植物生产的特性

植物生产的特性

植物生产的特性

植物生产的产品具有生物学特性植物生产的产品是植物,植物的各种特性,如同化、异化、遗传、变异、生长、发育及个体、群体、种内、种间关系等等,都对作物的产量、质量和经济效益有着直接或间接影响。

植物生产有明显的季节性、周期性植物生产的季节性很强,周期性较长,一个生产周期中,影响植物生产的因素很多,自然的、经济的、社会的等等,众多因素中有一个环节没有搞好,就会影响生产。植物生产具有连续性和不可逆性特征,植物生产周期内的各个阶段是相互衔接、紧密连贯的,中间过程不能发生停顿、中断颠倒。

植物生产受到自然条件的影响植物生长发育受到地理、气候等各方面的影响,各个环境因子,如温度、光照、降水土壤等都制约着植物的分布、生存等。

植物生产技术进步较缓慢因为植物产品需求的价格弹性比较小,消费者对它需求的增长速度相对于非农产品言,是比较缓慢的,因此决定的产品生产的技术进步也是比较缓慢的。

植物生产受土地数量的制约严重由于我国耕地数量有限,决定了短期内植物生产难以获得较大的规模效益。8.植物生产具有难控性特征。

一方面,植物生产处于一个开放的系统中,它与外界不断地进行着能量和物质的交换,关系相当复杂,受技术和资金水平的影响,很多因素是难以控制的。另一方面,植物产品的生产时间和人的劳动时

间有差异,不能像工业生产那样,对劳动对象进行严格控制的操作。

植物生理学总结

植物生理学总结. 第一章植物的水分生理 1、植物体内的水分存在形式 自由水:参与各种代谢作用,它的含量制约着植物的代谢强度。自由水占总含水量的百分比越大,则植物代谢越旺盛。 束缚水:不参与代谢作用,但植物要求低微的代谢强度去度过不良的外界条件,因此束缚水含量与植物抗性大小有密切关系 2、水势的概念(必考) 水溶液的化学势与纯水的化学势之差除以水的偏摩尔体积所得的商 3、渗透作用 水分子通过半透膜,由水势高的系统向水势低的系统移动的现象,称为渗透(osmosis)。 4、根系吸水的部分,途径,动力 部位:根尖,吸水能力依次为根毛区,根冠,分生区,伸长区。 途径:质外体途径:水分通过细胞壁,细胞间隙等没有细胞质部分的移动,阻力小,所以这种移动方式速度快 跨膜途径:水分从一个细胞移动到另一个细胞,要通过两次质膜,还要通过液泡膜,故称跨膜途径 共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢 共质体途径和跨膜途径统称为细胞途径,这三条途径共同作用是根部吸收水分 动力:根压、蒸腾拉力。(根内外水势差产生原因) 根压:根系生理活动引起液体从根部上升的压力。 蒸腾拉力:蒸腾作用产生的吸水力。叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以从旁边细胞取得水分。 蒸腾拉力为主要原因。 5、蒸腾作用的概念、指标(蒸腾系数、蒸腾速率) 概念:植物体内的水分以气体状态向外界扩散的生理过程。 指标:蒸腾系数:形成1g干物质所消耗的水分克数。 蒸腾速率:单位时间单位叶面积散失的水量。 蒸腾效率(比率):形成干物质g / 消耗1Kg水。 6、脱落酸对气孔运动 脱落酸促使气孔关闭,其原因是:脱落酸会增加胞质Ca2+浓度和胞质溶胶pH,一方面抑制保卫细胞质膜上的内向K+通道蛋白活性,抑制外向K+通道蛋白活性。促使细胞内K+浓度减少,与此同时,脱落酸活化外向Cl—通道蛋白,Cl—外流,保卫细胞内Cl—浓度减少,保卫细胞膨压就下降,气孔关闭 7、气孔运动的三个学说 (1)淀粉-糖互变学说 保卫细胞的水势变化是由淀粉糖的变化影响的。 (2)无机离子吸收学说 保卫细胞的水势变化是由无机离子调节的。 (3)苹果酸生成学说 K+是保卫细胞渗透势发生变化的重要因素。

植物生理学解释(必备)

