光纤传感技术在全光网络攻击测试方法中的应用

光纤传感技术在全光网络攻击测试方法中的应用
光纤传感技术在全光网络攻击测试方法中的应用

光纤传感技术在全光网络攻击测试方法中的应用

作者:王江平, 刘杰, 李玉权

作者单位:王江平(解放军理工大学通信工程学院光纤通信中心,南京,210007;南京晓庄学院,南京,210017), 刘杰,李玉权(解放军理工大学通信工程学院光纤通信中心,南京,210007)本文链接:https://www.360docs.net/doc/8216431904.html,/Conference_6096465.aspx

光纤传感中的光学原理及效应

第1章:光纤传感中的光学原理及效应 光学反射原理 分为镜面反射和漫反射 镜面反射和漫反射情况 基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 光学折射原理

光学吸收原理 选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律: Lambert-Beer 定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。 当气体浓度、光程均很小的时候,可以近似为: 光学多普勒效应 θ cos 11f f 02 20 0c u c u -= 雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 声光效应 超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。 利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。 主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 磁光效应 具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 电光效应 电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。 +++=20bE aE n n (6-3) 在上式中, aE 是一次项,由该项引起的折射率变化,称为线性电光效应或泡克耳斯(Pockels )效

光纤传感技术的应用现状

2009.No364 摘要:介绍了提高光纤传输效率的两个途径,指出目前利用光纤通信来进行继电保护的三种方式:光纤纵联差动保护,分相允许式光纤纵联保护,过电压或失灵启动远跳。并简要介绍光纤测温技术的工作原理及其在变压器上的应用。 关键词:光纤维 继电保护 测温技术 由于光纤传感技术的传感与传输信号都是光学信号,而不是传统的电信号,因而具有许多独特的优点,对电绝缘,抗电磁干扰,适合高电压场所;精度高,能远距离传输信号;尺寸小、重量轻,有利于微型化;寿命长、长期可靠性好,适合大型工程长期安全监测等。因此,光纤传感技术得到了高度重视和快速发展,成为国家重大工程、重大装备、武器系统等国民经济诸多领域急需的关键技术之一。 一、提高光纤传输效率的两个途径 (一)40Gbit/s 传输系统的发展、挑战与应用。准同步传输体系(PDH)利用光纤的单一波长传输速率从8Mbit/s、4Mbit/s140bit/s,同步传输体系(SDH)利用光纤的单一波长传输速率从155Mbit/s、622Mbit/s、2.5Gbit/s 到10Gbit/s。从实际应用来看,40Gbit/s 传输系统必须采用外调制器,目前具备足够输出电压能够驱动外调制器的驱动集成电路还不成熟;沿用多年的NRZ调制方式能否有效、可靠地工作于40Gbit/s 系统还不确定,可能需要转向性能更好的普通归零(RZ)码乃至调制效率更高的其他调制方式。除了技术因素外,经济上是否可行也是必须考虑的关键因素。尽管目前我国干线网络的波道利用率已经超过70%,但是光纤利用率不到30%,SDH 电路利用率不到50%,因此只需在波分复用层面上扩容即可,光缆网的总体容量依然有余,并不需要立即全面升级到40Gbit/s速率。另需认真考虑的因素是光缆的极化模色散特性。对于短距离传输,无须色散补偿、光放大器和外调制器,40Gbit/s传输系统具有很低的单位比特成本,上述问题不是障碍。因此,40Gbit/s传输系统完全可以由短距离互连应用开始,包括端局内路由器、交换机和传输设备间的互连,乃至扩展至城域网范围和短距离长途应用。 (二)粗波分复用系统(CWDM)技术的发展与应用。随着技术和业务的发展,利用光纤的多个波长进行复用就是WDM 技术。目前,160波系统已经成熟商用。它正从长途传输领域向城域网领域扩展,作为进一步提高光纤传输效率的另一个主要途径。尽管城域WDM 系统的建设成本明显低于长途网WDM 系统,但是目前的绝对成本仍然较高,特别是需要使用光纤放大器的长距离应用成本较高。此外,当前在网络边缘需要整个波长带宽的用户和应用毕竟很少,WDM 多业务平台主要适用于核心层,特别是扩容需求较大、距离较长的应用场合。为了进一步降低城域WDM 多业务平台的成本,出现了CWDM 粗波分复用系统(Coarse Wave Di-vision Multiplexer)。这种系统的典型波长组合有4、8和16三种,波长通路间隔达20nm,允许波长漂移±6.5nm,大大降低了对激光器的要求,成本也大为降低。此外,由于CWDM 系统对激光器的波长精度要求较低,无需制冷器和波长锁定器,不仅功耗低、尺寸小,而且封装可以采用简单的同轴结构,比传统碟型封装成本低,激光器模块的总成本可以减少2/3。从滤波器角度看,典型的100GHz 间隔的介质薄膜滤波器需要150层镀膜,而20nm 间隔的CWDM 滤波器只需要50层镀膜,其成品率和成本都可以获得有效改善。 二、光纤通信在继电保护中的应用 继电保护装置信号的物理传输通道有光纤、微波、电力线载 波等,微波和电力线载波易受气候变化影响,传输质量较差,而光纤通道不怕超高压与电磁干扰,传输容量大,绝缘性能好,衰耗低,可靠性高,在继电保护领域中得到了日益广泛的应用。 (一)光纤通信来进行继电保护。当被保护的线路长度较长时,为了补偿光功率损耗,把RCS-931系列光纤纵差保护装置的光信号传入MUX-2M继电保护信号数字复接接口装置,再转化为电信号通过75Ω的同轴电缆连接通讯SDH设备的2048k bit/ s口传到对侧,如图1中的( b)。SDH环网采用的是155M以上速率的传输设备,传输容量大,具有强大的保护恢复能力。当被保护线路发生故障时,装置根据对两侧电流的幅值和相位比较启动光纤纵联差动保护动作使两侧跳闸,所有装置都处理后动作时间一般在30ms以内,能够快速切除故障,有效保护线路全长。 假设线路发生A相区内故障时,本侧RCS-902C系列分相允许式纵联保护装置发出“A相允许跳闸”电信号开入到FOX-41A型继电保护光纤通信接口装置, FOX-41A内部把此电信号转为光信号传输到对侧的FOX-41A,本侧与对侧之间光纤传输根据线路长度不同有两种传输方式。 对侧的FOX-41A光电转换后再把“A相允许跳闸”电信号开入到对侧的RCS-902C,对侧的RCS-902C保护装置已判断是A相区内故障并收到对侧“A相允许跳闸”信号则保护动作跳对侧A相断路器。同理,对侧发允许跳闸信号到本侧过程也是一样,B或C相故障也与A相故障分析过程一样。所有装置都处理后保护动作时间一般在30ms左右,快速有效,如图2所示。 当被保护线路本侧过电压保护跳闸并启动对侧断路器跳闸时,可以把远跳信号通过FOX-41A传输到对侧;当被保护线路本侧保护跳闸但是断路器失灵没有跳开时,为了避免故障发展扩大,也可以把失灵信号通过FOX- 41A传输到对侧启动对侧断路器跳闸,如图3所示。 (二)工程中实际应用问题。1、通道故障检测。光纤纵差保护安全可靠,在使用和运行当中主要是光纤通道的维护。如果光纤通道告警,可以进行逐段自检来确认装置和通道是否正常,另外需仔细观察与光电通道相关的告警指示灯和装置控制字,还可以用光功率计测试光收发功率与光衰耗。部分厂家提供的SDH设备也可以实现实时的光功率在线检测,为网络的维护提供了极大的便利性。2、光纤纵差保护旁路切换。目前通信速率一般是2048kbit/s,也有少部分是64kbit/s,这给光纤纵差保护的旁路代线路切换运行来了一定问题,根据现在通信的发展情况,通信速率可以都统一到2048kbit/s。与电力线载波高频保护的旁路代线路切换运行需要切换高频载波电缆通道一样,光纤纵差保护的旁路代线路切换运行需要切换光纤通道。 三、光纤测温技术在变压器上的应用 使用光纤探头测量绕组温度时, 将其嵌入垫块或直接附在需要温度监测的导线上,这种使用方式, 首先必须拆开局部导线绝缘, 并在安装光纤测温探头后再恢复导线绝缘。更普遍的方法是 光纤传感技术的应 用现状 ◇ 刘云圣

