应答器在高速铁路列车定位技术中的应用

应答器在高速铁路列车定位技术中的应用
应答器在高速铁路列车定位技术中的应用

科技信息

SCIENCE &TECHNOLOGY INFORMATION 2012年第33期1研究背景和意义

铁路运输是关于国计民生的重要产业支柱,随着我国的铁路运输发展越来越壮大,列车运行速度不断提高,运输密度也进一步的加大,铁路运输的安全性已经成为了第一因素,因此也对列车的定位技术提出了更高的要求。传统的定位方法都是采用轨道绝缘节检测进行“相对”定位,这种方法虽然精度高、成本低、维护简单。但是由于信息量少,只能实现列车的相对定位而且必须由人工启动。这在一定程度上影响了铁路系统的运输效率,并且也使运输的安全性降低。

20世纪70年代中期,应答器被应用到铁路列车控制系统中后,发展很快,尤其在欧洲有很多类型的应答器应用而生,1996年欧洲铁路联盟为统一欧洲应答器的制式。在制定ETCS 列控系统规范的同时,也制定了欧洲铁路应答器的相关技术标准。我国的铁路专家也借鉴其成功经验,制定了GSM —R /CTCS 系列技术标准,为中国铁路信号的跨越式发展确定了总体技术方案和总体规划。根据适合200km /h 以上高速铁路的CTCS2级和CTCS3级要求,查询应答器作为该信号系统的定位校核设备而存在。

2查询应答器的工作原理

查询应答器是一种基于电磁耦合原理而构成的高速点式数据传输设备,是ATP 系统的关键部件,用于在特定地点实现车一地间的数据交换,为列车提供ATP 所需的各种点式信息,包括进路长度、岔区长度、闭塞分区长度、坡度、曲线等,确保列车在高速运行状态下的安全。查询应答器系统包括地面设备和车载设备。地面设备主要包括地面应答器;车载设备包括车载查询器天线和车载查询器主机。2.1地面应答器的工作原理

图1地面应答器工作原理图

当列车上的查询器通过设置于地面的应答器时,应答器被发自车上的查询器瞬态功率激活并进入工作模式,它将向运行中的列车连续发送存于应答器中的可供列车自动控制或地面透明指挥用的各种数据,在查询器———应答器的有效作用范围之外,应答器将不再工作,直至被发自下次列车上的查询器功率再次激活。

应答器具有以下主要特点:

1)无源设备,不要求提供外接电源。(有源应答器除外)

2)可提供固定的信息内容,如里程标、区间长度、限速值、坡道值等。

3)可变编码应答器可提供实时信息,如股道号、进出站、通过等等。

4)无源应答器使用寿命长,无需维护,可节约维修资金,无更多的资金耗费。

5)不受话路限制,传输信息量大,有利于实现系统故障导向安全。

6)不受频带限制,频率运用灵活。

7)电磁场稳定,可以获得高质量的传输效果。

8)具有高速、高可靠的无线车地数据传输功能,适于各种线路条件,即可用于既有线路,也可用于既有线路提速改造或高速线路。在线路不断改造或机车车辆升级换代后,该系统的地面设备与车载设备仍然可以继续使用。

9)借助专用设备,可将地面应答器内的数据反复编码。

10)在设计上考虑了未来性能与功能的广泛适用性和可扩展性,即可用于传统的ATP 系统,也可用于无线移动闭塞中的列车追踪与控制,即可用于铁路的一般线路和高速线路,也适用于地铁及城市轨道交通。

11)一次性投资可服务于多种运用,实现少投入,多产出。经济效益显著。

2.2车载查询器

车载查询器主机检查、校验、解码和传送接收到的报文,选择激活位于机车两端的任一天线,与列车运行控制系统进行双向数据传输,并具有自检和诊断功能。

图2

查询器及其车载主机原理框图

1)应答器编号及其命名

全国铁路应答器编号具有唯一性。每个应答器的编号由〔大区编号+分区编号)与〔车站编号+应答器单元编号)共同构成。全国铁路按一定原则划分若干大区,每个大区分成若干分区,每个分区包含若干车站(含区间)。原则上每个车站对应一个车站编号,应答器以应答器(组)为基本单元进行编号(简称单元编号)。