植物生理学:研究植物生命活动规律,揭示植物生命现象本质的科学。大致可分为:物质与能量代谢、信息传递及信号转到、生长发育与形态建成。 原核细胞:是低等生物具有的比较简单的细胞,无明显的的细胞核,缺少核膜,没有复杂的内膜系统和细胞器。 真核细胞:是高等动、植物所具有的细胞,有明显的细胞核,并有两层核膜包裹,有复杂的内膜系统及细胞器。 生物膜:是指细胞中主要由蛋白质和脂类组成,具有一定的结构和生理功能的膜状部分,即细胞内所有膜的总称。包括质膜、核膜各种细胞器膜和其他内膜。 内膜系统:指真核细胞中由膜分割而形成的具有连续功能的系统。主要包括核膜、内质网、高尔基体及各种细胞质囊泡。 内质网:由两行平行排列的单位膜构成的形状和大小不同的囊状、泡状、管状膜层连成的一个连续的网膜系统。 单位膜:膜中磷脂分子成双层排列,其疏水性尾部向内、亲水性头部向膜的两侧,与蛋白质分子结合,呈现出蛋白质-脂质-蛋白质的“三层板式”结构。 微管:动植物细胞内有一些长形的不分枝的筒状结构。由球形微管蛋白连接成丝状体亚基,再由丝状体亚基联合成微管。 微观功能:1、在细胞壁形成时她能控制成壁物质向成壁处堆积,从而产生细胞板将两个小细胞分开。2、在细胞游戏分裂时形成纺锤体。3、苔藓、蕨类植物的生殖细胞、银杏的游动精子都有微观组成。4、在细胞浆中也起着细胞的“骨架”作用 微丝:由丝状收缩蛋白所组成纤维状结构,类似于肌肉中的肌动蛋白,可凝聚成束状,参与胞质运动和物质运输等。 核糖体:是无膜包裹的一个核蛋白颗粒,主要由核糖核酸和核糖体蛋白质组成。 乙醛酸体:又称为乙醛酸循环体,呈球形,由单层膜所包围,含有脂肪酸β-氧化与乙醛酸循环的各种酶类。 溶酶体:有单层膜包围,体内无结构,主要包括各种酸性水解酶。 自溶作用:当溶酶体膜被破坏时,其内含的酸性水解酶可释放在细胞之中,将原生质水解的现象。 细胞浆:包含在质膜以内和各种内膜结构以外的原生质部分。他是细胞质的衬质,又称胞基质。 界面能:又称表面能,是由液体的表面张力与表面面积的成绩所决定的, 溶胶:胶粒完全分散在介质中,胶粒之间联系减弱,呈液体的半流动状态,胶粒保持着一定得布朗运动。 凝胶:胶粒密度增大,布朗运动减慢,胶粒之间互相连接成网状,液体分散于网眼之中,胶体失去流动性而凝结成近视固体状态。 膜脂相变:指组成生物膜双分子层的脂质部分在一定条件下发生的物相变化,也就是胶体的液晶相与液胶相或液晶相与液相的互相转变,主要由温度引起。 膜脂相分离:指生物膜双分子层的脂区在物相上的横向不均一性。通常是指冷害温度下膜脂发生的物相变化。 胞间连丝:相邻植物细胞之间穿过细胞壁的原生质通道。其通道可由膜脂或内质网膜或连丝微管所构成。 胞间连丝作用:1、电解质的运输通道2、运输光合作用的中间产物3、多肽类物质的迁移4、细胞壁的穿壁运动5、传递信息:物理化学信号6、病毒胞间运动的通道。 细胞融合:两种不同生物原生质体相互融合的现象。 细胞全能性:指每个细胞都含有产生一套完整机体的全套基因,在适当的条件下,任何一个细胞都可以产生一个新的个体。蛋白质构象:蛋白质分子可以通过自身的一些单键旋转,使得不通碳原子上各个取代集团或原子产生空间排列所形成的空间构象。 变构现象:由于蛋白质分子立体结构的改变,从而改变整个分子性质的现象。 伸展蛋白:是一种富含羟脯氨酸的结构糖蛋白,除了作为结构成为外,即增加细胞壁的强度的刚性,赋予细胞壁一定得韧性外,还有防御和抗病、抗逆的功能。 原生质体:除细胞壁以外的细胞成分,包括细胞核、细胞器、细胞质基质以及其外围的细胞质膜。 cpDNA——叶绿体DNA mtDNA——线粒体DNA RNA——核糖核酸ER——光滑型内质网RER——粗造型内质网rpm——离心机转速(次/分)HRGP——富含羟脯氨酸的糖蛋白PCD——细胞程序化死亡 原生质体主要组成成分及特点:水、蛋白质、糖类、脂类、核酸,他们的共同特点是可以通过自身的单体数量增减、性质的更换和序列的重排,以及空间结构的变化,蕴含着各种生物信息的大分子。 原生质胶体系统如何保持稳定性:由于原生质体胶体颗粒具有双电层,亲水胶体颗粒具有水膜,原生质是多种胶体的混合系统,亲水膜可对疏水胶体产生保护作用,糖对原生质体胶体也有保护作用 原生质的胶体性质与其生理代谢关系:原生质胶体具有溶胶和凝胶两种状态,当处于溶胶时,粘度较小,细胞分裂与生长旺盛,代谢活跃,但抗性较差;当处于凝胶状态时,粘度增大,细胞生理活性降低,对低温、干旱等不良环境抵抗能力增强,有利于植物度过逆境。当种子进入休眠时,原生质胶体由溶胶状态转为凝胶状态。 液泡的作用:1、调节功能:通过水势变化调节细胞吸水能力,通过缓冲体系调节细胞内的PH值。2、含有多种水解酶,可是细胞发生自溶作用。3、选择性地吸收和贮藏物质:各种无机物、有机物。 植物细胞与动物细胞的差别:植物细胞有大液泡和质体,细胞膜外还有细胞壁,植物特有的细胞结构对植物的生理活动级适应外界环境有重要的作用:液泡存在使植物细胞与外界环境构成一个渗透系统,调节细胞的吸水机能,维持细胞的坚挺,此外液泡也是吸收和积累各种物质的场所。质体中的叶绿体使植物能进行光合作用,而淀粉体能合成并贮藏淀粉。细胞壁不仅使植物细胞具有固定的姿态,而且在物质运输、信息传递、抗逆防病等方面都起到了重要作用。

植物生物学复习思考题

植物生物学复习思考题 绪论 1. 试述植物科学在自然科学和国民经济发展中的意义? 2. 怎样才能学好植物生物学? 第一章植物细胞与组织 一、名词解释 原生质和原生质体染色质和染色体质膜和膜系统胞间连丝传递细胞细胞周期微管束通道细胞纹孔后含物 二、简答题 1.简述叶绿体的超微结构。 2.简述植物细胞吸收矿质元素的方式及过程。 3.简述植物的复合组织。 4.有丝分裂和减数分裂的主要区别是什么?它们各有什么重要意义? 三、思考题 1.从输导组织的结构和组成来分析为什么被子植物比裸子植物更加高级?2.分生组织和成熟组织之间的关系怎样? 第二章植物体的形态结构和发育 一、名词解释 上胚轴和下胚轴次生生长和次生结构外始式和内始式叶迹和叶隙根瘤与菌根分蘖和蘖位年轮树皮凯氏带芽鳞痕离层泡状细胞叶镶嵌共质体叶枕射线 二、简答题 1.种子的基本结构包括哪几部分?有胚乳种子和无胚乳种子在构造上有什么不同? 2.什么是种子的休眠?种子休眠的原因是什么? 3.根尖可以分为哪些区域?其特点是什么?生理功能是什么?其相互联系是什么? 4.侧根是怎样形成的?简要说明它的形成过程和发生的位置? 5.根的初生结构横切面可分为几部分?属于哪些结构? 6.一棵"空心"树,为什么仍能活着和生长? 7.什么是茎尖、茎端、根尖、根端?各有何区别? 8.禾本科植物茎的结构是怎样的? 9.简述水分从土壤经植物体最后通过叶散发到大气中所走的路程。 10.旱生植物的叶在其构造上是如何适应旱生条件的。 11.简述叶和芽的起源过程。 12.怎样区别单叶和复叶? 13.一般植物叶下表面气孔多于上表面,这有何优点?沉水植物的叶为什么往往不存在气孔? 14.什么是中柱?中柱有几种类型?各有什么特点