光纤传感技术在物联网中的应用_叶宇光

信息安全与技术·2013年1月1引言 物联网是通过射频识别技术(RFID )、红外感应器、全球定位系统、激光扫描器等信息传感设备按照约定的协议把一些有联系的实体通过互联网相互连接到一起进行信息的传输和传递,可以实现智能化识别、定位、跟踪、监控和管理的一种网络实现概念。这种概念是在互 联网的概念基础上发展起来的,是将用户端延伸并扩展到任何物品与物品之间进行通信和信息交换的网络概念。近年来,随着光纤通信技术的不断发展,进而出现了光纤传感技术。 自光纤传感技术开始发展以来,光纤传感器因具有多种优点而得到了快速发展,例如体积偏小、灵敏度非常高、抗干扰能力强等,现如今,已经被广泛应用到很多 叶宇光 (福建省泉州师范学院数学与计算机科学学院 福建泉州362000) 【摘 要】现如今,物联网已经发展成为了一个研究热点,而光纤传感技术在物联网的发展中也得到了广泛的应用, 并引起了广泛的关注。物联网的核心部件为传感器,特别是光纤传感器,它和其它的类型的传感器所不具有的优势,而物联网主要有四个技术构层,它们是应用接口、数据处理技术、数据传输网络和传输网络,在物联网中我们将会看到有大量的各种各样的传感器的存在,这些传感器可以用来感知不同的环境参数,比如温度、重力、光电、声音、震动和位移,这些传感器为物联网提供最原始的数据信息。当前,光纤传感技术在物联网中的应用引起社会各界的高度关注。本文主要对物联网的界定、构成以及光纤传感器的原理和发展现状进行了深入的探讨和分析,并且重点是对光纤传感技术在物联网中的应用加以详细阐述。希望可以通过本文的论述,能够对今后光纤传感技术在物联网中的应用产生一些积极影响。 【关键词】光纤传感技术; 物联网;原理与现状;应用;传感网络O ptical Fiber S ensing Technology in the A pplication of the Internet of Things Ye Yu-guang (Fujian Province,Quanzhou Normal University Mathematics and Computer Science FujianQuanzhou 362000) 【A bstract 】N ow adays,Internet has becom e a research hotspot,and optical fiber sensing technology in the developm ent of Internet of things have been w idely used,and has aroused w ide concern.N etw orking core com ponents as sensor,particularly for optical fiber sensor,it and other types of sensors have m any advantages,but the Internet has four m ain technical structure layer,w hich is the application of interface,data processing,data transm ission netw ork and transm ission netw ork,the joint netw ork w e w ill see a large num ber of a variety of sensors,the sensor can be used to perceive different environm ental param eters,such as tem perature,gravity,photoelectric,sound,vibration and displacem ent,these sensors for netw orking w ith the original data inform ation.C urrent,optical fiber sensing technology in netw orking application causes the height of social all circles pay close attention to.This paper focuses on the Internet of things,w hich define and fiber-optic sensor principle and developm ent present situation has carried on the thorough discussion and analysis,and thefocusis ontheoptical fiber sensing technology in netw orking applications to elaborate.H ope that through this paper,to the future of optical fiber sensing technology innetw orkingapplications havesom epositiveeffects. 【K e ywords 】optical fiber sensingtechnology;netw orking;principleandstatus;application;sensor netw ork 光纤传感技术在物联网中的应用 物联网·技术应用·TechnologyApplication 65··

