【CN110097288A】一种基于图搜索的城市众包配送任务分配方法及装置【专利】

【CN110097288A】一种基于图搜索的城市众包配送任务分配方法及装置【专利】
【CN110097288A】一种基于图搜索的城市众包配送任务分配方法及装置【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910380650.6

(22)申请日 2019.05.08

(71)申请人 哈尔滨工业大学(威海)

地址 264209 山东省威海市文化西路2号

(72)发明人 孟凡超 张硕 郑璇池 初佃辉 

张华 周学权 

(74)专利代理机构 济南舜源专利事务所有限公

司 37205

代理人 刘雪萍

(51)Int.Cl.

G06Q 10/06(2012.01)

G06Q 10/08(2012.01)

(54)发明名称一种基于图搜索的城市众包配送任务分配方法及装置(57)摘要本发明提出了一种基于图搜索的城市众包配送任务分配方法,将实际电子地图映射成众包配送网络图,将任务的起始位置、目标位置以及骑手的位置映射到配送网络图中,考虑配送路径优化并在图中完成任务分配。本发明考虑众包骑手的配送能力和任务匹配度,以时间约束内为骑手分配任务的数量最多为目标,建立基于配送网络图的众包任务分配模型。提出一种基于配送网络图的众包任务分配算法,即基于蚁群规划的众包任务分配算法,求解问题模型。最后,将得到的分配结果返回到电子地图中,便于用户以可视化的方式查看。本发明提供的一种新的城市众包配送服务调度解决方案,得到骑手的配送任务集合的同时也能输出骑手配送路径,

具有实用价值。权利要求书4页 说明书8页 附图4页CN 110097288 A 2019.08.06

C N 110097288

A

1.一种基于图搜索的城市众包配送任务分配方法,其特征在于,方法包括步骤如下:

步骤1,构造众包配送网络图;

步骤2,映射众包骑手;

步骤3,配置众包配送任务;

步骤4,对众包配送任务分配建模;

步骤5,检查时间窗约束、实时负载约束和服务质量约束;

步骤6,对众包配送任务优化分配建模;

步骤7,基于蚁群规划配置众包任务分配算法;

步骤8,对众包分配结果进行可视化展示。

2.根据权利要求1所述的基于图搜索的城市众包配送任务分配方法,其特征在于,

步骤1还包括:

众包配送网络图表示为G=(V,E),其中,V为节点集合,节点的信息主要包括结点的编号、经纬度、位置的名称;E={(v,v′)|v,v′∈V}为的边集合,每条边的主要信息包括边的编号、路径长度、道路名称;

众包配送网络图将电子地图中标注的与配送相关的位置映射为众包配送网络图中的相应节点,将不同位置之间的优化路径映射为众包配送网络图中相应的边,并通过Dijkstra算法来计算边的最短距离。

3.根据权利要求1所述的基于图搜索的城市众包配送任务分配方法,其特征在于,

步骤2还包括:

利用位置服务和移动通信技术实时获取众包骑手的信息,并将其映射到配送网络图CDNG上;

众包骑手c的信息表示为:(l c,v c,a c,b c,G c,Q c),其中,l c为骑手c的当前位置,v c为骑手c 的平均配送速度,[a c,b c]为骑手c的服务时间窗(a c

一个区域D内某个时间段R的所有众包骑手的集合表示为:

对于骑手c的

当前位置l c要在区域D的覆盖范围内,骑手c的服务时间窗[a c,b c]要在时段R内。

4.根据权利要求1所述的基于图搜索的城市众包配送任务分配方法,其特征在于,

步骤3还包括:

利用位置服务和移动通信技术实时获取众包配送任务的信息,并将其映射到众包配送网络图CDNG上;

众包配送任务t的信息表示为:其中,为任务t的取货位置,为任务t的送货位置,为任务t的取货时间窗,为最早取货时

刻,为最晚取货始时刻,为平均取货时间,为任务t的送货时间窗

为最早送货时刻,为最晚送货始时刻,为平均送货时间,g t为任务t 所包含的快件数量,q t为任务t的服务质量需求;

一个区域D内某个时段R的所有众包配送任务的集合表示为:

对于任务t

的取货位置

和送货位置要在区域D所覆盖的范围内,

任务t的最早取货时刻和最晚送

权 利 要 求 书1/4页

2

CN 110097288 A

图的深度优先遍历算法课程设计报告

合肥学院 计算机科学与技术系 课程设计报告 2013~2014学年第二学期 课程数据结构与算法 课程设计名称图的深度优先遍历算法的实现 学生姓名陈琳 学号1204091022 专业班级软件工程 指导教师何立新 2014 年9 月 一:问题分析和任务定义 涉及到数据结构遍会涉及到对应存储方法的遍历问题。本次程序采用邻接表的存储方法,并且以深度优先实现遍历的过程得到其遍历序列。