植物生理学名词解释

名词解释: 林木遗传育种:指在遗传学理论的指导下,根据林木的特性及其遗传变异规律,进而研究如何有效地控制和利用这种遗传和变异,为人类的需要服务。 基因:是含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。 等位基因:在同源染色体上占据同座位的基因称为等位基因。 突变子:它是性状突变时,产生突变的最小单位。即一个基因内部能造成可遗传的表型变化的最小的结构单位。 重组子:在发生性状的重组时,可交换的最小单位。一个交换子只包含一对核苷酸。 连锁不平衡:指在某一群体中,不同座位上某两个等位基因出现在同一条单元型上的频率与预期的随机频率之间存在明显差异的现 象。 周期蛋白:指是一类呈细胞周期特异性或时相性表达、累积与分解的蛋白质,它与周期素依赖性激酶共同影响细胞周期的运行。 转座子:是一类在细菌的染色体,质粒或噬菌体之间自行移动的遗传成分,是基因组中一段特异的具有转位特性的独立的DNA序列。转座(因)子是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。 非编码RNA:指的是不被翻译成蛋白质的RNA,如tRNA, rRNA等,这些RNA不被翻译成蛋白质,但是参与蛋白质翻译过程。 RNAi:(RNA interference) 即RNA干涉,是近年来发现的在生物体内普遍存在的一种古老的生物学现象,是由双链RNA(dsRNA)介导 的、由特定酶参与的特异性基因沉默现象,它在转录水平、转录后水平和翻译水平上阻断基因的表达。 染色体:是细胞内具有遗传性质的物体,易被碱性染料染成深色,所以叫染色体(染色质);其本质是脱氧核甘酸,是细胞核内由核蛋白组成、能用碱性染料染色、有结构的线状体,是遗传物质基因的载 体。 染色质:是染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,由核内的DNA与组蛋白、RNA、非组蛋白蛋白质等结合形成。 广义遗传力:基因型方差与表现型方差之比。 狭义遗传力:加性效应方差与表现型方差之比。 遗传距离:1910年,Morgen TH提出假设:假定沿染色体长度上交换的发生具有同等的几率,那么两个基因位点间的距离可以决定减数分裂过程中发生重组染色体的发生率,即重组分数。重组分数的

植物生理学笔记整理

《现代植物生理学》 绪论 1、植物生理学:是研究植物生命活动规律及其与环境相互关系、揭示植物生命现象本质的科学。 植物生理学的研究对象是高等植物。高等植物的生命活动主要分为生长发育与形态建成、物质与能量代谢、信息传递和信号转导3个方面。 2、萨克斯于1882年撰写出《植物生理学讲义》并开设课程,他的弟子费弗尔1904年出版三卷本《植物生理学》著作。这两部著作的问世,标志着植物生理学从植物学中脱胎而出,独立成为一门新兴的科学体系。 细胞生理 3、水势(Ψw ):同温同压下,每偏摩尔体积纯水与水的化学势差。(细胞水势由三部分组成:溶质势(ψs),衬质势(ψm)和压力势(ψp),即Ψw=ψs+ψm+ψp) 4、溶质势(ψs ):由于溶质的存在而使水势降低的值称为溶质势。 压力势(ψp):细胞壁对原生质体产生压力引起的水势变化值。 衬质势(ψm):由于亲水物质对水的吸引而降低的水势。 5、蒸腾作用的生理意义:a.水分吸收和运输的主要动力; b.是矿质元素和有机物运输的动力; c.降低叶温。 d.有利于气体交换 6、现已确定有17种元素是植物的必需元素:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、硫(S)钾(K)、钙(Ca)、镁(Mg)、铁(Fe)、锰(Mn)、锌(Zn)、铜(Cu)、硼(B)、钼(Mo)、镍(Ni)、氯(Cl)。 根据植物对必需元素需要量的大小,通常把植物必需元素划分为两大类,即大量元素和微量 8、缺素症

9、单盐毒害:将植物培养在单一盐溶液中(即溶液中只含有一种金属离子),不久植物就会呈现不正常状态,最终死亡,这种现象称为单盐毒害。 离子对抗:在单盐溶液中若加入少量含有其他金属离子的盐类,单盐毒害现象就会减弱或消除,离子间的这种作用称为离子对抗。 (单盐毒害和离子对抗的内容也要看下及书上面的什么是“生理酸性盐”、“生理碱性盐”、“生理中性盐”也要看P81) 11、植物的光合作用过程 光合作用:是绿色植物大规模地利用太阳能把CO?和H2O合成富能的有机物,并释放出O2的过程。 12、C4植物比C3植物光合作用强的原因 ⑴结构原因:C3:维管束鞘细胞发育不好,无花环型,叶绿体无或少; 光合在叶肉细胞中进行,淀粉积累影响光合。 C4:维管束鞘细胞发育良好,有花环型,叶绿体较大; 光合在维管束鞘细胞中进行。有利于光合产物的就近运输,防止淀粉积累影响光合。 ⑵生理原因:①PEPC对CO2的Km(米氏常数)远小于Rubisico,所以C4对CO2的亲合力大,低CO2浓度(干旱)下,光合速率更高。 ②C4植物将CO2泵入维管束鞘细胞,改变了CO2/O2比率,改变了Rubisico的作用方向,降低了光呼吸。 13.光补偿点:当达到某一光强度时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强度称为光补偿点。 光饱和点:光合速率开始达到最大值时的光强度称为光饱和点。——P132 CO?补偿点:当光合速率与呼吸速率相等时,外界环境中的CO?浓度即为CO?补偿点(图中C 点)。

