺服驱动器报警ALE04如何处理? AB系列伺服驱动器配ECMA马达时功率不匹配上电会报警ALE04,除这种情况外刚一上电就报警ALE04就是电机编码器故障。如果在使用过程中出现ALE04报警是因为编码器信号被干扰,请查看编码器线是否是屏蔽双绞、驱动器与电机间地线是否连接,或者在编码器线上套磁环。通过ALE04.EXE软件可以监测每次Z脉冲位置AB脉冲计数是否变化,有变化则会报警 7,伺服驱动器报警ALE06如何处理?

台达伺服电机驱动器的常见问题

三相機種的變頻器是否可以接單相入力電源? 台達變頻器為單相及三相機種,其最大的差異在於電容的配置。單相機種會配置比較大的電容,因此若三相機種只接單相入力,可能導致輸出電流不足,且會發生欠相的異常。為確保系統正常運行,請搭配使用正確的電源系統。 變頻器使用 在硬體上需加裝PG卡,在PG卡上的開關設置編碼器為Open-Collector或是 Line-Driver型式,並設置正確的電壓大小。在參數上,設定編碼器每轉的脈波數及輸入脈波型式。以台達VFD-VE系列變頻器為例,選用EMV-PG01X的PG卡,且編碼器一圈有1024個脈波,為Open-Collector 12V型,此時,PG卡需設置(如下圖) 在參數設定方面,需設定參數10-00每轉脈波數為1024。另外,在設定10-01之前,需先確定該編碼器的脈波型式為AB相、脈波加方向或單一脈波,再加以設定。 之後只要將參數00-04設為7,就可以在使用者顯示的內容看到馬達實際由編碼器回授的轉速。 無感測向量控制 a.優異開迴路速度控制,不必滑差補償 b.在低度時有高轉矩,不必提供過多之轉矩增強 c.更低損耗,更高效率 d.更高動力響應- 尤其是階梯式負載 e.大馬達有穩定之運轉 f.在電流限制,改善滑差控制有較好之表現 在台達交流馬達驅動器的輸入

電源輸入側電抗器 用於變頻器/驅動器輸入端,電抗器保護著靈敏電子設備使其免受變頻器產生的電力雜訊干擾(如電壓凹陷、脈衝、失真、諧波等),而藉由電抗器吸收電源上的突波,更能使變頻器受到良好的保護。 變頻器/驅動器輸出側電抗器 在長距離電纜接線應用中,使用IGBT保護型電抗器於馬達與變頻器之間,來減緩dv/dt值及降低馬達端的反射電壓。使用負載電抗器於輸出端,可抑制負載迅速變化所產生的突波電流,即使是負載短路亦可提供保護。 何謂控速比 可控速範圍是以馬達的額定轉速為基準,在定轉矩操作區中為維持額定轉矩,其額定轉速與最低轉速的比值,例如一典型交流伺服馬達的可控速範圍為1000:1,亦即若馬達的額定轉速為2000 rpm/min,其最低轉速為2 rpm/min;而且在此控速範圍內,由無載至額定負載時,其轉速誤差百分比值均能滿足所設定的控速精度,如+-0.01%。轉速誤差百分比值是由下式計算:(如下圖) 什麼是變頻器的失速防止功能? 如果給定的加速時間過短,變頻器的輸出頻率變化遠遠超過轉速的變化,變頻器將因流過過電流而跳機,而自由運轉停止,這就是失速。為了防止失速使馬達繼續運轉,就要檢出電流的大小進行頻率控制。當加速電流過大時,適當放慢加速速率。減速時也是如此。兩者結合起來就是失速防止功能。 變頻器的哪些模式可以調整馬達轉速? 變頻器上的轉速控制主要有以下: 1. 直接從變頻器面版上的可變電阻調整 2. 外接類比電壓或電流信號來調整 3. 利用變頻器的多功能輸入端子可達成多段速控制 4. 台達變頻器支援Modbus通訊,可利用上位控制器以通訊的方式改變變頻器轉速。 請問 可以,只要韌體版本為4.08版,即可運轉到2000Hz。 請問 不可以,因為EF輸入端子是數位端子,只有開及關的狀態而已,所以不能作為PTC的輸入端。 請問