深度优先遍历图的方法是,从图中某顶点v 出发: (1)访问顶点v ; (2)依次从v 的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v 有路径相通的顶点都被访问; (3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 二:数据结构的选择和概要设计 设计流程如图: 图1 设计流程 利用一维数组创建邻接表,同时还需要一个一维数组来存储顶点信息。之后利用创建的邻接表来创建图,最后用深度优先的方法来实现遍历。 图 2 原始图 1.从0开始,首先找到0的关联顶点3 2.由3出发,找到1;由1出发,没有关联的顶点。 3.回到3,从3出发,找到2;由2出发,没有关联的顶点。 4.回到4,出4出发,找到1,因为1已经被访问过了,所以不访问。

所以最后顺序是0,3,1,2,4 三:详细设计和编码 1.创建邻接表和图 void CreateALGraph (ALGraph* G) //建立邻接表函数. { int i,j,k,s; char y; EdgeNode* p; //工作指针. printf("请输入图的顶点数n与边数e(以逗号做分隔符):\n"); scanf("%d,%d",&(G->n),&(G->e)); scanf("%c",&y); //用y来接收回车符. for(s=0;sn;s++) { printf("请输入下标为%d的顶点的元素:\n",s); scanf("%c",&(G->adjlist[s].vertex)); scanf("%c",&y); //用y来接收回车符.当后面要输入的是和单个字符有关的数据时候要存贮回车符,以免回车符被误接收。 G->adjlist[s].firstedge=NULL; } printf("请分别输入该图的%d条弧\n",G->e); for(k=0;ke;k++) { printf("请输入第%d条弧的起点和终点(起点下标,终点下标):\n",(k+1)); scanf("%d,%d",&i,&j); p=(EdgeNode*)malloc(sizeof(EdgeNode)); p->adjvex=j; p->next=G->adjlist[i].firstedge; G->adjlist[i].firstedge=p; } } 2.深度优先遍历 void DFS(ALGraph* G,int v) //深度优先遍历 { EdgeNode* p;

连通图深度优先遍历

#include #include #define MAXLEN 20 typedef struct node3 { int adjvex; struct node3 *next; }ARCNODE; typedef struct { char data; ARCNODE *firstarc; int id; } VEXNODE; typedef struct { VEXNODE vertices[MAXLEN]; int vexnum, arcnum; int kind; }ALGRAPH; int visited[MAXLEN]; ALGRAPH creat_graph() { ARCNODE *p; int i, s, d; ALGRAPH g; printf("\n\n输入顶点数和边数(用逗号隔开) : "); scanf("%d,%d", &s, &d);fflush(stdin); g.vexnum = s; /*存放顶点数在g.vexnum 中 */ g.arcnum = d; /*存放边点数在g.arcnum 中*/ printf("\n\n"); for(i = 0; i < g.vexnum; i++) /*输入顶点的值*/ {printf("输入顶点 %d 的值 : ", i + 1); scanf("%c", &g.vertices[i].data); fflush(stdin); g.vertices[i].firstarc = NULL;} printf("\n"); for(i = 0; i < g.arcnum; i++) {printf("输入第 %d 条边的起始顶点和终止顶点下标(用逗号隔开): ", i+1);

人工智能算法综述

人工智能算法综述 人工智能算法大概包括五大搜索技术,包括一些早期的搜索技术或用于解决比较简单问题的搜索原理和一些比较新的能够求解比较复杂问题的搜索原理,如遗传算法和模拟退火算法等。 1、盲目搜索 盲目搜索又叫做无信息搜索,一般只适用于求解比较简单的问题。包括图搜索策略,宽度优先搜索和深度优先搜素。 1、图搜索(GRAPH SERCH)策略是一种在图中寻找路径的方法。在有关图的表示方法中,节点对应于状态,而连线对应于操作符。 2、如果搜素是以接近其实节点的程度依次扩展节点的,那么这种搜素就叫做宽度优先搜素(breadth-first search 。 3、深度优先搜索属于图算法的一种,英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。 二、启发式搜索 盲目搜索的不足之处是效率低,耗费过多的时间和空间。启发信息是进行搜索技术所需要的一些有关具体问题的特性的信息。利用启发信息的搜索方法叫做启发式搜索方法。 启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无谓的搜索路径,提高了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。 3、博弈树搜索 诸如下棋、打牌、竞技、战争等一类竞争性智能活动称为博弈。博弈有很多种,我们讨论最简单的"二人零和、全信息、非偶然"博弈,其特征如下: (1 对垒的MAX、MIN双方轮流采取行动,博弈的结果只有三种情况:MAX方胜,MIN方败;MIN方胜,MAX方败;和局。 (2 在对垒过程中,任何一方都了解当前的格局及过去的历史。

图的深度优先遍历实验报告

一.实验目的 熟悉图的存储结构,掌握用单链表存储数据元素信息和数据元素之间的关系的信息的方法,并能运用图的深度优先搜索遍历一个图,对其输出。 二.实验原理 深度优先搜索遍历是树的先根遍历的推广。假设初始状态时图中所有顶点未曾访问,则深度优先搜索可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,直至图中所有与v有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中一个未曾访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。 图的邻接表的存储表示: #define MAX_VERTEX_NUM 20 #define MAXNAME 10 typedef char VertexType[MAXNAME]; typedef struct ArcNode{ int adjvex; struct ArcNode *nextarc; }ArcNode; typedef struct VNode{ VertexType data; ArcNode *firstarc;