植物生理学名词解释重点

自由水:据离胶体颗粒或渗透调节物质远,不被吸附或受到别的吸附力很小而自由移动的水分。 束缚水:在细胞中被蛋白质等亲水大分子组成的胶体颗粒或渗透物质所吸附的不易自由移动的水分。 水分临界期:植物在生活周期中对水分缺乏最敏感、最易受害的时期。 三羧酸循环:丙酮酸在有氧条件下进入线粒体,经过三羧酸循环等一系列物质转化,彻底氧化为水和CO2的循环过程。 氧化磷酸化:在生物氧化中,电子经过线粒体的电子传递链传递到氧,伴随ATP合成酶催化,使ADP和磷酸合成A TP的过程。P/O:是指氧化磷酸化中每消耗1mol氧时所消耗的无机磷酸摩尔数之比,是代表线粒体氧化磷酸化活力的重要指标。 末端氧化酶:处于生物氧化一系列反应的最末端,把电子传递给O2的酶。 代谢源:是制造或输出同化物质的组织、器官或部位。 代谢库:是消耗或贮藏同化物质的组织、器官或部位。 植物激素:在植物体内合成,通常从合成部位运往作用部位,对植物的生长发育产生显著调节作用的微量有机物,生长素IAA、赤霉素GA、脱落酸ABA、乙烯ETH、细胞分裂素CTK. 植物生长物质:是调节植物生长发育的微量化学物质。 乙烯的三重反应:是指含微量乙烯的气体中,豌豆黄化幼苗上胚轴伸长生长受到抑制,增粗生长受到促进和上胚轴进行横向生长、抑制伸长生长,促进横向生长,促进增粗生长。 偏向生长:上部生长>下部生长 春化作用:低温诱导植物开花的过程。 光周期现象:植物感受白天和黑夜相对长度的变化,而控制开花的现象。 临界夜长:短日照植物开花所需的最小暗期长度或长日照植物开花所需的最大暗器长度。 呼吸骤变:当呼吸成熟到一定程度时,呼吸速率首先降低,然后突然升高,最后又下降现象。 休眠:成熟种子在合适的萌发条件下仍不萌发的现象。 衰老:细胞器官或整个植物生理功能衰退,最终自然死亡的过程。 脱落:植物细胞组织或器官与植物体分离的过程。 抗逆性:植物的逆境的抵抗和忍耐能力。 避逆性:植物通过物理障碍或生理生化途径完全排除或部分排除逆境对植物体产生直接有害效应。 耐逆性:植物在不良环境中,通过代谢变化来阻止、降低甚至修复由逆境造成的伤害,从而保证生理活动。 逆境:对植物生存和发育不利的各种环境因素的总称。 渗透调节:在胁迫条件下,植物通过积累物质,降低渗透势,而保持细胞压力势的作用。活性氧:化学物质活泼,氧化能力强的氧化代谢产物及含氧衍生物的总称。 交叉适应:植物处于一种逆境下,能提高植物对另外一些逆境的抵抗能力,这种与不良环境反应之间的相互适应作用叫做~ 单性结实:有些植物的胚珠不经受精子房仍能继续发育成没有种子的果实。 幼年期:任何处理都不能诱导开花的植物早期生长阶段。 花熟状态:植物能感受环境条件的刺激而诱导开花的生理状态。 脱春化作用:在春化作用完成前,把植物转移到较高温度下,春化被解除。 临界日长:长日植物开花所需的最短日长或短日植物开花所需的最长日长。 长日植物:日照长度必须长于一定时数才能开花的植物。 日中性植物:在任何日照条件下都可以开花的植物。 花发育ABC模型:典型的花器官从外到内氛围花萼、花瓣、雄蕊和心皮4轮基本结构,控制其发育的同源异型基因划分为A、B、C三大组。 光形态建成:这种依赖光调节和控制的植物生长、分化和发育过程,称为植物的~ 光敏色素:是一种易溶于水的浅蓝色的色素

植物生物学总结

第一章植物细胞的结构与功能 质膜:是包围在细胞质表面的一层薄膜,通常紧贴细胞壁,厚度约7~8 nm (原生质体表面的一层薄膜,脂类和蛋白质) 质膜的结构:脂双层+膜蛋白+膜糖 质膜的功能:1.物质跨膜运输2.能量转换3.代谢调节4.细胞识别5.抗逆性6.信号转导7.纤维素的合成和微纤丝的组装 生物膜的“流动镶嵌模型”主要特点:有序性、流动性、不对称性 质膜有许多重要的生理功能。质膜具有选择透性,能有选择地允许物质出入细胞,能控制细胞与外界环境之间的物质交换,维持细胞内环境的相对稳定;质膜又具胞饮作用、吞噬作用和胞吐作用;此外, 质膜还具有主动运输,接受和传递胞外信息,细胞间的相互识别以及抵御病菌感染等功能。因 此,质膜对细胞的生命活动有重要作用。 细胞壁 化学组成:主要是多糖,包括纤维素、果胶质和半纤维素等。往往在多糖组成的细胞壁中添加了其他成分,如木质素,还有不亲水的角质、木栓质和蜡质等。 层次:根据时间和化学成分的不同分成三层: ①胞间层(中胶层、中层):细胞分裂产生新细胞是最早形成,是相邻细胞共有的一种结构,存在于细胞壁的最外面。主要成分是果胶质,特性是柔软和胶粘,由可塑性,在细胞间起缓冲作用。 ②初生壁:细胞分裂和正在生长时形成的细胞壁,即细胞停止生长前形成的细胞壁,存在于胞间层内侧。主要成分是纤维素,半纤维素和果胶质,通常较薄,柔软富有弹性,能随细胞生长而扩展。 ③次生壁:细胞体积停止增大后加在初生壁内侧继续积累的细胞壁,主要成分为纤维素和半纤维素,并常有木质素、木质、栓质等物质填充其中,常出现在机械支持或运输作用的细胞中。 功能:①包围在原生质体外的坚韧外壳;②保护、支持作用;③吸收、蒸腾、运输、分泌;④细胞识别;⑤参与细胞生长调控。 初生纹孔场:细胞的初生壁上的稀薄区域。 胞间连丝:穿过细胞壁和胞间层,沟通相邻细胞的原生质细丝。它是细胞原生质体间物质和信息直接联系的桥梁,是多细胞植物体成为一个结构的功能上统一的有机体的重要保证。是连接相邻两个植物细胞的跨细胞的细胞器,是植物细胞间物质和信息交流的直接通道,行使水分、营养物质、小的信号分子以及大的胞间运输功能。 细胞间物质运动方式:被动运输(简单扩散、促进扩散)、主动运输、内吞作用、外排作用。 第三章细胞分裂、细胞分化和细胞死亡 细胞分化:个体发育过程中,细胞在形态、结构和功能上发生改变的过程,称为细胞分化。 细胞分化的应用:细胞分化是基因有选择地表达的结果。不同类型的细胞专门活化细胞内某种特定基因,使其转录形成特定的信使核糖核酸,从而合成特定的酶和蛋白质,使细胞之间出现生理生化的差异,进一步出现形态、结构的分化。 脱分化:已分化的细胞在一定因素作用下可恢复分裂机能,重新具备分生组织细胞的特性,这个过程称为脱分化。脱分化后随之往往发生再分化。 脱分化的应用:为再分化作准备,沿着另一个发展方向,分化为不同的组织。利用根、茎、芽进行扦插。植物细胞全能性是指植物体的每一个活细胞都有一套完整的基因组,并具有发育成完整植株的潜在能力。植物细胞全能性的应用:植物组织培养、细胞培养、原生质体培养。微繁殖、脱病毒、体外种质保存、遗传转化、突变体筛选。 组织培养:是在无菌条件下,在含有营养物质和植物激素等的培养基中,培养离体植物组织(器官或细胞)的技术。 组织培养的研究进展: 细胞编程性死亡:又称细胞凋亡或者程序性死亡,它是细胞在一定生理或病理条件下,遵循自身的程序,