光纤式传感器

光纤式传感器 传感技术与计算机技术、通讯技术被称为信息产业三大支柱技术, 是组成现代信息化技术的基础。世界各大强国均将传感器技术视为国家科技发展战略中的重要组成部分, 作为国家重点发展的领域之一。光纤传感器主要有传感型和传光型两大类, 两类传感器在传感原理上均可分为光强调制、相位调制、偏振态调制及波长调制不同形式, 由此构成不同的传感器。迄今业已证实, 被光纤传感器敏感的物理量有 70多种, 与传统的传感器相比, 光纤传感器有灵敏度高、重量轻和体积小、多用途、对介质影响小、抗电磁干扰和耐腐蚀且本质安全、易于组网等特点, 使其近年来在航天航空、国防、能源电力、医疗和环保、石油化工、食品加工、土木工程等领域的应用得到了迅速发展。表 1 为光纤传感器对参数测定的原理及主要方式。 一、光纤传感器的基本原理及组成 光纤传感器由光源、敏感元件、光探测器、信号处理器系统以及光纤等组成。光纤传感器的基本原理是将来自光源的光经过光纤送入调制器,使待测量参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长频率、相位偏振态等)发生变化,成为被调制的信号光,再经过光纤送入光探测器,经解调器解调后,获得被测参数。 1.1强度调制光纤传感器 强度调制光纤传感器的基本原理是:待测物理量引起光纤中传输光的光强变化,通过检测光强的变化实现对待测量的测量。待测量作用于光纤敏感元件,使通过光纤的光强发生变化。设输入光强为恒量Iin,输出光强为Iout,即待测量对光纤中的光强度产生调制。可

直接连接光探测器变成电信号(即调制的强度包括电信号)。 1.2相位调制光纤传感器 相位调制光纤传感器的基本原理是:通过被测能量场的作用,使光纤内传输的光波相位发生变化,再用干涉测量技术把相位变化转换为光强变化,从而检测出待测的物理量。所有能够影响光纤长度、折射率和内部应力的被测量都会引起相位变化,如应力应变温度和磁场等外界物理量。但是,目前的各类光探测器都不能探测敏感光的相位变化,必须采用干涉测量技术,才能实现对外界物理量的检测。与其他调制方式相比,相位调制技术由于采用干涉技术而具有很高的检测灵敏度。常用的干涉仪有四种:迈克尔逊、马赫-琴特、法布里-珀罗和萨格耐克。它们的共同点是:光源发出的光都要分成两束或更多束的光,沿不同的路径传播后,分离的光束又重新汇合,产生干涉现象。

一文深度了解光纤传感器的应用场景

一文深度了解光纤传感器的应用场景 文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。光纤传感器应用种类一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。 光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 二、光纤光栅传感器 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干

涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便。 目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。三、光纤电流传感器 电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 四、光纤水听器 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有

光纤传感中的光学原理及效应概论

第1 章:光纤传感中的光学原理及效应 1.1光学反射原理 分为镜面反射和漫反射 基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 1.2光学折射原理 镜面反射和漫反射情况

1.3光学吸收原理 选择吸收:介质对某些波长的光的吸收特别显著 郎伯比尔(Lambert-Beer)定律: Lambert-Beer定律是吸收光度法的基本定律,表示物质对某一单色光吸收的强弱与吸光物质浓度和厚度间的关系。 当气体浓度、光程均很小的时候,可以近似为: 1.4光学多普勒效应 θ cos 1 1 f f 2 2 c u c u - = 雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据

反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。 1.5声光效应 超声波通过介质时会造成介质的局部压缩和伸长而产生弹性应变,该应变随时间和空间作周期性变化,使介质出现疏密相间的现象,如同一个相位光栅 。当光通过这一受到超声波扰动的介质时就会发生衍射现象,这种现象称之为声光效应。 利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。 主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q 开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 1.6磁光效应 具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 1.7电光效应 电光效应:指某些晶体的折射率因外加电场而发生变化的一种效应,当光波通过此介质时,其传输特性就受到影响而改变。 +++=20bE aE n n (6-3) 在上式中, a E 是一次项,由该项引起的折射率变化,称为线性电光效应或泡克耳斯(Pockels )效