}VNode,AdjList[MAX_VERTEX_NUM]; typedef struct{ AdjList vertices; int vexnum,arcnum; int kind; }ALGraph; 三.实验内容 编写LocateVex函数,Create函数,print函数,main函数,输入要构造的图的相关信息,得到其邻接表并输出显示。 四。实验步骤 1)结构体定义,预定义,全局变量定义。 #include"stdio.h" #include"stdlib.h" #include"string.h" #define FALSE 0 #define TRUE 1 #define MAX 20 typedef int Boolean; #define MAX_VERTEX_NUM 20

广度优先搜索和深度优先搜索

有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。它们最终都会到达所有 连通的顶点。深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。 深度优先搜索: 深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。这种方法的搜索树是从树根开始一枝一枝逐渐形成的。 下面图中的数字显示了深度优先搜索顶点被访问的顺序。 "* ■ J 严-* 4 t C '4 --------------------------------- --- _ 为了实现深度优先搜索,首先选择一个起始顶点并需要遵守三个规则: (1) 如果可能,访问一个邻接的未访问顶点,标记它,并把它放入栈中。 (2) 当不能执行规则1时,如果栈不空,就从栈中弹出一个顶点。 (3) 如果不能执行规则1和规则2,就完成了整个搜索过程。 广度优先搜索: 在深度优先搜索算法中,是深度越大的结点越先得到扩展。如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。 在深度优先搜索中,算法表现得好像要尽快地远离起始点似的。相反,在广度优先搜索中, 算法好像要尽可能地靠近起始点。它首先访问起始顶点的所有邻接点,然后再访问较远的区 域。它是用队列来实现的。 下面图中的数字显示了广度优先搜索顶点被访问的顺序。 实现广度优先搜索,也要遵守三个规则: ⑴ 访问下一个未来访问的邻接点,这个顶点必须是当前顶点的邻接点,标记它,并把它插入到队列中。(2)如果因为已经没有未访问顶点而不能执行规则1

邻接矩阵表示图深度广度优先遍历

*问题描述: 建立图的存储结构(图的类型可以是有向图、无向图、有向网、无向网,学生可以任选两种类型),能够输入图的顶点和边的信息,并存储到相应存储结构中,而后输出图的邻接矩阵。 1、邻接矩阵表示法: 设G=(V,E)是一个图,其中V={V1,V2,V3…,Vn}。G的邻接矩阵是一个他有下述性质的n阶方阵: 1,若(Vi,Vj)∈E 或∈E; A[i,j]={ 0,反之 图5-2中有向图G1和无向图G2的邻接矩阵分别为M1和M2: M1=┌0 1 0 1 ┐ │ 1 0 1 0 │ │ 1 0 0 1 │ └0 0 0 0 ┘ M2=┌0 1 1 1 ┐ │ 1 0 1 0 │ │ 1 1 0 1 │ └ 1 0 1 0 ┘ 注意无向图的邻接是一个对称矩阵,例如M2。 用邻接矩阵表示法来表示一个具有n个顶点的图时,除了用邻接矩阵中的n*n个元素存储顶点间相邻关系外,往往还需要另设一个向量存储n个顶点的信息。因此其类型定义如下: VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量 AdjMatrix arcs; // 邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧(边)数 GraphKind kind; // 图的种类标志

若图中每个顶点只含一个编号i(1≤i≤vnum),则只需一个二维数组表示图的邻接矩阵。此时存储结构可简单说明如下: type adjmatrix=array[1..vnum,1..vnum]of adj; 利用邻接矩阵很容易判定任意两个顶点之间是否有边(或弧)相联,并容易求得各个顶点的度。 对于无向图,顶点Vi的度是邻接矩阵中第i行元素之和,即 n n D(Vi)=∑A[i,j](或∑A[i,j]) j=1 i=1 对于有向图,顶点Vi的出度OD(Vi)为邻接矩阵第i行元素之和,顶点Vi 的入度ID(Vi)为第i列元素之和。即 n n OD(Vi)=∑A[i,j],OD(Vi)=∑A[j,i]) j=1j=1 用邻接矩阵也可以表示带权图,只要令 Wij, 若或(Vi,Vj) A[i,j]={ ∞, 否则。 其中Wij为或(Vi,Vj)上的权值。相应地,网的邻接矩阵表示的类型定义应作如下的修改:adj:weightype ; {weightype为权类型} 图5-6列出一个网和它的邻接矩阵。 ┌∞31∞∞┐ │∞∞51∞│ │∞∞∞∞∞│ │∞∞6∞∞│ └∞322∞┘ (a)网(b)邻接矩阵 图5-6 网及其邻接矩阵 对无向图或无向网络,由于其邻接矩阵是对称的,故可采用压缩存贮的方法,