植物生理学作业复习题

一、问答题 1.跃变型果实与非跃变型果实及其区别是什么? 2.温度为什么会影响根系吸水? 3.如果你发现一种尚未确定光周期特性的新植物种,怎样确定它是短日植物、长日植物或日中性植物? 4.图4.7为光强-光合曲线,分别指出图中B、F两点,OA、AC和DE线段,CD曲线,以及AC斜率的含义? 图4.7 光强-光合曲线 5.引起种子休眠的原因有哪些?如何解除休眠? 6.在逆境中,植物体内积累脯氨酸有什么作用? 7.冰点以上低温对植物细胞的生理生化变化有那些影响? 8.植物抗旱的生理基础有哪些?如何提高植物的抗旱性? 9.植物耐盐的生理基础表现在哪些方面?如何提高植物的抗盐性? 10.果实成熟时有哪些生理生化变化? 11.举例说明光周期理论在农业实践中的应用。 12.果树生产上常利用环剥提高产量为什么?若在果树主茎下端剥较宽的环能提高果树的产量吗?为什么? 13.把一发生初始质壁分离的植物细胞放入纯水中,细胞的体积、水势、渗透势、压力势如何 变化? 14.蔗糖作为同化物的运输形式具有哪些特点? 15.为什么C4植物的光呼吸速率低? 16.植物体内水分存在的形式与植物的代谢、抗逆性有什么关系? 17.植物进行正常生命活动需要哪些矿质元素?用什么方法、根据什么标准来确定?18.植物根系吸收矿质有哪些特点? 19.试分析植物失绿的可能原因。 20.写出光合作用的总反应式,并简述光合作用的重要意义。 21.产生光合作用“午睡”现象的可能原因有哪些?如何缓和“午睡”程度? 22.为什么C4植物的光呼吸速率低? 23.为什么说长时间的无氧呼吸会使陆生植物受伤,甚至死亡? 24.植物的休眠与生长可能是由哪两种激素调节的?如何调节? 25.乙烯利的化学名称叫什么?在生产上主要应用于哪些方面? 26.简述植物地下部分和地上部分的相关性。在生产上如何调节植物的根冠比?

现代植物生理学名词解释(完整版)

绪论 植物生理学:研究植物生命活动规律及其与环境相互关系的科学。 物质转化:植物对外界物质的同化及利用。 能量转化:植物对光能的吸收,转化,储存,释放与利用的过程。 信息传递:在植物生命活动过程中,在整体水平上,从信息感受部位将信息传递到发生反应部位的过程。 信号转导:在单个细胞水平上信号与受体结合后,通过信号传递,放大与整合,产生生理反应的过程。 形态建成:植物在物质转化与能量转化的基础上发生的植物体大小,形态结构方面的变化,完全依赖于植物体内各种分生组织的活动。 细胞生理 原核细胞:无典型细胞核的细胞,核质外面缺少核膜,细胞质中没有复杂的细胞器与内膜系统。 真核细胞:具有明显的细胞核,核质外有核膜包裹,细胞之中有复杂的内膜系统与细胞器。 生物膜:细胞中主要由脂类与蛋白质组成的,具有一定结构与生理功能的膜状组分,即细胞内所有膜的总称,包括质膜,核膜,各种细胞器被膜及其她内膜。 内质网:存在于真核细胞,由封闭的膜系统及其围成的腔形成互相沟通的网状结构。 胞间连丝:穿越细胞壁,连接相邻细胞原生质体的管状通道。 共质体:胞间连丝把原生质体连成一体。 质外体:细胞壁,质膜与细胞壁间的间隙以及细胞间隙等互相连接成的一个连续的整体。 原生质体:去掉细胞壁的植物细胞,由细胞质,细胞核与液泡组成。 细胞质:由细胞质膜,胞基质及细胞器等组成。 胞基质:在真核细胞中除去可分辨的细胞器以外的胶状物质,细胞浆。 细胞器:细胞质中具有一定形态与特定生理功能的细微结构。 内膜系统:在结构,功能乃至发生上相关的由膜围绕的细胞器或细胞结构。 细胞骨架:真核细胞中的蛋白纤维网架体系,广义的指细胞核/细胞质/细胞膜骨架与细胞壁。 微管:存在于细胞质中的由微管蛋白组装成的长管状细胞器结构。 微丝:真核细胞中由肌动蛋白组成,直径为7nm的骨架纤维,肌动蛋白纤维。 中间纤维:一类由丝状角蛋白亚基组成的中空管状蛋白质丝。 核糖体:由蛋白质与rRNA组成的微小颗粒,蛋白质生物合成的场所。

重金属对植物生理生化的影响

重金属对植物生理生化特性的影响(综述) 摘要 随着工农业的迅速发展,环境污染日益严重,特别是重金属在环境中的释放严重污染了土壤、水体和大气,并且可通过食物链进人生物体,危害人类健康,因此,重金属污染已成为世界性的重大环境问题。重金属的来源有多种途径,除采矿区的尾矿、矿渣、冶炼、有毒气体的排放之外,还有城市垃圾、金属电镀、汽车尾气排放、工业企业向环境排放的“三废”、化工产品在农业中的不合理使用、农田的污水灌溉等等,这些途径都将导致环境的重金属污染。通常植物在受到重金属污染时都会出现生长迟缓、植株矮小、根系伸长受抑制直至停止、叶片褪绿、出现褐斑等症状,严重时甚至导致作物产量降低和植物死亡[1,2]。多年来,人们就重金属对植物的毒害作用做了大量的研究工作,特别是近年来有关重金属对植物毒害的分子机理也有较多报道,本文就重金属对植物生理生化的影响的研究现状作一综述。 关键字:重金属,植物,生理生化。 1.影响植物根系对土壤营养元素的吸收 重金属污染能影响植物根系对土壤中营养元素的吸收,其主要原因是影响了土壤微生物的活性,影响了酶活性。重金属与某些元素之间有拮抗作用,也可能会影响植物对某些元素的吸收。沈阳农业大学张宁、唐咏[3]的研究表明,Cr能明显降低水生植物凤眼莲的根系活力,影响植株生长。 2.引起植物细胞超微结构的改变 当植物受到重金属毒害未出现可见症状之前,实际上在细胞内部已有