最新光纤传感器的应用研究

光纤传感器的应用研 究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

光纤传感器的应用及发展

文章编号:10044736(2004)02006304 光纤传感器的应用及发展 杨春曦,胡中功3,戴克中 (武汉化工学院电气信息工程学院,湖北武汉430073) 摘 要:简要介绍了光纤传感器的特点,综述了光纤传感器的发展以及近期国际上光纤传感器的研究和应用情况,最后描述了其前景和主要研究方向. 关键词:光纤传感器;应用;光纤布拉格光栅;温度测量中图分类号:TQ 174.75+9 文献标识码:A 收稿日期:20031013 作者简介:杨春曦(1976),男,贵州铜仁人,硕士研究生.3通讯联系人. 0 引 言 光纤传感器的历史可追溯到上世纪70年代, 那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来.1977年,美国海军研究所(N RL )开始执行由查尔斯?M ?戴维斯(Charles M .D avis )博士主持的Fo ss (光纤传感器系统)计划[1],这被认为是光纤传感器问世的日子.从这以后,光纤传感器在世界的许多实验室里出现.由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果[2].但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少.最近涌现的很多成果无论是在价位上还是技术上都有了新的突破.随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔.本文简要地介绍了光纤传感器的特点,并对光纤传感器近期的发展动态进行简要地概述. 1 光纤传感器的特点 光纤传感器由光源、传输光纤、传感元件或调制区、光检测等部分组成.众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等),这些参量在光纤传输中都可能会受外界影响而发生改变.如当温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,均会使这 些参量发生相应变化.光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小.一般光纤传感器按其作用不同可分为两种类型:传光型和敏感型.而按其检测方法不同主要又可分为两种类型:强度型和相位型.图1是光纤传感器的结构框图 . 图1 光纤传感器的结构框图 F ig .1 Structu ral diagram of fiber op tic sen so r 与传统的传感器相比,光纤传感器具有抗电磁干扰、灵敏度高、耐腐蚀、本质安全及测量对象广泛等特点,而且在一定条件下可任意弯曲,可根据被测对象的情况选择不同的检测方法,再加上它对被测介质影响小,非常有利于在医药卫生等具有复杂环境的领域中应用. 2 光纤传感器在研究和工程中的应 用近况 2.1 光纤传感器的工程应用 光纤的优点和具体学科理论相结合,产生一大批应用范围更广、性能更好、价格相对低廉的各具特色的光纤传感器,在传统领域和新兴领域都得到很好的应用. 2.1.1 光纤传感器在化学和生物学中的应用 当前,在国外研究得比较多的化学和生物光纤传感器主要有光吸收型传感器,荧光型传感器和衰减波形光纤传感器三种. a .光吸收型传感器的工作原理是根据测定被测物对特定波长的光产生吸收以及吸收的强度来确 第26卷第2期 武 汉 化 工 学 院 学 报 V o l .26 N o.22004年6月 J. W uhan In st . Chem. T ech . Jun. 2004

光纤传感器中的光学原理和效应

光纤传感器中的光学原理和效应 1. 光学反射原理: A . 镜面反射:???≠==i i I 反反θθ,,0,I r B . 漫反射:])/(2)(exp[2)(20 2 '020I I I σθθσπθ--?=,这是一个高斯分布其中,σ为光强分布的方差;θ为反射场中光线与表面法线的夹角;‘0θ为遵循镜面反射定律的光束 反射方向。 C . 应用:基于反射原理的光纤传感器结构简单、工作可靠、成本低廉。主要应用于位移测量,振动测量,压力测量,浓度测量和液位测量。 2.光学折射原理 2sin *n21sin *n1θθ= 应用:液体浓度,成分,折射率测量 3. 光学吸收原理 l e ?-?=α0I I (朗伯定律,J.H. Lambdet,1760) 0I 和I 分别是在初始位置和l 处时的光强,吸收系数α一般与材料的密度、浓度,光波波长有关。 一般吸收:介质对各种波长的光都能几乎均匀吸收,吸收系数α与波长无关。 选择吸收:对特定波长的光吸收特别显著。 应用:半导体吸收法测量温度,光谱吸收测量成分或浓度。 4、光学多普勒效应 θcos 11f f 02200c u c u -=