图的深度优先遍历和广度优先遍历

华北水利水电学院数据结构实验报告 20 10 ~20 11 学年第一学期2008级计算机专业 班级:107学号:200810702姓名:王文波 实验四图的应用 一、实验目的: 1.掌握图的存储结构及其构造方法 2.掌握图的两种遍历算法及其执行过程 二、实验内容: 以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现无向连通图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。 提示:首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点为起始点,进行深度优先和广度优先遍历,并输出遍历的结果。 三、实验要求: 1.各班学号为单号的同学采用邻接矩阵实现,学号为双号的同学采用邻接表实现。 2.C/ C++完成算法设计和程序设计并上机调试通过。 3.撰写实验报告,提供实验结果和数据。 4.写出算法设计小结和心得。 四、程序源代码: #include #define MaxVerNum 50 struct edgenode { int endver; int inform; edgenode* edgenext; }; struct vexnode { char vertex; edgenode* edgelink; }; struct Graph { vexnode adjlists[MaxVerNum]; int vexnum; int arcnum; }; //队列的定义及相关函数的实现 struct QueueNode

{ int nData; QueueNode* next; }; struct QueueList { QueueNode* front; QueueNode* rear; }; void EnQueue(QueueList* Q,int e) { QueueNode *q=new QueueNode; q->nData=e; q->next=NULL; if(Q==NULL) return; if(Q->rear==NULL) Q->front=Q->rear=q; else { Q->rear->next=q; Q->rear=Q->rear->next; } } void DeQueue(QueueList* Q,int* e) { if (Q==NULL) return; if (Q->front==Q->rear) { *e=Q->front->nData; Q->front=Q->rear=NULL; } else { *e=Q->front->nData; Q->front=Q->front->next; } } //创建图 void CreatAdjList(Graph* G) { int i,j,k; edgenode* p1; edgenode* p2;

人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习

第五章状态空间搜索策略 搜索是人工智能的一个基本问题,是推理不可分割的一部分。搜索是求解问 题的一种方法,是根据问题的实际情况,按照一定的策略或规则,从知识库中寻找可利用的知识,从而构造出一条使问题获得解决的推理路线的过程。搜索包含两层含义:一层含义是要找到从初始事实到问题最终答案的一条推理路线;另一层含义是找到的这条路线是时间和空间复杂度最小的求解路线。搜索可分为盲目搜索和启发式搜索两种。 1.1 盲目搜索策略 1.状态空间图的搜索策略 为了利用搜索的方法求解问题,首先必须将被求解的问题用某种形式表示出来。一般情况下,不同的知识表示对应着不同的求解方法。状态空间表示法是一 种用“状态”和“算符”表示问题的方法。状态空间可由一个三元组表示(S ,F, S g )。 利用搜索方法求解问题的基本思想是:首先将问题的初始状态(即状态空间图中的初始节点)当作当前状态,选择一适当的算符作用于当前状态,生成一组后继状态(或称后继节点),然后检查这组后继状态中有没有目标状态。如果有,则说明搜索成功,从初始状态到目标状态的一系列算符即是问题的解;若没有,则按照某种控制策略从已生成的状态中再选一个状态作为当前状态,重复上述过程,直到目标状态出现或不再有可供操作的状态及算符时为止。 算法5.1 状态空间图的一般搜索算法 ①建立一个只含有初始节点S 0的搜索图G,把S 放入OPEN表中。 ②建立CLOSED表,且置为空表。 ③判断OPEN表是否为空表,若为空,则问题无解,退出。 ④选择OPEN表中的第一个节点,把它从OPEN表移出,并放入CLOSED表中,

将此节点记为节点n。 ⑤考察节点n是否为目标节点,若是,则问题有解,并成功退出。问题的解 的这条路径得到。 即可从图G中沿着指针从n到S ⑥扩展节点n生成一组不是n的祖先的后继节点,并将它们记作集合M,将M中的这些节点作为n的后继节点加入图G中。 ⑦对那些未曾在G中出现过的(即未曾在OPEN表上或CLOSED表上出现过的)M中的节点,设置一个指向父节点(即节点n)的指针,并把这些节点加入OPEN 表中;对于已在G中出现过的M中的那些节点,确定是否需要修改指向父节点(n 节点)的指针;对于那些先前已在G中出现并且已在COLSED表中的M中的节点,确定是否需要修改通向它们后继节点的指针。 ⑧按某一任意方式或按某种策略重排OPEN表中节点的顺序。 ⑨转第③步。 2.宽度优先搜索策略 宽度优先搜索是一种盲目搜索策略。其基本思想是,从初始节点开始,逐层对节点进行依次扩展,并考察它是否为目标节点,在对下层节点进行扩展(或搜索)之前,必须完成对当前层的所有节点的扩展(或搜索)。在搜索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面,后进入的节点排在后面(即将扩展得到的后继节点放于OPEN表的末端)。 宽度优先搜索的盲目性较大,搜索效率低,这是它的缺点。但宽度优先搜索策略是完备的,即只要问题有解,用宽度优先搜索总可以找到它的解。 3.深度优先搜索 深度优先搜索也是一种盲目搜索策略,其基本思想是:首先扩展最新产生的 开始,在其后继节点中选择一个节点,对其进(即最深的)节点,即从初始节点S 行考察,若它不是目标节点,则对该节点进行扩展,并再从它的后继节点中选择