(1)大区编号

大区编号由三位十进制表示,编号范围为1-127。全国铁路按区域划分大区。以现行电务段或客运专线区域为参照,根据其管辖范围内车站的数量,每个区域可分配1-3个大区编号。大区编号及范围应保持相对固定,不随电务段或客运专线的管辖区域变化而变化。

(2)分区编号

分区编号由一位十进制表示,编号范围为1-7。大区编号内以线别和车站分布情况进行分区编号。原则上同一线别的车站应分配在同一分区内。车站数量较多时可分配多个分区。车站数量较少时,多个线别可合并在一个分区内。

(3)车站编号

车站编号由二位十进制表示,编号范围为1-60。一个分区内的车站数量一般按不超过50个进行分配。原则上按分区内车站的下行方向顺次进行车站编号。多个线别合并在一个分区时,线别之间车站编号留出适当余量。既有分区内增减车站时,不得影响其他车站编号。

(4)单元编号

应答器在高速铁路列车定位技术中的应用研究

卡哈尔江

(新疆铁道勘察设计院新疆乌鲁木齐

830011)

【摘要】本文描述了查询应答器在高速铁路系统中的应用,对查询应答器进行了系统的分析,并说明了报文编制方法,提出应答器在现有铁路中的一些不足。因此,加以卫星辅助定位,这样既可以提高可靠性,又可以提高安全性,大量减少了地面的查询。

【关键词】查询应答器;高速铁路;列车定位

Study on T he B olise in Train L ocating High Speed Railway

【Abstract 】This paper describs the Bolise in the application of high speed railway system,it has carried the systematic analysis on the bolise,and describes the preparation method of the message,put forward transponder in a number of deficiencies in the existing railway,add to the satellite aided positioning,so can enhance the reliability,but also can improve safety,a significant reduction in the ground bolise.

【Key words 】B olise ;H igh speed railway ;Train

locating

○科教前沿○108

20116831周翼(列车定位技术与高速列车组合定位系统分析)

城市轨道交通作业列车定位技术与高速列车组合定位系统分析 学号: 20116831 姓名: 周翼 二零一四年四月

【内容摘要】: 简单介绍了列车定位技术定义和几种列车定位技术的主要方法,并从定位精度、闭塞制式、维护投资成本、抗干扰等方面进行分析比较。提出组合定位系统,并根据现高速铁路的要求进行分析。 关键字:列车定位,性能比较,定位方法,高速铁路, 获得列车物理位置信息,即确定车辆在地球表面上的坐标,简称为列车定位。及时准确地获取列车物理位置,才能确保列车安全有效运行。因此,通过列车定位,可以更加有效地提高行车的安全和效率,使行车调度与控制实现全新智能化模式成为可能。因此列车定位应提供准确、实时的列车位置信息,并具有以下功能 1)能够为列车控制系统随时随地提供准确的位置和实时速度信息,保证前后列车的安全间隔; 2)缩短前后追踪列车的间隔时间,提高区间列车运行速度;3)通过列车定位可获得列车运行状态的基础信息,从而便于实现列控系统的车载及轨旁设备的故障分析;4)依据列车超速防护子系统的速度—模式曲线,实现列车的定点停车及超速防护; 5)为列车安全运行提供关键的数据,从而使ATC 系统功能实现成为可能。 列车定位的主要方法 轨道电路定位法 传统的轨道电路定位法是利用铁路线路的2 根钢轨作为导体,两端加以机械绝缘(或电气绝缘),并接上送电和受电设备所构成的电路。轨道电路就是检测轨道区段是否有列

车占用,来实现列车的定位。目前广泛采用S 型连接棒音频无绝缘轨道电路,即采用电气绝缘实现区段的划分实现列车定位。 地面应答器法 地面应答器也称为信标,地面应答器与车载应答器,轨旁电子单元配合使用来实现列车定位。地面应答器主要分为有源和无源2 种。应答器安装在站内或每个轨道分区等轨道沿线,应答器无需与任何设备相连,其内部寄存器的数据已固定。当列车通过时,地面应答器与车载的相应设备对准,车载设备以电磁感应的原理以一定的频率传递给地面应答器 相应信号,应答器接收到车载设备传送的信号后开始工作通常利用移频键控方式将列车当前的绝对点物理位置信息回传至列车。车载设备会使列车定位信息再次刷新,得到新的列车位置起点。 交叉电缆回线定位法 交叉电缆回线定位是使用电缆按一定间隔绕制成一个环路设于轨道上。其设备的布置方式:在2 根基本轨之间铺设交叉电缆回线,一条线安装在基本轨间的到床上,另一条线安装在钢轨的颈部底端,两条线每隔相应距离作一次交叉。当列车通过每一个电缆交叉点时,车载设备感应接收到交叉电缆回线提供的相应信号变化信息,并由车载计算机进行处理,从而确定列车的物理坐标信息,使车载设备对列车位置信息刷新。 测速定位法 测速定位法是先测得列车运行的即时速度,对其进行积分即得列车运行距离,从而实现列车的定位。 目前测速的方法很多,一类是利用轮轴旋转信息的测速方法,具体主要为测速电机和脉冲转速传感器方式;另一类是利用无线通信方法,直接测出列车运行的速度,具体包括多普勒雷达测速、GPS 测速定位和无线扩频定位。