5、声光效应:当超声波在介质中传播时,引起介质的弹性应变做时间上和空间上的周期变化,并导致介质的折射率发生相应的变化,当光束通过有超声波的介质后会产生衍射的现象。 应用:声光调制器 6、磁光效应:具有固有磁矩的物质在外磁场的作用下,电磁特性发生变化,因而使得光波在其内部传输特性也发生变化的现象。 A 、法拉第效应:当线偏振光沿磁场方向通过置于磁场中的磁光介质时,其偏振面发生旋转的现象,对于给定的介质,偏振面旋转角度=介质长度×磁场强度×维厄德系数 B 、磁光克尔效应:指一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而且以椭圆的长轴为标志的“偏振面”相对于入射偏振光的偏振面旋转了一定的角度。 分类: ①极化克尔效应,即磁化强度M 与介质表面垂直时的克尔效应,应用于磁光存储技术中 ②横向克尔效应:M 既平行于介质表面,但垂直于光的入射面 ③纵向克尔效应:M 既平行于介质表面,又平行于光的入射面 C 、磁致线双折射效应:某些由各向异性分子组成的介质,在不加磁场时表现为各向同性,加上足够强的外磁场时,分子磁矩受到了力的作用,各分子对外磁场有了一定的取向,使介质宏观上呈现各向异性,当光以不同于磁场方向通过这样的介质时,就会出现双折射现象。 7、电光效应:在电场作用下,可以使某些各向同性的透明介质变为各向异性,从而使光产生人为双折射的现象,包括:克尔(Kerr)效应(二阶电光效应,强,半波电压高) 和泡克尔斯(Pockels)效应(一阶电光效应,弱,半波电压小),后者应用广泛,可以调制光束相位,进而调制光束的频率,振幅,偏振态及传播方向。 应用:由于光电效应,发生双折射的两束光波之间的相位差与外施电压成正比。(OVT 基于电光泡克尔斯效应的光纤电压传感器)。a 、横向调制式和纵向调制式,b 、透射式反射式结构,c 、分压式和无分压式结构,d 、分立式和组合式结构,e 、单光路式和双光路结构,f 、单晶体式和双晶体式结构。 8、弹光效应: 由于机械应力引起的材料折射率变化的现象称为弹光效应(Elasto-Optical-Effect ), 利用弹光材料在外界应力的作用下对入射光呈现双折射而引入的相位差,可以测量压力的大小,进而得到与压力相应的位移量。 Sagnac 效应:同一光源同一光路,两束相向传播的光之间的光程差或相位差与其光学系统相对于惯性空间旋转的角速度成正比。 λπθC S N 8Ω= ?(N 匝,Ω角速度) 9、光声效应:激光