台达伺服调试经验故障排除

Q1 :伺服电机与普通电机有何区别? A1 :伺服电机与普通电机最大的区别在于电机转子和反馈装置。伺服 电机转子表面贴有强力磁钢片,因此可以通过定子线圈产生的磁场精确控制转子的位置,并且加减速特性远高于普通电机。反馈装置可以精确反馈电机转子位置到伺服驱动器,伺服电机常用的反馈装置有光学编码器、旋转变压器等。 Q2 :伺服驱动器输入电源是否可接单相220V ? A2 :台达伺服1.5KW (含)以下可接单相/三相220V电源,2.0KW (含)以上只能接三相220V 电源。三相电源整流出来的直流波形质量更好,质量不好的直流电源会消耗母线上电容的能量,电机急加减速时电容会对母线充放电来保持母线电压稳定,因此三相电源输入比单相电源输入伺服的特性会好一些,三相电源输入提供的电流也更大。 Q3 :伺服驱动器输出到电机的UVW三相是否可以互换? A3 :不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW 两相互换时电机会反转,事实上伺服电机UVW 任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW

接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警 过负载ALE06 Q4 :伺服电机为何要Servo on 之后才可以动作? A4 :伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处 于放松的状态(手可以转动电机轴)。伺服驱动器接收到 Servo on 信 号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可 以接收指令去动作,没有收到指令时是不会动作的即使有外力介入 (手 转不动电机轴),这样伺服电机才能实现精确定位。 Q5 :伺服驱动器上电就报警 ALE14 如何处理? W 丿 證擦 110V 22OV

台达A系列伺服电机调试步骤

台达A系列伺服电机调试 步骤 The Standardization Office was revised on the afternoon of December 13, 2020

第七轴通过伺服电机运行的调试步骤 一、概述 此文档将介绍如何通过西门子PLC来控制伺服电机的正转、反转、以某一速度进行绝对位置的定位以及电机运行错误后如何复位,伺服驱动器如何设置参数等一些最基本的伺服电机的运行操作步骤。 二、需准备的材料 1、西门子S7-1200系列PLC一台(我们准备的S7-1200 CPU1215C DC/DC/DC) 2、台达伺服电机ECMA-L110 20RS一台 3、台达伺服控制器ASD-A2-2023-M一台 4、威纶通触摸屏MT-8012IE一台 5、博途V15设计软件 6、威纶通设计软件 三、调试步骤及简单说明 调试之前首先将所有设备按照安装说明书上控制接线部分的介绍正确的接入电源,所有设备中需要特别注意的是伺服控制器的进线是三项220V 的电压。建议先让伺服电机在无负载的作用下正常运作,之后再将负载接上以免造成不必要的危险,伺服驱动器的控制用CN1信号端口来接线控制(CN1端口如何接线将提供接线图来接线)。

1、伺服驱动器的参数设置 1)、伺服驱动器面板介绍 2)、启动电源面板将显示以下几种报警画面,根据需要将参数调整到位。 画面一:将参数P2-15、P2-16、P2-17三个参数设定为0

画面二:将参数P2-10~P2-17参数中没有一个设定为21 画面三:将参数P2-10~P2-17参数中没有一个设定为23

3)、以上步骤调整好之后可以利用JOG寸动方式来试转电机和驱动器,操作 步骤如下图

台达伺服定位控制案例

X1 Y0脉冲输出Y1正转/反转Y 脉冲清除 4DOP-A 人机 ASDA 伺服驱动器 【控制要求】 ● 由台达PLC 和台达伺服,台达人机组成一个简单的定位控制演示系统。通过PLC 发送脉冲控制伺服, 实现原点回归、相对定位和绝对定位功能的演示。 ● 下面是台达DOP-A 人机监控画面: 原点回归演示画面 相对定位演示画面

绝对定位演示画面【元件说明】

【PLC 与伺服驱动器硬件接线图】 台达伺服驱动器 码器 DO_COM SRDY ZSPD TPOS ALAM HOME

【ASD-A伺服驱动器参数必要设置】 当出现伺服因参数设置错乱而导致不能正常运行时,可先设置P2-08=10(回归出厂值),重新上电后再按照上表进行参数设置。 【控制程序】