试论列车定位技术在城市轨道交通中的应用

试论列车定位技术在城市轨道交通中的应用 城市轨道交通的优点是安全、可靠、速度快、舒适和节能环保等。世界各国都通过城市轨道解决城市交通问题。技术人员在控制列车的过程中,定位技术非常重要。列车的准确定位关系到列车的安全运行,如果定位准确,运输效率会提升。列车每个系统的运行都要考虑列车的位置信息,因为列车位置信息是重要的参数。通过列车定位技术可以更好地控制和调度列车,因此获取列车速度和位置信息的重要保障就是技术人员以更加认真的态度面对工作。现阶段,在我国城市轨道交通中,列车定位技术应用非常广泛。 1 我国城市轨道交通中列车定位技术概述 列车定位指的是技术人员通过已有的技术设备,对列车实际地理位置,掌握运行速度和运行状态等关键信息,并通过传输媒介向交通指挥部门传送相关信息。列车定位意义重大。根据列车定位技术可以向控制中心提供列车的实时位置。指挥人员和控制中心调度值班人员可以掌握列车的运行位置,恰当安排列车的运行密度。如有必要,技术人员可以按照实时客流、通过扣车和跳停等方式控制列车的运行密度。通过列车定位技术可以提供列车所处的位置,从而得到列车的准确位置,向信号控制系统和检测终端传输,以此为依据信号控制系统发出各种控制指令。

2 列车定位技术在城市轨道交通中的应用 技术人员科学使用列车定位技术,可以准确得到铁路网络中列车的位置。现阶段,多种列车定位方式被广泛应用于国内外轨道交通列车自动控制系统中。以下具体分析列车定位技术的类型: 2.1 通过轨道点位定位列车 现阶段,轨道电路定位法是我国常用的列车定位技术。铁路线路上有两根钢轨,这两根钢轨是轨道电路的导体。导体经过引线连接信号,设备接收信号,这样就形成了电气回路。如果车没有占用轨道区段,接收端接收发送端的信息。如果列车进入轨道区段,车轮可以造成两根钢轨短路。接收端不能顺利接收发送的信息,接收端在失磁的情况下会落下,对列车进行检测。在线路运行时,列车运行的轨道会出示“占用标示”,对轨道电路的占用情况进行连续跟踪,从而准确获得列车的位置。 2.2 通过电子计轴技术获得准确的列车定位 电子计轴定位可以对电磁感应信息进行检测,将计轴点安装在轨道区段的分界点上,通过计轴技术检测电磁感应信号。技术人员能准

简介城市轨道交通列车定位技术

城市轨道交通作业作业名:简介城市轨道交通列车定位技术 姓名:廖格 学号:20116852 年月:2014年4月11日 .

简介城市轨道交通列车定位技术 摘要实时、精确地确定列车在线路中的位置是保证安全、发挥效率、提供最佳服务的前提。本文介绍了在城市轨道交通系统中已获得成功应用的各种列车定位方法,并对他们的优缺点进行了比较。由于每种定位技术有其本身固有的缺点,没有一种单一的定位技术可以完全满足城市轨道交通列车定位的发展需求。因此提出城市轨道交通系统中需要综合运用多种定位技术。通过综合运用多种定位技术,取长补短,从而满足城市轨道交通系统对列车定位的需求。在轨道交通行车安全和指挥系统中,列车定位是一项关键性的技术。准确、及时地获取列车位置信息,是列车安全、有效运行的保障。 关键词:城市轨道交通, 列车定位, 轨道电路, 测速定位,查询应答器,无线扩频,电缆环线,卫星定位 1 城市轨道交通定位技术的基本功能和作用 1)列车定位系统的基本功能:能够在任何时刻、任何地方按要求确定列车的位置,包括列车行车安全的相关间隔、速度;对轨旁设备和车载设备等资源进行分配和故障诊断;在局部出现故障时,能够在满足一定精度要求的前提下,降级运行。列车定位方式按照空间可用性分为离散方式、连续方式和接近连续方式。按照产生定位信息的不同部分分为完全基于轨旁设备的方式、完全基于车载设备的方式和基于轨旁设备和车载设备的方式。