光纤传感器的基本原理及在医学上的应用

2008年9月中国医学物理学杂志Sep .,2008 第25卷第5期 ChineseJournalofMedicalPhysics Vol.25.No.5 光纤传感器的基本原理及在医学上的应用 孙素梅1,陈洪耀2,3,尹国盛2(1.漯河医学高等专科学校,河南漯河462000;2.河南大学物理与电子学院,河南开封 475004;3.中国科学院安徽光学精密机械研究所,安徽合肥230031) 摘要:目的:本文的目的简要介绍光纤传感器的基本原理和简单分类,重点阐述传光型光纤传感器在医学的压力、流速、pH值等五方面的应用。方法:光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、解调器而获得被测物理量。光纤传感器按其传感原理可分为两大类:一类是传光型传感器,另一类是传感型传感器。结果:目前在医学上应用的主要是传光型光纤传感器。光纤传感器主要优点:小巧、绝缘、不受射频和微波干扰、测量精度高。医疗上的图象传输是传输型光纤传感器应用中很有特色的一部分。只需将许多光纤组成光纤束,就可以做成能有效地使图象空间量子化的传感器。自从光导纤维引入到内窥镜以后,扩大了内窥镜的应用范围。光导纤维柔软、自由度大、传输图象失真小、直径细等优点使得各种内窥镜检查人体的各个部位几乎都是可行的,且操作中不会引起病人的痛苦与不适。其中光纤血管镜已应用于人类的心导管检查中。在进行激光血管成形术时,血管镜可提供很多重要的信息,用以引导激光辐射的方向,选择激光的能量和持续时间,并可了解在成形术后的治疗效果。光纤内窥镜不仅用于诊断,也正进入治疗领域中,例如用于做息肉切除手术等。微波加温治疗技术是当前治疗癌症的有效途径,但微波加温治疗癌症技术的温度难以控制,而光纤温度传感器恰可以对微波加温治疗癌症的有效温度进行监测,从而使温度不致于过高杀死人体的正常细胞,也不会过低达不到治疗目的,使癌细胞进一步扩散。光纤温度传感器在癌症治疗方面的研究和开发正日益兴起。结论:光纤传感器作为一种优势明显的新型传感器在医学领域得到应用,为治疗疾病提供了一种崭新的方法。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将会进一步推动医学的飞速发展。 关键词:光纤传感器;测量;医学;应用中图分类号:R312 文献标识码:A 文章编号:1005-202X (2008)05-0846-05 The Basic Principle and Applications on Medical of Fiber Optic Sensors SUNSu-mei1,CHENHong-yao2,3,YINGuo-sheng2 (1.LuoheMedicalCollege,LuoheHe'nan462000,China;2.ChinaPhysicsandElectronicsCollege,He'nanUniversity,KaifengHe'nan475004,China;3.TheAn'huiInstituteofOpticsandPrecisionMechanics,TheChineseAcademyofSciences,HefeiAnhui230031,China) Abstract:Objective:Thisarticlesimplyintroducedthebasicprincipleoffiberopticsensoranditsapplicationespeciallyonmedicalinbloodpressure,thespeedofflow,thepHvalueetc.Method:Thefiberopticsensorbasicprincipleisthelightwhichsendsoutthephotosourcesendsinafterthefiberopticthemodulationarea,inthemodulationarea,theoutsidewasmeasuredtheparameterwithentersthemodulationareathelighttoaffectmutually,causesthelighttheintensity,thefrequency,thephase,thepolarizationtooccurchangesintothesignallightwhichmodulates,againpassesthroughthefiberoptictosendinthelightdetector,thedemodulatorobtainsismeasuredthephysicalquantity.Thefiberopticsensormaydivideintotwokindsaccordingtoitssensingprinciple:onekindisthelight-passingsensor;theotheristhesensingsensor.Result:Atpresent,themainapplicationinthemedicineisthelight-passingfiberopticsensor.Themainadvantagesoffiberoptic sensorare:exquisite,insulation,notinfluencedbytheradiofrequencyandthemicrowave.Themeasuringaccuracyish igh.Theimagetransmissioninmedicalisthespecialpartof theapplicationonthetransmissionmodesfiberopticsensor.Onlytieaplentyoffiberoptictocompositionfiberoptics,wecouldmakethesensorwhichcancausetheimagespace 收稿日期:2008-03-10 作者简介:孙素梅(1954-),女,漯河医学高等专科学校物理教研室 副教授。Tel :0395-296452713939575106;E -mail : sunsumei2007@https://www.360docs.net/doc/8216431904.html, 。 846--

光纤传感器在温度测量中的应用

光纤传感技术是伴随光通信的迅速发展而形成的新技术。在光通信系统中,光纤是光波信号长距离传输的媒质。当光波在光纤中传输时,表征光波的相位、频率、振幅、偏振态等特征参量,会因温度、压力、磁场、电场等外界因素的作用而发生变化,故可以将光纤用作传感器元件,探测导致光波信号变化的各种物理量的大小,达就是光纤传感器。利用外界因素引起光纤相位变化来探测物理量的装置,称为相位调制传感型光纤传感器,其他还有振幅调制传感型、偏振态调制型、传光型等各种光纤传感器。 与其他传感器相比,光纤传感器的特点是:抑抗电磁干扰,电绝缘性能好,耐腐蚀,安全可靠。因此可用于强电磁干扰,燃易爆,强腐蚀等环境中。灵敏度高、重丝轻、体积小、光路可变等。光纤传感器测温技术是近年才发展起来的新技术,并已逐渐显露出某些优异特性。可是,正象其他新技术一样,光纤传感器技术并不是万能的,它不是用来代替传统方法,而是对传统测温方法的补充与提高。充分发挥它的特长,就能创造出新的测温方案与技术应用的场合。 光纤传感技术是伴随着光导纤维和光纤通信技术发展的一种新的传感技术。是20世纪70年代中期以来国际上发展最快的高科技应用技术。光纤传感器与以电为基础的传感器有本质区别。光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质。以其独有的特质而得以广泛应用,不难看出光纤传感器未来将会有较广阔的应用前景。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.360docs.net/doc/8216431904.html,/