亚细胞结构的变化,从而导致这些细胞器参与的生理生化功能抑制或丧失。据彭鸣、王焕校等人[2]的研究表明,当重金属污染较轻时,细胞核、线粒体、叶绿体等细胞器没有明显变化,这时植株外部形态也不会表现出很明显的受害症状。而污染严重时,细胞核、线粒体、叶绿体等细胞器的结构均被破坏,此时植株外部形态会表现出叶片褪绿、萎蔫,根生长受抑制,乃至植株死亡。 3.影响细胞膜透性 重金属能影响植物细胞膜透性。王正秋[4]等对Pb2+,Cr3+,Zn2+对芦苇幼苗质膜的影响进行了研究,结果表明Pb2+,Cr3+,Zn2+对芦苇幼苗根系和叶片的电解质渗漏影响显著,且随处理浓度的增加和处理时间的延长而加剧,其中Cr3+和Zn2+的作用更明显。张宁、唐咏[3]的研究表明,Cr3+污染可增加凤眼莲膜脂过氧化,并使其细胞膜透性增加,且伤害程度与Cr3+浓度呈正相关,而且膜脂过氧化的发生要早于膜透性的改变。目前,细胞膜透性被广泛地用作评定植物对重金属反应的方法之一。 4.影响植物光合作用和呼吸作用 对于重金属对植物光合作用的影响研究比较广泛,结果表明,对光合作用的影响是植物受害的主要原因。许多研究[3]说明,重金属Cr3+可使高等植物的叶绿素含量明显降低,原因是重金属离子直接干扰了叶绿素的生物合成。在大麦幼苗中,Cr3+通过影响原叶绿素酸酯还原酶的活性抑制叶绿素的合成。据王泽港[5]等报道,重金属离子对叶绿素的影响不是由于取代叶绿素卟啉环中的Mg,而是通过影响叶绿素合成酶以及抑制一些参与光合作用的酶的活性等其他途径而产生的。张宁、唐咏[3]就Cr3+对凤眼莲光合作用的影响进行了研究,结果表明,较低浓度Cr3+时(Cr≤0.025mmol/L),凤眼莲叶绿素含量有所增加,而较高浓度Cr3+时

植物生理学名词解释(全)

一、绪论 1、植物生理学就是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢与物质代谢。 二、植物的水分生理 1、水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。把纯水的水势定义为零,溶液的水势值则就是负值。水分代谢:植物对水分的吸收、运输、利用与散失的过程。 2.衬质势: 由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。 3、压力势:植物细胞中由于静水质的存在而引起的水势增加的值。 4、渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。 5、渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,就是指水分子从水势高处通过半透膜向水势低处扩散的现象。 6、质壁分离:植物细胞由于液泡失水而使原生质体与细胞壁分离的现象。 7、吸胀作用: 亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀。 8、根压:由于植物根系生理活动而促使液流从根部上升的压力。伤流与吐水现象就是根压存在的证据。 9、蒸腾作用:水分通过植物体表面(主要就是叶片)以气体状态从体内散失到体外的现象。 10.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g·kg-l表示。 11、蒸腾系数:植物每制造1g干物质所消耗水分的g数,它就是蒸腾效率的倒数,又称需水量。12、气孔蒸腾:植物细胞内的水分通过气孔进行蒸腾的方式称为气孔蒸腾。 13、气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。 14、保卫细胞:新月形的细胞,成对分布在植物叶气孔周围,控制进出叶子的气体与水分的量。形成气孔与水孔的一对细胞。双子叶植物的保卫细胞通常就是肾形的细胞,但禾本科的气孔则呈哑铃形。气孔的保卫细胞含有叶绿体,因为细胞壁面对孔隙的一侧(腹侧)比较厚,而外侧(背侧)比较薄,所以随着细胞内压的变化,可进行开闭运动。 15、蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。 16、水孔蛋白: 存在在生物膜上的具有通透水分功能的内在蛋白。水通道蛋白亦称水通道蛋白。 17、内聚力(the cohesion value)又叫粘聚力,就是在同种物质内部相邻各部分之间的相互吸引力,这种相互吸引力就是同种物质分子之间存在分子力的表现。 18、蒸腾拉力-内聚力-张力学说 19、萎焉:水分亏缺严重时,植物细胞因失水而松弛,靠膨压维持挺立状态的叶片与茎的幼嫩部分下垂,这种现象叫萎焉。 20、暂时萎焉:当蒸腾作用强烈,根系吸水及转运水分的速度较慢,不足以弥补蒸腾失水时, 发生暂时萎焉,当蒸腾速率降低时,根系吸水的水分足以弥补失水,消除水分亏缺,即使不浇水或者通过荫蔽能恢复,这种靠降低蒸腾就能消除的萎焉。

植物生理学名词解释

植物生理学名词解释 名词解释 1.根压——植物根系的生理活动使液流从根部上升的压力 2.蒸腾作用——水分通过植物体表面(如叶片等),以气体状态从体内散失到体外的现象 3.水分临界期——指在植物生长发育过程中对缺水最为敏感,最易受害的阶段 4.内聚力学说——以水分具有较大的内聚力保证由叶至根水柱不断,来解释水分上升原因的学说 5.矿质营养——植物对矿物质的吸收、转运和同化以及矿质在生命活动中的作用,通称为矿质营养 6.必需元素——指在植物营养生理上表现为直接的效果、如果缺乏时则植物生育发生障碍,不能完成生活史、以及去除时植物表现出专一的、可以预防和恢复的症状的一类元素 7.单盐毒害——溶液中只有一种金属离子对植物起有害作用的现象 8.离子对抗——在发生单盐毒害的溶液中,如加入少量其他金属离子来减弱或消除单盐毒害的作用叫离子对抗 9.平衡溶液——含有适当比例的多盐溶液,对植物生长有良好作用的溶液 10.还原氨基化——还原氨直接使酮酸氨基化而形成相应氨基酸的过程 11.胞饮作用——物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液体的过程 12.通道蛋白——在细胞质膜上构成圆形孔道的内在蛋白 13.植物营养临界期——植物在生长发育过程中,对某种养分的需要虽然绝对数量不一定很多;但有很迫切的时期,如供应量不能满足植物的要求,会使生长发育受到很大影响,以后很难弥补损失 途径——以RUBP为CO 2受体,CO 2 固定后最初产物为PGA三碳化合物的光合途径 途径——以PEP为CO2受体,CO2固定后最的初产物是四碳双羧酸的光合途径15.交换吸附——根部细胞在吸收离子的过程中,同时进行着离子的吸附与解吸附的过程,总有一部分离子被其它离子所置换,所以细胞吸附离子具有交换性质17.光系统——能吸收光能并将吸收的光能转化成电能的机构。由不同的中心色素和一些天线色素、电子供体和电子受体组成的蛋白色素复合体。 18.反应中心——进行光化学反应的机构。由中心色素、原初电子供体及原初电子受体组成的具有电荷分离功能的色素蛋白复合体结构。 19.荧光现象——叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象,由第一线态回到基态时所产生的光。