web搜索引擎基于人工智能的应用

web搜索引擎基于人工智能的应用班级:计算机应用2班姓名:邢朝阳学号:07120547 目前,Internet上的搜索引擎大致可分为3种类型:(1)基于人工建立的搜索引擎,如Yahoo。它是利用大量的人力浏览Internet页面,将其编制成HTML 文件,对其进行分类,并按某种次序加以排列组合,使用户通过索引进行查阅。其优点是比较精确,缺点是编辑人员难以跟上Internet海量信息的更替步伐,建立的搜索索引覆盖面也受到限制。(2)基于搜索引擎即软件Robot自动在Internet 上搜寻数据资源,并自动建立索引,如AltaVista、Lycos、Excitd等。这种方法速度快,自动生成的索引覆盖面广,但精确度差,人们往往要花很大的精力从庞杂的反馈中过滤出所需的信息。(3)元搜索引擎,如MetaCrawler。它实际上是一种本身不具备搜索引擎,而依靠其他原始引擎的索引或搜索接口来完成其搜索任务的引擎。尽管目前的搜索引擎给人们搜寻信息资源带来了很大的便利,但是从信息资源的覆盖面、检索精度、检索结果的可视化、可维护性等诸多方面看来,其效果远不能令人满意。 知识发现近几年来随着数据库和人工智能发展起来的一门新兴的数据库技术,帮助人们从庞大的目标数据集合中抽取出可信的、新颖的、有效的并被人们理解的知识模式,以满足人们不同的应用需要。本文提出的web搜索引擎框架就是以知识发现为基础的,它具有如下特点: (1)通过综合多个搜索引擎的结果,扩大了信息资源覆盖面; (2)对各个搜索引擎返回的结果进行知识发现“再加工”,大大地提高了检索质量; (3)对用户提交的查询,通过分析影响性能的时间因素和经验因素,优化选择效益好的搜索引擎进行信息检索,从而充分利用信息资源; (4)不需要维护庞大的数据库,开发者可以将主要精力放在查询请求的分发和返回结果的处理上。 一、系统结构 基于知识发现的web搜索引擎系统框架主要由用户接口Agent、变换调度管理模块、web文档搜集模块、知识发现模块及各web搜索引擎所组成。 (1)用户接口Agent。在搜索引擎系统中,用户接口在用户与信息资源之间起着桥梁作用。由于Internet信息资源的大容量、动态性和复杂性,传统的人机交互方式显得无能为力。基于Agent的用户接口被认为是解决人机交互问题的一个突破口,它为用户提供可视化接口,将用户的请求转化为专用语言传递给变换管理模块,并将知识发现所处理的文档展示给用户。在用户看来,用户接口Agent 是一个半自主的应用程序,一方面,它了解用户的需求 和爱好,能够代表用户智能地完成某个任务,并具有学习和适应能力;另一方面,它受用户的控制,用户可以观察它的活动状态,也可以临时性地暂停或恢复其活动,甚至将它永久性地撤消。 (2)变换调度管理模块。接受来自用户接口Agent的用户查询请求,将其变换为各个搜索引擎所能识别的格式,并利用中介索引信息,对用户提交的查询,通过分析影响性能的时间因素(最佳查询时间)和经验因素(即某一个搜索引擎搜索某一类信息最佳),优化选择效益好的搜索引擎进行信息检索。此外,可根