M1002 MOV K200 D1343 Y7 Y10 Y11 M20 M21 M22 M23 M24 M1334 Y12 M1346 M11 X0 X1 X3 X4 X5 X6 X7 M12 M13 设置加减速时间为 200ms Y6 M10 伺服启动伺服异常复位M0M1M2M3M4M1029 DZRN DDRVI DDRVI DDRVA DDRVA ZRST K10000 K100000K-100000K400000K-50000K5000 K20000 K20000 K200000 K200000 X2 Y0 Y0 Y0 Y0 Y0 Y1 Y1 Y1 Y1 M1M0M0M0M0M2M2M1M1M1M3M3M3M2M2M4 M4 M4 M4 M3 M0 M4 原点回归 正转圈 10跑到绝对坐标,处400000跑到绝对坐标,处 -50000定位完成后自动关闭定位指令执行伺服计数寄存器清零使能 反转圈10伺服电机正转禁止伺服电机反转禁止PLC 暂停输出脉冲伺服紧急停止伺服启动准备完毕伺服启动零速度检出伺服原点回归完成伺服定位完成伺服异常报警

台达伺服 调试经验 故障排除

扭矩 中国电信综合业务接入网(IP RAN)业务承载与维护指引 2. 路由设计 1 IGP 路由设计为保证路由层面的安全性,综合业务接入子网与城域骨干网采用不同的IGP 路由进程,并启用 MPLS,B 类设备同时属于多个 IGP 域,骨干与接入的 IGP 路由相对隔离,不进行路由的相互注入, B 设备同属于综合接入子网 MPLS 域和城域网骨干 MPLS 域。综合业务接入网 IGP 推荐采用 OSPF 协议,如果城域骨干网也使用 OSPF 进程,需与综合业务接入子网使用不同的 OSPF 进程,同时业务 转发与网管也需要设置不同的 OSPF 进程。对于业务转发 OSPF 进程,以接入环 为单位设置 Area 为 Stub Area,产生缺省路由;对于有部署 RSVP FRR 或 RSVP TE 的场景,允许在 B-B 之间为每个接入环增加子接口互联,实现 Stub Area 闭环。对网管 OSPF 进程,以接入环为单位设置 Area 为普通 Area,普通 Area 为开环,Area 编号建议采用业务 OSPF 一致的编号。图 5-2 2 BGP 路由设计综合业务接入子网 IGP 示意图 B 设备启用 MP-BGP,与城域网的 SR 在同一个 MP-BGP 域内,比照 PE 进行部署,提供 L3 VPN 业务的接入。 … 对于 CTVPN193,由 B 设备按需把网管 OSPF 进程产生的网管互联 11 / 中国电信综合业务接入网(IP RAN)业务承载与维护指引速收敛。。 ? 方 式 2:使用 RSVP TE+BFD 进行 LSP 层面的故障检测和路由快速收敛。 CSPF 选路采用松散模式,通过部署 BFD 进行故障检测触发 LSP 切换。 ? 方式 3:使用RSVP TE+FRR 进行 LSP 层面的故障检测和路由快速收敛。启用 RSVP+TE FRR ByPass 保护模式, CSPF 选路选用松散模式,采用最短路径作为主路径,次优路 径作为备份路径。 … 部署建议:推荐使用 PW 级的快速收敛,在这种情况下,LSP 级的快速收敛不做要求,可考虑使用 LDP 进行 LSP 层面的路由切换。在设备不支持 PW+BFD 的情况下,可选择 LSP 级快速收敛的方式三。 2 B-B/B-SR 间故障检测和路由快速收敛参照城域网组网规范,通过以下方式实现路由的快速收敛和业务保护: … 在 LSP 层面,采用 BFD for IGP/LDP 实现域内亚秒级收敛;可选择部署 FRR 实现关键链路保护,实现骨干 MPLS 区域 50ms 故障快速倒换。 …

台达伺服电机试验记录(绝对可靠)