2)列车定位技术在现代轨道交通行车安全和指挥系统中的作用主要体现在以下几个方面:为保证安全列车间隔提供依据;在某些ATC系统中,提供区段占用/出清信息,作为转换轨道检测信息和速度控制信息发送的依据;为列车自动防护(ATP)子系统提供准确位置信息。作为列车在车站停车后打开车门以及站内屏蔽门的依据;为列车自动运行(ATO)子系统提供列车精确位置信息,作为列车计算速度曲线,实施速度自动控制的主要参数;为列车自动监控(ATS)子系统提供列车位置信息,作为显示列车运行状态的基础信息;在某些CBTC系统中,作为无线基站接续的依据;在高速磁悬浮交通中。提供位置信息,作为道岔控制、定子绕组供电接续的依据等。 2 国内外轨道交通主要的列车定位技术 1)无绝缘音频轨道电路法 音频无绝缘轨道电路采用自然衰耗、短路线法等电气方法实现轨道区段的分割。目前广为采用的是S型连接音频轨道电路。S型音频轨道电路确保相邻轨道区段的信号互不干扰,同时平衡两条钢轨的牵引回流。在同一区段的音频信号发送端和接收端,由电容器c与两段钢轨组成调谐于某以轨道信号载频的Lc并联谐振电路,从而使得该载信号能够被加在区段上,并被选择接收。 2)测速定位法 在轨道电路定位法和计轴器定位法中,车在区间的始端还是终端是无法判断的,对列车定位时的最大误差就是一个区段的长度。为了得到较为准确的位置信息,在计算具体位置信息时通常要引入列车的即时速度信息。引人测速信息后大大减小了定位的误差。目前使用较多的列车测速一般是:通过测量车轮转速,然后将车轮转速换算为列车直线速度。 3}信标定位 信标是安装在线路沿线反映线路绝对位置的物理标志。信标分有源信标和无源信标两种, 有源信标可以实现车地的双向通信, 无源信标类似于非接触式IC 卡, 在列车经过信 标所在位置时, 车载天线发射的电磁波激励信标工作, 并传递绝对位置信息给列车。 城市轨道交通系统中所使用的信标大部分为无源信标, 安装在轨道沿线。信标的作用是为列车提供精确的绝对位置参考点(也可以提供线路的坡度、弯度等其它信息)。由于信标提供的位置精度很高, 达厘米量级, 常用信标作为修正列车实际运行距离的手段。采用信标定位技术的信息传递是间断的, 即当列车从一个信息点获得地面信息后, 要到下一个信息点才能更新信息, 若其间地面情况发生变化, 就无法立即将变化的信息实时传递给列车,

轨道列车的定位方法与相关技术

图片简介: 本技术提供一种轨道列车的定位方法,它包括沿轨道均布的若干激光传感器和阅读器,激光传感器的发射端和接收端分别安装在列车的两侧,阅读器与激光传感器的接收端同侧安装,阅读器关联所述激光传感器的接收端,各列车上对应阅读器的一侧安装有信号发射器,当列车经过激光传感器将发射端与接收端隔断时,激光传感器的接收端发送信号给阅读器,阅读器打开并读取信号发射器发射的信息,信号发射器发射的信息包括列车车次信息和速度信息,阅读器连接中控中心。该轨道列车的定位方法具有设计科学、不易丢失信标、获取数据更多的优点。 技术要求 1.一种轨道列车的定位方法,其特征在于:它包括沿轨道均布的若干激光传感器和阅读器,激光传感器的发射端和接收端分别安装在列车的两侧,阅读器与激光传感器的接收 端同侧安装,阅读器关联所述激光传感器的接收端,各列车上对应阅读器的一侧安装有 信号发射器,当列车经过激光传感器将发射端与接收端隔断时,激光传感器的接收端发 送信号给阅读器,阅读器打开并读取信号发射器发射的信息,信号发射器发射的信息包 括列车车次信息和速度信息,阅读器连接中控中心。 2.根据权利要求1所述的轨道列车的定位方法,其特征在于:车载信号发射器包括三个子发射器,各子发射器分别位于列车的两头和中部,各子发射器发射的信息还包括位置标 记信息,阅读器通过读取子发射器的先后顺序判断列车的行驶方向。 3.根据权利要求2所述的轨道列车的定位方法,其特征在于:各阅读器标记有区段信息,中控中心对各阅读器进行排列,各阅读器所标记的区段信息对应有地理位置数据库,用 于获取地理位置信息。