人工智能启发式图搜索算法

启发式图搜索算法 摘要:启发式搜索策略概述和有序搜索。启发式搜索弥补盲目搜索的不足,提高搜索效率。一种方法用于排列待扩展节点的顺序,即选择最有希望的节点加以扩展,那么,搜索效率将会大为提高。进行搜索技术一般需要某些有关具体问题领域的特性的信息。 关键词:启发式搜索;估价函数;有序搜索;A*算法; 正文: 启发式图搜索的意义因为无信息图搜索算法的效率低,耗费过多的计算空间与时间,这是组合爆炸的一种表现形式。所以引入了启发式图搜索算法。 启发式图搜索算法就是进行搜索技术一般需要某些有关具体问题领域的特性的信息,把此种信息叫做启发信息。利用启发信息的搜索方法叫做启发式搜索方法。关于图搜索的启发式搜索算法就叫做启发式图搜索算法。 启发式图搜索策略:假设初始状态、算符和目标状态的定义都是完全确定的,然后决定一个搜索空间。因此,问题就在于如何有效地搜索这个给定空间。 启发信息按其用途可分为下列3种: (1) 用于决定要扩展的下一个节点,以免像在宽度优先或深度优先搜索中那样盲目地扩展。 (2) 在扩展一个节点的过程中,用于决定要生成哪一个或哪几个后继节点,以免盲目地同时生成所有可能的节点。 (3) 用于决定某些应该从搜索树中抛弃或修剪的节点。 启发信息的状态空间搜索算法,即决定哪个是下一步要扩展的节点。这种搜索总是选择“最有希望”的节点作为下一个被扩展的节点。这种搜索叫做有序搜索(ordered search)。有关具体问题领域的信息常常可以用来简化搜索。一个比较灵活(但代价也较大)的利用启发信息的方法是应用某些准则来重新排列每一步OPEN表中所有节点的顺序。然后,搜索就可能沿着某个被认为是最有希望的边缘区段向外扩展。应用这种排序过程,需要某些估算节点“希望”的量度,这种量度叫做估价函数(evalution function)。所谓的估价函数就是为获得某些节点“希望”的启发信息,提供一个评定侯选扩展节点的方法,以便确定哪个节点最有可能在通向目标的最佳路径上。f(n)——表示节点n的估价函数值建立估价函数的一般方法:试图确定一个处在最佳路径上的节点的概率;提出任意节点与目标集之间的距离量度或差别量度;或者在棋盘式的博弈和难题中根据棋局的某些特点来决定棋局的得分数。这些特点被认为与向目标节点前进一步的希望程度有关。 有序搜索应用某个算法(例如等代价算法)选择OPEN表上具有最小f值的节点作为下一个要扩展的节点。这种搜索方法叫做有序搜索(ordered search)或最佳优先搜索 (best-first search),而其算法就叫做有序搜索算法或最佳优先算法。尼尔逊曾提出一个有序搜索的基本算法。估价函数f是这样确定的:一个节点的希望程序越大,其f值就越小。被选为扩展的节点,是估价函数最小的节点。选择OPEN表上具有最小f值的节点作为下一个要扩展的节点,即总是选择最有希望的节点作为下一个要扩展的节点。 有序状态空间搜索算法 (1) 把起始节点S放到OPEN表中,计算f(S)并把其值与节点S联系起来。 (2) 如果OPEN是个空表,则失败退出,无解。 (3) 从OPEN表中选择一个f值最小的节点i。结果有几个节点合格,当其中有一个为目标节点时,则选择此目标节点,否则就选择其中任一个节点作为节点i。

实验四-图的应用――深度优先/广度优先搜索遍历

数据结构实验报告 实验四图的应用 一、实验题目: 图的应用——xx优先/xx优先搜索遍历 二、实验内容: 很多涉及图上操作的算法都是以图的遍历操作为基础的。试编写一个算法,实现图的深度优先和广度优先搜索遍历操作。 要求: 以邻接矩阵或邻接表为存储结构,以用户指定的顶点为起始点,实现连通无向图的深度优先及广度优先搜索遍历,并输出遍历的结点序列。(注: 学号为奇数的同学使用邻接矩阵存储结构实现,学号为偶数的同学使用邻接矩阵实现) 提示: 首先,根据用户输入的顶点总数和边数,构造无向图,然后以用户输入的顶点为起始点,进行深度优先、广度优先搜索遍历,并输出遍历的结果。 三、程序源代码: #include #include #define MAX_VERTEX_NUM 20 #define OVERFLOW -1 int visited[80]; typedef struct ArcNode{

int adjvex;//该弧所指向的顶点的位置 struct ArcNode *nextarc;//指向下一条弧的指针 }ArcNode; typedef struct VNode{ int data;//顶点信息 ArcNode *firstarc;//指向第一条依附该顶点的弧的指针}VNode,AdjList[MAX_VERTEX_NUM]; typedef struct{ AdjList vertices; }ALGraph; typedef struct QNode{ int data; struct QNode *next; }QNode,*QuePtr; typedef struct{ QuePtr front;//队头指针 QuePtr rear;//队尾指针 }LinkQue; void InitQue(LinkQue &q){} void EnQue(LinkQue &q,int e){} int DeQue(LinkQue &q){int e;

浅谈人工智能中的启发式搜索策略

浅谈人工智能中的启发式搜索策略浅谈人工智能中的启发式搜索策略关键词:人工智能;启发式搜索;估价函数摘要:人工智能所要解决的问题大部分是非结构化或结构不良的问题,启发式搜索可以极大提高效率。讲述了搜索策略中的启发式搜索,对它的原理进行讲解,前景进行了展望。   盲目搜索即是按预定的控制策略进行搜索[1],这种搜索具有盲目性,效率不高,不便于复杂问题的求解。为解决此类问题,人们提出启发式搜索策略,即在搜索中加入与问题有关的启发式信息,用以指导搜索朝着最有希望的方向前进,加速问题求解的效率并找到最优解。一、启发式搜索策略的发展历史40年代:由于实际需要,提出了启发式算法,具有快速有效的特点。50年代:启发式搜索逐步繁荣,其中贪婪算法和局部搜索得到人们的关注。60年代:反思阶段,人们发现以前提出的启发式算法速度很快,但是解的质量不稳定,而且对大规模的问题仍然无能为力。70年代:计算复杂性理论的提出。人们发现贪婪算法和局部搜索算法速度快,但解不好的原因是得到的解没有全局最优性。Holland的遗传算法的出现再次引发了人们研究启发式算法的兴趣。80年代以后,模拟退火算法,人工神经网络,禁忌搜索等新式算法相继出现。二、启发式搜索策略的工作原理盲目式搜索求解的过程中,节点的扩展次序是随意的,且没有利用已解决问题的特性,为此需要扩展的节点数会非常