植物生理学试题

细胞膜的特性:流动性(是基于膜脂流动性、膜蛋白流动性以运动相及膜固醇的互作用下进行的) 膜的功能:分室作用、物质运输、能量转换、信息传递和识别功能、抗逆能力、物质合成。胞间连丝:指贯穿细胞壁、胞间层,连接相邻细胞原生质体的管状通道。 功能:物质运输、信息传递。 水分代谢 水势的计算:Ψw=Ψπ+Ψp+Ψm 例1:有一个水分充分饱和的细胞,将其放入比细胞液浓度低100倍的溶液中,则其细胞体积() A、变大 B、变小 C、不变 例2:将一个细胞放入渗透势为-0.2 MPa的溶液中,达到动态平衡后,细胞的渗透势为-0.6 MPa,细胞的压力势等于多少?0.4 MPa 含水量:水生﹥陆生草本﹥木本活跃器官﹥不活跃器官植物组织含水量一般为70%~90% 束缚水:靠亲水物质较近,并被吸附不易自由流动的水分 自由水:靠亲水物质较远,并可以自由流动的水分 自由水/束缚水是衡量植物代谢强弱和抗性的生理指标之一。 水分总是从高水势向低水势流动 植物细胞的主要吸水方式: (1)渗透性吸水(具液泡细胞):利用溶质存在使溶质势下降而引起的细胞吸水 (2)吸胀性吸水(未形成液泡的细胞及干种子):依赖于低的衬质势而引起的吸水 (3)代谢性吸水(直接耗能):耗能吸水或耗能吸收离子 不同物质吸胀力大小不同: 蛋白质 > 淀粉 > 纤维素 三种典型细胞的吸水方式及水势组成 风干种子:吸胀吸水 ψs≈0 ,ψp=0,所以ψw = ψm 液泡化细胞:渗透吸水 ψm≈0 ,所以ψw =ψs +ψp 无液泡分生组织细胞: Ψw = ΨS + Ψm + Ψp 根系吸水的部位 吸水的主要器官是根系,根吸水的主要部位是根尖,根尖吸水最活跃的部位是根毛区。 根的吸水途径 根毛皮层内皮层中柱导管沿导管上升 质外体途径:水分经胞壁和细胞间隙移动,不越膜,移动快

植物生理学名词解释完整版

植物生理学是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢和物质代谢。 水分代谢:植物对水分的吸收、运输、利用和散失的过程。 水势:相同温度下一个含水的系统中一摩尔体积的水与一摩尔体积纯水之间的化学势差称为水势。把纯水的水势定义为零,溶液的水势值则是负值。 压力势:植物细胞中由于静水质的存在而引起的水势增加的值。 渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。 根压:由于植物根系生理活动而促使液流从根部上升的压力。伤流和吐水现象是根压存在的证据。 自由水:与细胞组分之间吸附力较弱,可以自由移动的水。 渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水。 衬质势:由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。 吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。(水,温,湿) 伤流:从受伤或折断的植物组织伤口处溢出液体的现象。 蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。 蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g·kg-l表示。蒸腾系数:植物每制造1g干物质所消耗水分的g数,它是蒸腾效率的倒数,又称需水量。抗蒸腾剂:能降低蒸腾作用的物质,它们具有保持植物体中水分平衡,维持植株正常代谢的作用。抗蒸腾剂的种类很多,如有的可促进气孔关闭。 吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀。 永久萎蔫:降低蒸腾仍不能消除水分亏缺恢复原状的萎蔫 永久萎蔫系数:将叶片刚刚显示萎蔫的植物,转移至阴湿处仍不能恢复原状,此时土壤中水分重量与土壤干重的百分比叫做永久萎蔫系数。水分临界期:植物在生命周期中,对缺水最敏感、最易受害的时期。一般而言,植物的水分临界期多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。作物的水分临界期可作为合理灌溉的一种依据。内聚力学说:以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。 植物的最大需水期:指植物生活周期中需水最多的时期。 小孔扩散律:指气体通过多孔表面扩散的速率,不与小孔的面积成正比,而与小孔的周长或直径成正比的规律。气孔蒸腾速率符合小孔扩散律。 水孔蛋白:存在在生物膜上的具有通透水分功能的内在蛋白。水通道蛋白亦称水通道蛋白。大量元素:在植物体内含量较多,占植物体干重达万分之一的元素,称为大量元素。植物必需的大量元素是:钾、钙、镁、硫、磷、氮、碳、氢、氧等九种元素。 微量元素:植物体内含量甚微,约占植物体干重的、600.001—0.00001%的元素,植物必需的微量元素是铁、锰、硼、锌、铜、钼和氯等七种元素,植物对这些元素的需要量极微,稍多既发生毒害,故称为微量元素。 矿质营养:植物对矿质的吸收、转运和同化以及矿质在生命活动中的作用。 生理酸性盐:对于(NH4)2SO4一类盐,植物吸收NH4+较SO4-多而快,这种选择吸收导致溶液变酸,故称这种盐类为生理酸性盐。