光纤传感器的应用和发展

文章编号:100320794(2004)0820009202 光纤传感器的应用和发展 马天兵,杜 菲 (安徽理工大学,安徽淮南232001) 摘要:主要阐述了光纤传感器的原理、特点及国内外的发展情况,介绍了在实际测量中的一些具体应用。提出了我国光纤传感器存在的问题,指出了今后发展的方向,为光纤传感器的深入研究提供了有益的参考。 关键词:光纤传感器;测量精度;传感技术 中图号:T N253文献标识码:A 1 前言 自20世纪70年代以来,光纤传感器取得了飞速发展。由于它独特的优点,决定了可实现某些特殊条件下的测量工作,比常规检测技术具有诸多优势,是传感技术发展的一个主导方向。光纤传感技术代表了新一代传感器的发展趋势。光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人所瞩目。 2 光纤传感器的原理 光纤传感器通常由光源、传输光纤、传感元件或调制区、光检测等部分组成。众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等)。这些参量在光纤传输中都可能会受外界影响而发生改变,特别如温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,都会使这些参量发生相应变化。光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小。 光纤传感器与传统传感器相比有其独特的优点,即非接触式测量、抗干扰力强、灵敏度高、体积小、重量轻、柔性好,而且测量对象广泛。因此,在传感器行业中,光纤传感器越来越显示出它的优势。它将替代传统的机械接触式传感器及电容非接触式传感器。机械接触式传感器磨损被测表面,这就限制了测量精度。电容非接触式传感器的抗电磁干扰力差,使得其实用范围受到限制。 3 国内外光纤传感器的发展概况 由于光纤传感器应用的广泛性及其广阔的市场,其研究和开发在世界范围内引起了高度的重视,各国家更是竟相研究开发并引起激烈的竞争。 美国是研究光纤传感器起步最早、水平最高的国家,在军事和民用领域的应用方面,其进展都十分迅速。在军事应用方面,研究和开发主要包括:水下探测的光纤传感器、用于航空监测的光纤传感器、光纤陀螺、用于核辐射检测的光纤传感器等。这些研究都分别由美国空军、海军、陆军和国家宇航局(NAS A)的有关部门负责,并得到许多大公司的资助。美国也是最早将光纤传感器用于民用领域的国家。如运用光纤传感器监测电力系统的电流、电压、温度等重要参数,监测桥梁和重要建筑物的应力变化,检测肉类和食品的细菌和病毒等。日本和西欧各国也高度重视并投入大量经费开展光纤传感器的研究与开发。日本在20世纪80年代便制定了“光控系统应用计划”,该计划旨在将光纤传感器用于大型电厂,以解决强电磁干扰和易燃易爆等恶劣环境中的信息测量、传输和生产过程的控制。20世纪90年代,由东芝、日本电气等15家公司和研究机构,研究开发出12种具有一流水平的民用光纤传感器。西欧各国的大型企业和公司也积极参与了光纤传感器的研发和市场竞争,其中包括英国的标准电讯公司、法国的汤姆逊公司和德国的西门子公司等。 我国在20世纪70年代末就开始了光纤传感器的研究,其起步时间与国际相差不远。目前,已有上百个单位在这一领域开展工作,如清华大学、华中理工大学、武汉理工大学、重庆大学、核工业总公司九院、电子工业部1426所等。他们在光纤温度传感器、压力计、流量计、液位计、电流计、位移计等领域进行了大量的研究,取得了上百项科研成果,其中相当数量的研究成果具有很高的实用价值,有的达到世界先进水平。每年发表的论文、申请的专利也不少。但与发达国家相比,我国的研究水平还有不小的差距,主要表现在商品化和产业化方面,大多数品种仍处于实验室研制阶段,不能投入批量生产和工程化应用。 4 光纤传感器的应用 光纤传感器的应用范围很广,几乎涉及国民经济的所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年 ? 9 ?  2004年第8期 煤 矿 机 械

相关文档
最新文档