技术说明书 一种轨道列车的定位方法 技术领域 本技术涉及一种轨道列车定位技术,具体的说,涉及了一种轨道列车的定位方法。 背景技术 信标定位技术是轨道列车定位技术的主要技术之一,十分适合应用于城市轨道交通,城市轨道交通的里程有限,设置信标的数量可控,但是信标的读取容易受到轨道信标安装位置的影响,导致漏读情况频发,因此,一种不易漏读的信标类列车定位方法急需被开发。 为了解决以上存在的问题,人们一直在寻求一种理想的技术解决方案。 技术内容 本技术的目的是针对现有技术的不足,从而提供一种设计科学、不易丢失信标、获取数据更多的一种轨道列车的定位方法。 为了实现上述目的,本技术所采用的技术方案是:一种轨道列车的定位方法,包括沿轨道均布的若干激光传感器和阅读器,激光传感器的发射端和接收端分别安装在列车的两侧,阅读器与激光传感器的接收端同侧安装,阅读器关联所述激光传感器的接收端,各列车上对应阅读器的一侧安装有信号发射器,当列车经过激光传感器将发射端与接收端隔断时,激光传感器的接收端发送信号给阅读器,阅读器打开并读取信号发射器发射的信息,信号发射器发射的信息包括列车车次信息和速度信息,阅读器连接中控中心。 基上所述,车载信号发射器包括三个子发射器,各子发射器分别位于列车的两头和中部,各子发射器发射的信息还包括位置标记信息,阅读器通过读取子发射器的先后顺序判断列车的行驶方向。 基上所述,各阅读器标记有区段信息,中控中心对各阅读器进行排列,各阅读器所标记的区段信息对应有地理位置数据库,用于获取地理位置信息。

城市轨道交通中的列车定位技术分析

城市轨道交通中的列车定位技术分析 【摘要】阐述了列车定位技术的重要性,针对城市轨道交通中几种常用的列车定位方法进行了介绍和比较分析。 【关键词】城市轨道交通;列车定位;组合定位 1.引言 城市轨道交通具有速度快、安全可靠、节能环保、准时舒适等优点,己成为世界各国解决城市交通问题的首选方案。列车的定位技术在列车运行控制系统中占据着很重要的地位,它直接关系到列车的安全运行,影响着轨道交通的运输效率。几乎每个子系统的实现都需要列车的位置信息作为参数之一,列车定位的引入使得调度指挥和行车控制一体化新的综合自动化系统的实现成为可能。由此可见,实时、准确地获取列车速度和位置信息是列车安全、高效运行的重要保障。 2.列车定位技术 列车定位的任务是获取列车在铁路网络中的位置,目前在国内外轨道交通列车自动控制系统中得到应用的列车定位方式主要有以下几种[1-4]: 2.1 基于轨道电路的列车定位 轨道电路定位法是最普遍的列车定位技术。轨道电路是以铁路线路的两根钢轨作为导体,并用引接线连接信号发送、接收设备所构成的电气回路。当轨道区段无车占用时,接收端可以接收到发送端所发送的信息,接收端的轨道继电器励磁吸起;当列车进入轨道区段时,车轮将两根钢轨短路,接收端接收不到发送端所发送的信息,接收端继电器失磁落下,达到检测列车定位的目的。列车在线路中运行时,其所在的轨道电路会给出占用指示,对轨道电路占用状态进行连续跟踪,就能获取列车在线路中所处的位置。 2.2 基于电子计轴的列车定位 电子计轴定位是通过在轨道区段的分界点安装计轴点来检测轮对通过瞬间所产生的电磁感应信号,从而判断列车的轮轴数量和运行方向。当车轮驶过计轴点时,在会计轴点中形成脉冲信号,通过电缆传输到控制中心,然后由控制中心的计数装置根据脉冲对车轮进行计数,最后由中央处理单元根据计数情况判断列车占用/出清,实现列车检测和定位功能。 2.3 基于信标的列车定位 地面信标通常安装在两根钢轨中间,分为有源信标和无源信标两种,每个信标有一个唯一的编号并带有特定的位置信息。在车载上安装具有无线发射和接收