台达伺服电机试验记录 (绝对可靠) -CAL-FENGHAI.-(YICAI)-Company One1

台达伺服电机试验记录: 1.Jog运行 设定参数P2-30为1 设定P4-05为点动速度,点动速度设定后,按下SET,驱动器进入JOG模式 按MODE时,即可脱离JOG模式 参数P4-05状态------按SET显示脉冲数,如20,按上下键更改脉冲数------按SET,显示JOG---------按住上下键正反转运行,按 MODE脱离JOG模式。 详见说明书P79 2.参数设定 按MODE,显示P0-00,按上下键增加参数,按SHIFT键切换到P1-00……………按SET显示设定值-------按上下键改变设定值,--------按SET键储存设定值,完成参数设定后显示END或Sru on,并自动回复到监控模式。 按M ODE键脱离设定模式放气设定,再按MODE返回监控模式在设定模式下可按SHIFT使闪烁字符左移 3.接线:11、35接24V 45、9接0V 37接Y1 41接Y0

伺服设定: 设定步骤: P2-08 特殊参数写入,初始值为0,需恢复出厂设置设定为10(重置后请重新投入电源) 参数:P0-02驱动器状态显示,设定值6 (显示脉波命令输入频率)P1-00外部脉冲列指令输入形式初始值2 (脉冲列+符号) P1-01控制模式及控制命令输入源设定初始值0 (位置控制模式) P1-37对伺服电机的负载惯量比初始值5 P1-44电子齿轮比分子设定值10 P1-45电子齿轮比分母设定值1 P2-00位置控制比例增益初始值35 P2-10 数字输入接脚DI1功能设定初始值101, 设定值101,此信号接通时,伺服启动 Servo On P2-14 数字输入接脚DI5功能设定初始值102,设定值102 ,发生异常时,造成异常原因已排除后,此信号接通则驱动器显示的异常信号清除。 P2-15 数字输入接脚DI6功能设定初始值22 不使用该端口时,需设置成0,否则驱动器一直显示逆向运转禁止极限。 P2-16 数字输入接脚DI7功能设定初始值23 不使用该端口时,需设置成0,否则驱动器一直显示正向运转禁止极限。

台达伺服电机常见问题

所谓的PUU (Pulse of User Unit)用户单位,为一个经过电子齿轮比的用户单位,这样的设计,可以让使用者不必自行转换外部实际物理Encoder回授量与电子齿轮间的关系。例如:ASDA-A2的encoder,每转一圏,物理量将回授1280000个脉波,如果想要改变马逹走一圏时的回授脉波数,例如100000个脉波当作一圏,则可以设P1-44(N) =128;P1-45(M) =10,当马逹转完一圏时,ASDA-A2会收到100000个脉波,这个经过电子齿轮比运算的100000,其单位即为PUU,如果要在控制器内部下逹马逹走两圏的命令时,只需根据所定义的PUU下200000个PUU命令,控制器内部会自动换回其实际的物理量,这个用法很直觉,下图为其运算原理。 一般一直认为同样的负载、同样的惯量(切刀伺服),使用同等

1. 并不是高惯量就一定好,低惯量就一定差,要看其应用场合。T= I x α (扭力= 惯量x 角加速度) P= T x ω (功率= 扭力x 角速度) P = I x α x ω 所以,同样的功率之下,若惯量提升,加速度必下降,即加减速的特性变差了,当然,角速度也会相对变化,在此我们先假设其运转速度不变。 I是固定的,当一个系统设定好后(如飞刀系统,因为飞刀不变,但如果用于输送带,惯量则会变,当输送带上的物品变多时,拖的力量需加大)。 所以,你可以利用T= I x α 来估其加减速的大小及所需的扭力α = (目标转速- 初始速度) / (初始速度到目标速度所需时间) 若一个系统需1 N-m的扭力,则高惯量与低惯量的马逹皆可逹成时,如果要其反应快一点,转快一点,则低惯量会是比较理想的选择。用以上的公式,也可以轻而易举的解释,因为低惯量马逹,其转子惯量比较低,转子比较轻,所以要停下来,回

台达A2系列伺服电机调试步骤(2019.7.12)