大。启发式搜索则克服了上述缺点,它利用搜索过程中的有用信息优化搜索。一一般搜索过程基本思想[2]:把初始结点作为当前状态,选择适用的算符对其进行操作,生成一组子状态,然后检查目标状态是否在其中出现。若出现,则搜索成功,否则从已生成的状态中再选一个状态作为当前状态。重复上述过程,直到目标状态出现或者不再有可供操作的状态和算符时为止。在给出具体过程之前,首先介绍两个数据结构――OPEN表和CLOSED表。OPEN表用于存放刚生成的节点。CLOSED表用于存放将要扩展或者已经扩展的节点。搜索的一般过程如下: 1.把初始节点S0放入OPEN表,并建立目前只包含S0的图,记为G。 2.检查OPEN表是否为空,若为空则问题无解,退出。 3.把OPEN表的第一个节点取出放入到CLOSED 表,并记该节点为节点n。 4.考察节点n是否为目标节点。若是,则求得了问题的解,退出。 5.扩展节点n,生成一组子节点。把其中不是节点n先辈的那些子节点记作集合M,并把这些子节点作为节点n的子节点加入到G中。 6.针对M中子节点的不同情况,分别进行如下处理:①对于那些未曾在G中出现过的M成员设置一个指向父节点即节点n 的指针,并把他们放入OPEN表中;②对于那些先前已在G中出现过的M成员,确定是否需要修改指向父节点的指针; ③对于那些先前已在G中出现并且已经扩展了M的成员,确定是否需要修改其后继节点指向父节点的指针。7.按某种搜索策略对OPEN表中的节点进行排序。8.转向2步。由以上介绍可知,问题的求解过程实际上就是搜索过程,问题的求解的状态空间

图的深度优先搜索遍历算法分析及其应用

重庆邮电大学 数学大类专业 2008级《数学建模与数学实验》课程设计 设计题目:图的深度优先搜索遍历算法分析及其应用设计时间:2010.9.7-----2010.9. 12 班级: 学号: 指导教师:

图的深度优先搜索遍历算法分析及其应用 摘要:文章介绍了图论,图的基本概念及其图的表示方法。详细的分析了图中以邻接表为存储结构进行的图的深度优先搜索遍历的算法,并且在VC++环境中实现其算法的过程,对运行记过做了一定量的分析,最后介绍了基于该算法的一些应用。 关键词:图;深度优先搜索;遍历;算法 图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。 图(Graph)是一种较线性表和树更复杂的数据结构,图形结构中,结点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。因此,在研究有关图的问题时,要考虑图中每个顶点的信息,访问图中的各个顶点,而访问图中各个顶点的操作过程即使图的遍历,图的遍历算法是求解图的连通性问题,拓扑排序和求关键路径等算法的基础。 1图的三元组定义 图G是一个三元组由集合V,E和关联函数组成,记为:G=(V,E,W(G))。其中V是顶点的集合,表示V(G)={V1,V2,V3,……Vn},V(G)≠NULL。E是V中的点偶对的有穷集,表示为E(G)={e1,e2,e3……em},其中ei为或{Vj,Vt},若ei为{Vj,Vt},称ei为以V j 和Vt为端点的无向边;若ei 为,称ei为以V j为起点,Vt为终点的有向边;W(G)称为E→VxV的关联函数。 2图的存储结构 图的存储结构除了要存储图中各个顶点的本身的信息外,同时还要存储顶点与顶点之间的所有关系(边的信息),因此,图的结构比较复杂,很难以数据元素在存储区中的物理位置来表示元素之间的关系,但也正是由于其任意的特性,故物理表示方法很多。常用的图的存储结构有邻接矩阵、邻接表、十字链表和邻接多重表。邻接表是图的一种链式存储结构。对图的每个顶点建立一个单链表(n 个顶点建立n个单链表),第i个单链表中的结点包含顶点Vi的所有邻接顶点。 图1 无向图G 该图的G的邻接表表示如下:

第 04 章 搜索策略 人工智能课件

第四章搜索策略 4.1问题求解的形式化表示 4.2状态空间的盲目搜索策略 4.2.1广度优先搜索 4.2.2深度优先搜索 4.2.3有界深度优先搜索 4.2.4代价树的广度优先搜索 4.2.5代价树的深度优先搜索 4.3状态空间的启发式搜索策略 4.3.1局部择优搜索 4.3.2全局择优搜索 4.3.3图的有序搜索 4.3.4A*算法 4.4与或树搜索 4.4.1与或树 4.4.2与或树搜索 4.5博弈树搜索 作业

第四章搜索策略 2.状态空间与状态空间搜索。 状态空间:三元组〈S,F,G〉 ①S:初始状态集合。 ②F:一组合法的状态转换操作 ③G:目标状态集合。

状态空间搜索 ●状态:可用任何数据结构或知识表示法表示,常用一组变量的有序集表示: s k = ( s k1 , s k2 , ……, s kn ) ●状态空间搜索:从某个初始状态S o开始,按一定的策略选用操作,进行状态变换,直到产生任一目标状态S G

例2.分水问题: 给定两个水杯,一个容量为4升,另一个为3升,两者均无刻度,另外有一个水管可用来给水杯加水。 假设可随时将水杯中的水倒掉,可将一个杯中的水倒入另一个杯子。 问:如何在4升水杯中恰好装2升水?