城市轨道交通列车运行控制系统

城市轨道交通列车运行控制系统 【摘要】本论文以城市轨道交通列车运行控制系统的特点为分析对象,并对分析了城市轨道交通列车运行控制系统的功能,结合实际情况,对城市轨道交通列车运行控制系统进行了介绍。 【关键词】轨道交通,列车运行,控制系统 一、前言 城市轨道交通的诞生和发展已经有一百多年的历史了,城市轨道交通在当今城市交通中已经占据了重要的作用,城市轨道交通是现代化都市的重要基础设施,它安全、快速、舒适、便利地在城市范围内运送乘客,最大限度的满足城市市民的出行需要。在城市各种公共交通工具中,具有运量大、速度快、安全可靠、污染低、受其他交通方式的干扰小,对改变城市拥挤、乘车困难、行车速度慢行之有效的。 随着城市轨道交通行车间隔的缩短,依靠人工控制车速的传统运行方式已经不能满足城市客运的要求了,于是,以列车速度自动控制为中心的列车运行控制系统(Automatic Train Control,简称ATC)应运而生,随着计算机技术(Computer)、通信技术(Communication)和控制技术(Control)的飞跃发展,综合利用3C 技术给列车的控制带来了很好的发展机遇,形成了基于无线双向大容量的车地通信模式,使对车辆的控制更加安全可靠。这样使列车更加安全可靠、高速有效的运行。 二、城市轨道交通列车运行控制系统的特点 1、停车点防护 安全停车点是基于危险点定义的,危险点是列车超越后可能发生危险的点。停车点有时即是危险点,通常在停车点前方设置一段防护段,ATP系统计算得出的紧急制动曲线即以该防护段为基础,保证列车不超越防护段。有时也可在防护段设置一列车滑行速度值,如5km/h。根据需要,列车可在此基础上加速,或者停在危险点前方。 2、列车间隔控制 列车间隔控制是一种保证行车安全(防止两列车发生尾追事故)、提高运行效率(使两列车的时间间隔最短)的信号技术。目前,由于铁路线路条件、列车种类、行车组织方式和对通过能力要求的差别,列控系统也各不一样。一般列车运行控制系统可分为2个档次:第1档次是以一般轨道电路为基础,按固定闭塞方式实现列车速度分级控制,即以当前闭塞分区出口为目标点,按速度等级生成速度防护曲线;第2档次则是以数字编码轨道电路为基础,按一次制动模式控制列车。城市轨道交通列控系统一般采用的都是一次模式曲线。