第七轴通过伺服电机运行的调试步骤 一、概述 此文档将介绍如何通过西门子PLC来控制伺服电机的正转、反转、以某一速度进行绝对位置的定位以及电机运行错误后如何复位,伺服驱动器如何设置参数等一些最基本的伺服电机的运行操作步骤。 二、需准备的材料 1、西门子S7-1200系列PLC一台(我们准备的S7-1200 CPU1215C DC/DC/DC) 2、台达伺服电机ECMA-L110 20RS一台 3、台达伺服控制器ASD-A2-2023-M一台 4、威纶通触摸屏MT-8012IE一台 5、博途V15设计软件 6、威纶通EBproV6.0设计软件 三、调试步骤及简单说明 调试之前首先将所有设备按照安装说明书上控制接线部分的介绍正确的接入电源,所有设备中需要特别注意的是伺服控制器的进线是三项220V 的电压。建议先让伺服电机在无负载的作用下正常运作,之后再将负载接上以免造成不必要的危险,伺服驱动器的控制用CN1信号端口来接线控制(CN1端口如何接线将提供接线图来接线)。

1、伺服驱动器的参数设置 1)、伺服驱动器面板介绍 2)、启动电源面板将显示以下几种报警画面,根据需要将参数调整到位。 画面一:将参数P2-15、P2-16、P2-17三个参数设定为0

画面二:将参数P2-10~P2-17参数中没有一个设定为21 画面三:将参数P2-10~P2-17参数中没有一个设定为23

3)、以上步骤调整好之后可以利用JOG寸动方式来试转电机和驱动器,操作步骤如下图 4)、JOG模式调试正常后,在通过PLC控制伺服电机运转,需设定以下几个参数用来。 ①、P1-01设定成Pt模式 00000

伺服电机常见故障

伺服电机常见故障 伺服电机常见故障: 1、电机为什么产生轴电流? 电机的轴—轴承座—底座回路中电流称为轴电流轴电流的产生原因:1) 磁场不对称2) 供电电流中有偕波3) 制造、安装不好,由于转子偏心造成气隙不匀4) 可拆式定子铁心两个半圆有缝隙5) 有扇形叠成式的定子铁心的拼片数目选择不合适危害:使电机轴承表面或滚珠受到侵蚀,形成点状微孔,使轴承运转性能恶化,摩擦损耗和发热增加,最终造成轴承烧毁预防:1)消除脉动磁通和电源偕波(如在变频器输出侧加装交流电抗器)2)电机设计时,将滑动轴承的轴承座和底座绝缘,滚动轴承的外端和端盖绝缘 2、为什么一般电机不能用于高原地区? 海拔高度对电机温升,电机容量(高压电机)及直流电机的换向均有不利影响应注意以下三方面:1)海拔高,电机温升越大,输出功率越小,但当气温随海拔的升高而降低足以补偿海拔对温升的影响时,电机的额定输出功率可以不变2)高压电机在高原时使用时要采取防电晕措施海拔高度对直流电机换向不利,要注意碳刷材料的选用 3、电机为什么不宜轻载运行 电机轻载运行时会造成:1)电机因数功率低2)电机效率低,会造成设备浪费,运行不经济 4、电机过热的原因有哪些? 1)负载过大2)缺项3)风道阻塞4)低速运行时间过长5)电源偕波过大 5、久置不用的电机投入前需要做哪些工作? 1)测量定子,绕阻各项及绕阻对地绝缘电阻绝缘电阴R应满足下式:R>UN/(1000+P/1000) (MΩ) UN:电机绕阻额定电压(V)P:电机功率(KW)对下UN=380V的电机R>0.38 MΩ如绝缘电阻低,可: 电机空载运行2—3h烘干 用30%额定电压的低压交流电通入绕阻或将三相绕阻串联后用直流电烘,保持电流在50% 的额定电流 用风机送入热空气或加热元件加热2)清理风机3)更换轴承润滑脂 6、为什么不能任意启动寒冷环境中的电机? 电机在低温环境中过长会:1)电机绝缘开裂2)轴承润滑脂冻结3)导红

台达伺服电机常见问题.