植物生理学名词解释

一 1.原核细胞(prokaryotic-cell) 无典型细胞核的细胞,其核质外面无核膜,细胞质中缺少复杂的内膜系统和细胞器。由原核细胞构成的生物称原核生物(prokaryote)。细菌、蓝藻等低等生物属原核生物。 2.真核细胞(eukaryotic-cell) 具有真正细胞核的细胞,其核质被两层核膜包裹,细胞内有结构与功能不同的细胞器,多种细胞器之间有内膜系统联络。由真核细胞构成的生物称为真核生物(eukayote)。高等动物与植物属真核生物。 3.原生质体(protoplast) 除细胞壁以外的细胞部分。包括细胞核、细胞器、细胞质基质以及其外围的细胞质膜。原生质体失去了细胞的固有形态,通常呈球状。 4.细胞壁(cell-wall) 细胞外围的一层壁,是植物细胞所特有的,具有一定弹性和硬度,界定细胞的形状和大小。典型的细胞壁由胞间层、初生壁以及次生壁组成。 5.生物膜(biomembrane) 即构成细胞的所有膜的总称,它由脂类和蛋白质等组成,具有特定的结构和生理功能。按其所处的位置可分为质膜和内膜。 6.共质体(symplast) 由胞间连丝把原生质(不含液泡)连成一体的体系,包含质膜。 7.质外体(apoplast) 由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。 8.内膜系统(endomembrane-system) 是那些处在细胞质中,在结构上连续、功能上关联的,由膜组成的细胞器总称。主要指核膜、内质网、高尔基体以及高尔基体小泡和液泡等。 9.细胞骨架(cytoskeleton) 指真核细胞中的蛋白质纤维网架体系,包括微管、微丝和中间纤维等,它们都由蛋白质组成,没有膜的结构,互相联结成立体的网络,也称为细胞内的微梁系统(microtrabecular system)。 10.细胞器(cell-organelle) 细胞质中具有一定形态结构和特定生理功能的细微结构。依被膜的多少可把细胞器分为:双层膜细胞器如细胞核、线粒体、质体等;单层膜细胞器如内质网、液泡、高尔基体、蛋白体等;无膜细胞器如核糖体、微管、微丝等。 11.质体(plastid) 植物细胞所特有的细胞器,具有双层被膜,由前质体分化发育而成,包括淀粉体、叶绿体和杂色体等。 12.线粒体(mitochondria) 真核细胞的一种半自主的细胞器。呈球状、棒状或细丝状等,由双层膜组成的囊状结构;其内膜向腔内突起形成许多嵴,主要功能进行三羧循环和氧化磷酸化作用,将有机物中贮存的能量逐步释放出来,供应细胞各项生命活动的需要,故有“细胞动力站”之称。线粒体能自行分裂,并含有DNA、RNA和核糖体,能进行遗传信息的复制、转录与翻译,但由于遗传信息量不足,大部分蛋白质仍需由细胞核遗传系统提供,故其只具半自主性。 13.微管(microtubule) 存在于动植物细胞质内的由微管蛋白组成的中空的管状结构。其主要功能除起细胞的支架

植物生物学重点知识点

植物生物学重点知识点 植物生物学定义:是一门综合性的植物基础学科,包括各植物分支学科的基本知识、基本内容、基本理论、基本方法。 植物学:研究植物和植物界的生活和发展规律的学科,包括植物的形态结构和发育规律、生长发育的基本特性、类群的进化和分类,以及植物生长、分布与环境的相互关系等内容。 特化:细胞壁生长分化过程中,由于生理上的分工,原生质体合成一些特殊物质渗透到细胞壁内,以改变细胞壁的性质而适应一定功能的现象称为细胞壁的特化。 木化:木质素渗入细胞壁内,增加细胞壁的厚度,使细胞壁坚硬、加固支持作用。纤维细胞、导管分子等。纹孔:是指细胞壁形成次生璧时,初生纹孔场处不沉积璧物质而形成许多凹陷的区域。 原生质:构成细胞的生活物质,是细胞结构和生命活动的物质基础。是具有一定粘度、半透明、不均一的亲水胶体,具有新陈代谢的生命特征。 双层单位膜结构的细胞器:包括质体、线粒体两种细胞器。 液泡的主要生理功能是:调节细胞的水势与膨压(是植物体保持挺立状态的根本因素);参与细胞内物质的积累与移动(细胞液中的糖类、蛋白质等有机营养物质需要时可以转移出去,可以贮藏细胞中过剩的有机酸和其他有害的代谢产物如草酸钙结晶等使其与细胞代谢区隔离,从而保证细胞内代谢活动正常进行);参加大分子物质更新中的降解活动(因为液泡常含有水解酶等多种酶类);与植物的抗性相关(液泡形成的内环境可以缓解外界条件的突然变化)。 染色质:是由核小体组成的串珠状结构,每个核小体中心有8个组蛋白分子,DNA双螺旋盘缠在它的表面,各核小体之间以DNA双螺旋和1个组蛋白分子相连。在细胞分裂间期时呈细丝状、分裂期时呈短棒状特称为染色体。 有丝分裂:是植物体细胞增殖的主要方式,包括以下4个时期,2个阶段(核分裂和胞质分裂)。 1、前期染色体出现,纺锤丝形成、分裂极确定,核仁、核膜解体。 2、中期染色体在纺锤丝牵引下排列在细胞赤道面上,纺锤体形成。 3、后期染色体分离,分别向两极移动,出现中间丝。 4、末期染色单体分别到达两极,回复到染色质形态,子细胞核形成。(核分裂)||在赤道面处先是产生成膜体、继而形成细胞板、最后形成新的细胞壁把母细胞分隔成两个新的细胞。(胞质分裂) 减数分裂:是植物进行有性生殖时的一种特殊的细胞分裂方式,细胞连续分裂两次,而染色体\染色质只复制1次,1个母细胞产生4个子细胞,每个子细胞的染色体\染色质数目只有母细胞的一半。 细胞生长:是指细胞体积和重量增加的过程。 细胞死亡:1、坏死性死亡:由于某些外界因素,如物理、化学损伤和生物侵袭造成的非正常死亡。2、程序性死亡:由于基因程序性活动决定的细胞自动结束生命的正常生理性死亡。也称为细胞编程性死亡或者细胞凋亡。 组织分类:按照程度不同分为分生组织和成熟组织两大类。 1、分生组织在植物体内某些特定部位具有持续性或周期性分裂能力的细胞群。保持着胚性特点、细胞相对较小、细胞壁薄、细胞核相对较大、细胞质浓、细胞器丰富。 有两种分类标准:(1)根据在植物体内的位置划分①顶端分生组织:根茎叶等器官的先端部位,使器官伸长。②居间分生组织:是穿插于茎叶、花梗、花丝等器官中的成熟组织之间的分生组织,可使器官进行有限的伸长生长。③侧生分生组织:主要分布于裸子植物和双子叶植物的根茎周侧,与所在器官的长轴平行排列,包括维管形成层和木栓形成层,主要是使器官加粗。 (2)根据来源和性质划分①原分生组织:来源于胚性原始细胞。细胞极小、近于等径、细胞核相对较大占据细胞中央位置、细胞器丰富、细胞质浓、无明显液泡,具有强烈、持久的分裂能力,是产生其他组织的最初来源。②初生分生组织:由原分生组织衍生形成,是原分生组织向成熟组织过渡的部分,逐渐衍生形成原表皮、原形成层、基本分生组织。细胞液泡明显、体积增大(主要是细胞加长)。③次生分生组织:是由某些成熟组织细胞(如薄壁细胞、厚角细胞、表皮细胞等)脱分化形成。细胞明显液泡化、扁长形。

相关文档
最新文档