基于移动闭塞方式下的列车定位技术

基于移动闭塞方式下的列车定位技术 小组成员:黄钊王帆谢桀杨立彪 ————第十五组

基于移动闭塞方式下的列车定位技术 随着科技和时代的发展,城市轨道交通的闭塞方式也逐步由固定闭塞方式发展到移动闭塞方式,这也对列车的定位,测速,通信等提出了更高的要求。城市轨道交通系统中列车实时、精确的定位不仅能够保证车辆的行车安全性,还可以使列车追踪间隔小,适应大客流重型轨道交通,并且维护费用低等等,最终实现地铁系统在保障乘客安全性的前提下运送更多乘客的目的。 一.列车定位技术的分类及其发展现状 列车定位技术从设备安装的位置上可分为:轨旁型,车站型和车载型。从闭塞区间的移动性上可分为:固定闭塞型,准移动闭塞型和移动闭塞型。从采取的定位方法上可分为:编码里程仪、轨道电路、信标(应答器)、裂缝波导、交叉电缆环线和无线扩频等。 发展现状:目前,闭塞方式已经发展到移动闭塞,传统的轨道电路,信标,编码里程仪等方式逐步不再适应,而且随着信息和通信技术的发展,各种以信息技术和通信技术为基础的新一代列车定位技术开始发展起来并在初步应用上取得一定成功。国外通信行业的一些大公司在开发自己的ATC系统时都推出并采用了自己独特的定位技术,比如加拿大阿尔卡特公司的基于交叉感应环线定位技术,美国GE公司的基于无线电台通信定位技术,法国阿尔斯通公司的基于裂缝波导管无线传输技术,德国HHARMON公司的基于无线扩展频谱通信技术。 1.基于交叉感应环线技术 以敷设在钢轨间的交叉感应环线作为传输媒介的CBTC系统,在城市轨道交通中已应用了较长时间。交叉感应环线的缺点在于,安装在钢轨中间,安装困难且不方便工务部门对钢轨的日常维修,车地通信的速率较低。但由于环线具有成熟的使用经验,寿命长以及投资少等优点,目前仍继续得到应用。 下图为广州地铁线路图,其中橙色部分为3号线线路图,主线为番禹广场站至天河客运站,体育西路至机场为3号线支线。广州地铁3号线采用了基于交叉感应环线技术的移动闭塞方式,沿轨道方向铺设感应环线,通过感应环线来实现车地通信,完成对列车的定位和测速。以此调整列车运行。

一种基于GPSDRMM组合的列车定位方法研究

一种基于GPSDRMM组合的列车定位方法研究 列车定位是轨道交通众多应用的基础条件。基于通信的列车控制(Communication Based Train Control, CBTC)系统需要在适当精度和充分完整性条件下持续地更新列车位置,这给列车定位系统带来了更高的要求[1]。传统列车定位系统广泛采用测速测距方式,利用轨道电路、应答器、计轴设备和多普勒雷达等方式对列车的速度和距离在一维坐标下进 行统一。随着卫星导航技术的不断发展,基于GNSS的定位技术在列车定位中应用日趋广泛,主要有美国的GPS、俄罗斯的GLONESS、欧洲的Galileo以及相关增强系统[2]。然而,传统的GNSS定位系统仍存在较多问题,如定位精度低,在隧道,城区信号干扰较大等。为能够及时、准确、可靠地获取列车的位置信息,本文提出一种基于GPS/DR/MM的列车组合定位方法,由于GPS具有高精度、全天时、全天候的特点;航位推算(Dead Reckoning,DR)能够在短时间内能保证较高的测量精度且其有效性不受外界影响。因此,本文通过GPS/DR组合保证列车定位的连续性。利用地图匹配(Map Matching, MM)将列车定位轨迹与数字地图中的道路 网信息联系起来,并由此相对于地图确定列车的位置。算法方面,本文提出一种离散平稳小波变换和卡尔曼滤波组合的数据处理方法。利用离散平稳小波变换,可以极大地减小或

去除所提取的不同特征之间的相关性,然后利用Kalman滤波对处理后的数据进行最优估计。1 GPS/DR/MM组合定位方案设计基于卫星导航的列车定位系统是列车运行控制的 重要组成部分。实时、高精度、高可靠的列车定位系统能够实现列车的实时跟踪、区段占用等功能,同时能够减少轨旁设备和维护成本,极大地提高列车的运行效率。1.1 系统结构框架基于GPS/DR/MM的列车组合定位系统由4部分组成:GPS和DR数据处理部分、GPS/DR数据融合部分、定位数据与数字电子地图匹配部分和匹配位置对测量数据误 差修正部分。系统结构如图1所示。图1 基于GPS/DR/MM 的列车组合定位结构框图 Fig. 1 Structure diagram of train combination positioning based on GPS/DR/MM 1.2 系统结构原理首先,列车在运行过程中加速度计、陀螺仪、GPS接收机所获得的数据经过离散小波变换,将各信号中各种不同频率的成分分解到互不重叠的频带上;将处理后的数据经卡尔曼滤波进行数据融合;将滤波器的输出结果输入给地图匹配模块,通过适当的匹配过程确定列车最有可能的行驶路段以及列车在该路段最有 可能的位置;最后,将所匹配的位置结果通过负反馈模块对GPS的误差进行估计和修正,实现列车组合定位数据的有效性。2 基于GPS/DR/MM的列车高精度组合定位方法由于铁路线路的特殊性,可以将列车视为在一维线路上运行,因

相关文档
最新文档