电机招聘专家 所谓的PUU (Pulse of User Unit)使用者单位,為一个经过电子齿轮比的使用者单位,这样的设计,可以让使用者不必自行转换外部实际物理Encoder回授量与电子齿轮间的关係。例如:ASDA-A2的encoder,每转一圏,物理量将回授1280000个脉波,如果想要改变马逹走一圏时的回授脉波数,例如100000个脉波当作一圏,则可以设P1-44(N) =128;P1-45(M) =10,当马逹转完一圏时,ASDA-A2会收到100000个脉波,这个经过电子齿轮比运算的100000,其单位即為PUU,如果要在控制器内部下逹马逹走两圏的命令时,只需根据所定义的PUU下200000个PUU命令,控制器内部会自动换回其实际的物理量,这个用法狠直觉,下图為其运算原理。 一般一直认為同样的负载、同样的惯量(切刀伺服),使用同等转速的2kW马达,惯量比大的马达应该只有好处没有坏处,但事实上在实验过程中发现:切刀驱动不换,原来使用130框号, 2kW的马达,负载率约120 ~ 140%,负载惯量比1%的马达总是过热,因此当尝试将马达更换為180框号, 2kW,结果换上去后发现速度只要开到800r/min,就会发生ALE02(过电压)或ALE05(回生异常)警示。两台马达的扭力是一样的,但是原来使用130框号, 2kW的马达,当转速达到1200r/min才会达到极限。从这个例子来看,并不是马达惯量越大越好,那麼请问在那些应用场合下惯量比发挥的作用影响大,那些应用场合下扭力的影响大? 1. 并不是高惯量就一定好,低惯量就一定差,要看其应用场合。T= I x α(扭力= 惯量x 角加速度) P= T x ω(功率= 扭力x 角速度) P = I x αx ω所以,同样的功率之下,若惯量提升,加速度必下降,即加减速的特性变差了,当然,角速度也会相对变化,在此我们先假设其运转速度不变。I是固定的,当一个系统设定好后(如飞刀系统,因為飞刀不变,但如果用於输送带,惯量则会变,当输送带上的物品变多时,拖的力量需加大)。所以,你可以利用T= I x α来估其加减速的大小及所需的扭力α= (目标转速- 初始速度) / (初始速度到目标速度所需时间) 若一个系统需1 N-m的扭力,则高惯量与低惯量的马逹皆可逹成时,如果要其反应快一点,转快一点,则低惯量会是比较理想的选择。用以上的公式,也可以轻而易举的解释,因為低惯量马逹,其转子惯量比较低,转子比较轻,所以要停下来,回生的能量比较少,以同样的速度撞墙,胖子撞的力量会比瘦的大。总而言之,如果要反应快,加减速特性好,如果扭力值够的话,选用低惯量的马逹会比较理想,如果要求是要大扭力的,如举重物,则可能要选用高惯量的马达。 2. 补充说明:包装机的切刀轴,通常是做变速度运转,速度的变化会随切长比(產品长/单位切刀周长)而变!当切长比与1差别愈大,切刀速度变化愈大。与系统惯量的关联:当一个愈胖的人,灵活性就愈差。同理:系统惯量愈大,做加减速愈难。也就是加速时需要更大的电流(容易產生AL006警报),减速时產生回升能量也愈高(容易產生AL005警报)!处理方法:1) 换惯量小的马达。2) 外加回升电阻,可消耗更大的回升能量。3) 将DC Bus并联,获取更大的系统电容(目前此法暂不建议使用)。4) 更换外径不同的切刀,以适合不同范围的產品长度,使切长比接近1,可以让加减速缓和。5) 调整凸轮曲线,让加减速更平缓(搭配韧体V1.029 sub02以上版本) 3. JL: 负载惯量;JM: 马达惯量2 1) 较低负载惯量比,工作效果较佳,但是当JL / JM < 3 时,就不需要再特别增大JM 来降低JL / JM 2 因為这样子JL+JM 就会更大了,不利整体加减速时间。2) 当连结的机构是较软的方式(例如皮带,钢丝等) 负载惯量比过大时(>10),当要加减速较快时,则容易表现不佳,例如:超调。横机就是4米长的皮带传动,这时候选择较高惯量会较佳。3) 当连结机构是直联或是刚性极高的,此时马达轴与负载可视為一体。i) 当应用是属於高频度的加减速来回或是走停运动,则低惯量马达效