●状态描述:二元组(x,y) x=0,1,2,3,4,(4升水杯中当前水量)y=0,1,2,3 ●初态:(0,0) ●目标态:(2,y)

状态转换规则: ①、将4升水杯装满水 ②、将3升水杯装满水 ③、将4升水杯中的水全部倒掉 ④、将3升水杯中的水全部倒掉 ⑤、将3升水杯中的水倒入4升水杯中,直到加满为止 ⑥、将4升水杯中的水倒入3升水杯中,直到加满为止 ⑦、将3升水杯中水全部倒入4升水杯中 ⑧、将4升水杯中水全部倒入3升水杯中

AI人工智能的几种常用算法概念

一、粒子群算法 粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为PSO,是近年来发展起来的一种新的进化算法((Evolu2tionary Algorithm - EA)。PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的交叉(Crossover) 和变异(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题.为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度.爬山法精度较高,但是易于陷入局部极小.遗传算法属于进化算法(EvolutionaryAlgorithms)的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异.但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(ParticalSwarmOptimization-PSO)算法.这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性. 粒子群优化(ParticalSwarmOptimization-PSO)算法是近年来发展起来的一种新的进化算法(Evolu2tionaryAlgorithm-EA).PSO算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价

图深度优先搜索C++

#include using namespace std; #define NULL 0 #define MaxSize 20 struct edgenode //边表结点 { int adjvex; edgenode *next; }; struct vexnode //顶点表结点 { int vertex; edgenode *link; }; class ALGraph //邻接表类{ public: void CreatGraph(); //创建临界表 void D_Search(int i, int j); //深度优先搜索判断 void B_Search(int i, int j); //广度优先搜索判断 private: vexnode ga[MaxSize]; //顶点数组int n,e; //顶点数,边数 }; void ALGraph::CreatGraph() { edgenode *s; int i,start,end; cout<<"请输入顶点数和边数:"<>n>>e; while( e<(n-1) ) { cout<<"错误!该图不是连通图!请重新输入:"<>n>>e;

} cout<<"请输入顶点编号:"<>ga[i].vertex; ga[i].link=NULL; } cout<<"请依次输入各边相连的结点"<>start>>end; while( ( start<1 || start>n ) || ( end<1 || end >n ) ) { cout<<"输入有误,请重新输入"<>start>>end; } s=new edgenode; s->adjvex=end; s->next=ga[start-1].link; ga[start-1].link=s; } } //按深度优先搜索,判断v[i]和v[j]之间是否存在路径 void ALGraph::D_Search(int start ,int end) { cout<<"--------------------------------------------------"<adjvex-1; while(p!=NULL) { if(!visited[p->adjvex])

图的深度和广度遍历 - 实验报告

实验报告 一、实验目的和内容 1.实验目的 掌握图的邻接矩阵的存储结构;实现图的两种遍历:深度优先遍历和广度优先遍历。 2.实验内容 1.图的初始化; 2.图的遍历:深度优先遍历和广度优先遍历。 二、实验方案 程序主要代码: ///

///邻接矩阵的节点数据 /// public struct ArcCell { public int Type; //顶点的关系类型,对无权图,用1或0表示相邻; //对带权图,则为权值类型。 public object Data; //该弧相关信息 public ArcCell(int type,object data) { Type = type; Data = data; } } /// ///图的类型 /// public enum GKind {DG,DN,UDG,UDN}; //有向图,有向网,无向图,无向网

///

///图类 /// public class Graph { public static int Max_Vertex_Num = 20; //最大顶点数 private object [] Vexs; //顶点数据数组 private ArcCell [,] Arcs; //邻接矩阵 private GKind Kind; //图的种类 private int VexNum,ArcNum; //当前顶点数和弧数 /// ///图的初始化方法 /// ///顶点数 ///弧数 ///图的类型 public Graph(int vexnum,int arcnum,GKind k) { VexNum = vexnum; ArcNum = arcnum; Kind = k; Vexs = new object[Max_Vertex_Num]; Arcs = new ArcCell[Max_Vertex_Num,Max_Vertex_Num]; } /// ///设置v1,v2之间的弧的权值,顶点的关系类型,对无权图,用1或0表示相邻; ///对带权图,则为权值类型。 /// ///顶点1 ///顶点2 ///权 ///成功返回真,否则返回假 public bool SetArcInfo(int v1,int v2,int adj,object data) { if(v1
相关文档
最新文档