台达伺服电机常见问题

所謂的PUU (Pulse of User Unit)使用者單位,為一個經過電子齒輪比的使用者單位,這樣的設計,可以讓使用者不必自行轉換外部實際物理Encoder回授量與電子齒輪間的關係。例如:ASDA-A2的encoder,每轉一圏,物理量將回授1280000個脈波,如果想要改變馬逹走一圏時的回授脈波數,例如100000個脈波當作一圏,則可以設P1-44(N) =128;P1-45(M) =10,當馬逹轉完一圏時,ASDA-A2會收到100000個脈波,這個經過電子齒輪比運算的100000,其單位即為PUU,如果要在控制器內部下逹馬逹走兩圏的命令時,只需根據所定義的PUU下200000個PUU命令,控制器內部會自動換回其實際的物理量,這個用法很直覺,下圖為其運算原理。 一般一直認為同樣的負載、同樣的慣量(切刀伺服),使用同等

1. 並不是高慣量就一定好,低慣量就一定差,要看其應用場合。T= I x α (扭力= 慣量x 角加速度) P= T x ω (功率= 扭力x 角速度) P = I x α x ω 所以,同樣的功率之下,若慣量提升,加速度必下降,即加減速的特性變差了,當然,角速度也會相對變化,在此我們先假設其運轉速度不變。 I是固定的,當一個系統設定好後(如飛刀系統,因為飛刀不變,但如果用於輸送帶,慣量則會變,當輸送帶上的物品變多時,拖的力量需加大)。 所以,你可以利用T= I x α 來估其加減速的大小及所需的扭力α = (目標轉速- 初始速度) / (初始速度到目標速度所需時間) 若一個系統需1 N-m的扭力,則高慣量與低慣量的馬逹皆可逹成時,如果要其反應快一點,轉快一點,則低慣量會是比較理想的選擇。用以上的公式,也可以輕而易舉的解釋,因為低慣量馬逹,其轉子慣量比較低,轉子比較輕,所以要停下來,回

伺服电机常见故障处理技巧

伺服电机常见故障处理技巧 伺服电机常见故障处理技巧如下:一、伺服电机维修窜动现象在进给时出现窜动现象,测速信号不稳定,如编码器有裂纹;接线端子接触不良,如螺钉松动等;当窜动 发生在由正方向运动与反方向运动的换向瞬间时,一般是由于进给传动链的反向问隙或伺服驱动增益过大所致; 二、伺服电机维修爬行现象大多发生在起动加速段或低速 进给时,一般是由于进给传动链的润滑状态不良,伺服系统增益低及外加负载过大等因素所致。尤其要注意的是,伺服电动机和滚珠丝杠联接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠与伺服电动机的转动不同步,从而使进给运动忽快忽慢; 三、伺服电机维修振动现象机床高速运行时,可能产生振动,这时就会产生过流报警。机床振动问题一般属于速度问题,所以应寻找速度环问题; 四、伺服电机维修转矩降低现象伺服电机从额定堵转转矩到高速运转时,发现转矩会突然降低,这时因为电动机绕组的散热损坏和机械部分发热引起的。高速时,电动机温升变大,因此,正确使用伺服电机前一定要对电机的负载进行验算; 五、伺服电机维修位置误差现象当伺服轴运动超过位置允差范围时(KNDSD100出厂标准设置PA17:400,位置超差检测范围),伺服驱动器就会出现“4”

号位置超差报警。主要原因有:系统设定的允差范围小;伺服系统增益设置不当;位置检测装置有污染;进给传动链累计误差过大等; 六、伺服电机维修不转现象数控系统到伺服驱动器除了联结脉冲+方向信号外,还有使能控制信号,一般为DC+24 V继电器线圈电压。伺服电动机不转,常用诊断方法有:检查数控系统是否有脉冲信号输出;检查使能信号是否接通;通过液晶屏观测系统输入/出状态是否满足进给轴的起动条件;对带电磁制动器的伺服电动机确认制动已经打开;驱动器有故障;伺服电动机有故障;伺服电动机和滚珠丝杠联结联轴节失效或键脱开等。

松下交流伺服接线和常见故障分析

一、基本接线(上海太鑫电子科技有限公司提供) 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤(上海太鑫电子科技有限公司提供) 1.JOG试机功能(上海太鑫电子科技有限公司提供) 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF-AcL’,然后按上、下键至‘AF-JoG’ 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’ 按住‘<’键直至显示‘SrV-on’ 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式(上海太鑫电子科技有限公司提供) COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM- 参数No.53、No.05设置为1:(注此类参数修改后应写入EEPROM,并重新上电) 调节参数No.53,即可使电机转动。参数值即为转速,正值反时针旋转,负值顺时针旋转。 3.位置控制方式(上海太鑫电子科技有限公司提供) COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM- PLUS1(3脚)、SIGN1(5脚)接脉冲源的电源正极(+5V); PLUS2(4脚)接脉冲信号,SIGN(6脚)接方向信号; 参数No.02设置为0,No42设置为3,No43设置为1; PLUS(4脚)送入脉冲信号,即可使电机转动;改变SIGN2即可改变电机转向。 另外,调整参数No.46、No.4B(A4对应48,4B;A5对应009,010),可改变电机每转所需的脉冲数(即电子齿轮)。 常见问题解决方法: (上海太鑫电子科技有限公司提供) 1.松下数字式交流伺服系统MHMA 2KW,试机时一上电,电机就振动并有很大的噪声, 然后驱动器出现16号报警,该怎么解决? 这种现象一般是由于驱动器的增益设置过高,产生了自激震荡。请调整参数No.10、No.11、No.12(A5系列对应100,101,102)适当降低系统增益。(请参考《使用说明书》中关于增益调整的内容)(上海太鑫电子科技有限公司提供) 2.松下交流伺服驱动器上电就出现22号报警,为什么?(上海太鑫电子科技有限公司 提供) 22号报警是编码器故障报警,产生的原因一般有: 编码器接线有问题:断线、短路、接错等等,请仔细查对; 电机上的编码器有问题:错位、损坏等,请送修。 3.松下伺服电机在很低的速度运行时,时快时慢,象爬行一样,怎么办?(上海太鑫 电子科技有限公司提供) 伺服电机出现低速爬行现象一般是由于系统增益太低引起的,请调整参数No.10、No.11、No.12(A5系列对应100,101,102),适当调整系统增益,或运行驱动器自

松下伺服电机常见问题及处理办法

松下伺服电机常见问题及处理办法 一、基本接线 主电源输入采用~220V,从L1、L3接入(实际使用应参照操作手册); 控制电源输入r、t也可直接接~220V; 电机接线见操作手册第22、23页,编码器接线见操作手册第24~26页,切勿接错。 二、试机步骤 试机功能 仅按基本接线就可试机; 在数码显示为初始状态‘r 0’下,按‘SET’键,然后连续按‘MODE’键直至数码显示为‘AF -AcL’,然后按上、下键至‘AF-JoG’; 按‘SET’键,显示‘JoG -’:按住‘^’键直至显示‘rEAdy’; 按住‘<’键直至显示‘SrV-on’; 按住‘^’键电机反时针旋转,按‘V’电机顺时针旋转,其转速可由参数Pr57设定。 按‘SET’键结束。 2.内部速度控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; 参数、设置为1:(注此类参数修改后应写入EEPROM,并重新上电) 调节参数,即可使电机转动。参数值即为转速,正值反时针旋转,负值顺时针旋转。 3.位置控制方式 COM+(7脚)接+12~24VDC,COM-(41脚)接该直流电源地;SRV-ON(29脚)接COM-; PLUS1(3脚)、SIGN1(5脚)接脉冲源的电源正极(+5V); PLUS2(4脚)接脉冲信号,SIGN(6脚)接方向信号; 参数设置为0,No42设置为3,No43设置为1; PLUS(4脚)送入脉冲信号,即可使电机转动;改变SIGN2即可改变电机转向。 另外,调整参数、,可改变电机每转所需的脉冲数(即电子齿轮)。 常见问题解决方法:

相关文档
最新文档