西南交通大学混凝土结构课程设计

西南交通大学混凝土结构课程设计
西南交通大学混凝土结构课程设计

混凝土课程设计

姓名:陈发明

学号:2016117141

班级:铁道工程五班

指导老师:严传坤

设计时间:2018.12.9

目录

1、钢筋混凝土伸臂梁设计任务书 (2)

2、设计资料 ................................................................................. 错误!未定义书签。

3、内力计算 (4)

4、跨中支座截面抗弯配筋 (6)

5、斜截面配筋 (9)

6、翼缘抗弯设计 (11)

7、跨中裂缝及挠度验算 ............................................................. 错误!未定义书签。

8、支座截面裂缝验算.................................................................. 错误!未定义书签。

9、伸臂端挠度验算...................................................................... 错误!未定义书签。

10、参考文献 ................................................................................ 错误!未定义书签。

1.《混凝土结构设计原理》课程设计任务书

题目:某简支伸臂梁设计

基本条件:某过街天桥的简支伸臂梁简图如下图所示,面荷载为除结构构件

自重外的恒载g

1(含栏杆、装修等)、结构构件自重恒载g

2

和活载q,在两边伸

臂端端部均作用有集中恒载G和活载Q(模拟梯段荷载)。

主要数据:荷载取G=Q=0,除构件自重以外的恒载标准值212/k g kN m = ,活载标准值24kN/k q m =,自重标准值按照325/kN m 的容重计算。

跨度L=6~8m (不用区分计算跨度和净跨度),桥面宽度B=1.5~2.4m ,每个同学根据名单上序号确定跨度和桥面宽度,如下表;

梁截面形式自行拟定,建议采用工字形;

设计内容(1)跨中和支座截面抗弯配筋;(2)斜截面配筋;(3)跨中挠度和裂缝验算;(4)支座截面裂缝验算;(5)伸臂端挠度验算。

2.设计资料

采用建筑结构相关规范进行计算。

设该构件处于正常环境(环境类别为一类),安全等级为二级.混凝土强度等级为C20,钢筋为HRB335级,箍筋为HRB335级,则混凝土和钢筋的材料强度设计值分别为

c t yv 11b 9.6 MPa 1.10 MPa 300 MPa 300 MPa

1.0 1.0

0.550

y y f f f f f αβξ'========

mm 62512

7500120

==≥

l h 实际初拟梁高为h = 700 mm ,此时的梁宽可以初拟为

280mm 5

.2700

5.2175mm 47004==≤≤==h b h 实际初拟梁宽为b = 250 mm 。

初拟f 100h mm '=

因该梁为独立梁,故翼缘板的最大有效宽度为 f,max

f f 12250121001450 mm<2200 mm b b h b ''=+=+?==

截面设计如图所示

3.内力计算

梁的永久荷载标准值:(2.20.120.250.5)25 2.2218.525kN/m k g =??+??+?= 梁的可变荷载标准值: 2.248.8kN/m k q =?=

1.由于跨中荷载对跨中弯矩是不利的,伸臂部分的荷载对跨中弯矩的作用是有利的,出于安全的考虑,在计算跨中最大弯矩时,对伸臂部分的梁的永久荷载分项系数取1.0,可变荷载分项系数取0,对于跨中部分的荷载分项系数取值,则应判断永久荷载控制还是可变荷载控制: 当永久荷载控制时:跨中荷载设计值:

1.3518.525+1.40.78.833.63kN/m q =???=

当可变荷载控制时:跨中荷载设计值:

1.218.525+1.48.834.55kN/m

q =??=

应取由可变荷载控制的组合进行承载力极限状态计算,即

1.218.525+1.48.834.55kN/m

q =???=

2222max

(/4)34.557.518.525(7.5/4)210.367 kN m

8282

k g l ql M ??=-=-=?

2. 伸臂部分的荷载越大,则支座截面负弯矩越大,所以伸臂部分荷载为不利荷载,应取由可变荷载控制的组合进行承载力极限状态计算

22max

(

/4)34.55(7.5/4)60.732 kN m

22q l M ??=-=-=-?

3. 计算截面最大剪力时,所有荷载均为不利荷载,应取由可变荷载控制的组合

进行承载力极限状态计算,计算右支座处的剪力:

34.557.5/464.78kN

34.557.5/434.55(7.57.5/2)/2129.564kN R L V V =?==?-?+=-

所以截面最大剪力为

129.564kN

4.跨中和支座截面抗弯配筋

4.1简支梁跨中截面

截面设计:

初拟s 40mm a =则0s 70040660mm h h a =-=-= 计算梁的跨中弯矩,弯矩值为

()2

222

1.2 1.4(/4)82

(1.218.525 1.48.8)7.518.525(7.5/4)210.367 kN mm

82

k

k k g q l g l M +=

-

?+???=-=?

m kN 210.367m kN 849.12102100-66010014506.90.126

01?=>?=???? ?

?????=???? ?

?

'-

''-M h h h b f f f f c α所以该截面为第一类截面。于是有

6

22

1f 0210.367100.037

1.09.61450660s c M f b h αα?==='???

110.03770.550b ξξ===<=(非超筋)

1c 0

2

s y

1.09.614500.0377660

1154.52mm 300

f f b h A f αξ'????=

=

=

()min 4545 1.1max 0.2,

%max 0.2,%max 0.2,0.165%0.2%300t

y

f f ρ?????==== ? ? ????

?

2

s min >(())0.2%(250700(2200250)100740mm

f f A bh b b h ρ'?+-=??+-?=

所以选配钢筋4φ20,单排布置,A s = 1256 mm 2 截面复核:

假设箍筋选取双肢φ6,则:

s 20

20+5+6+

=41mm 2

a =0s 70041659mm h h a =-=-= 属于第一类截面

y s

1c 3001256

27.07mm

1.09.61450

f

f A x f b α?=

=

='??

6

u 1c f 0027.071.09.6145027.0765910

22243.2 kN m 1.0 210.367kN m 210.367 kN m x M f b x h M αγ-????'=-=????-? ? ????

?=?>=??=?

显然,满足安全性要求。 相对受压区高度为b 027.070.0410.550659

x h ξξ=

==<=(非超筋)

1min 1256

(())250700(2200250)100

0.34%0.2%s f f A bh b b h ρρ=

=

'+-?+-?=>=

(非少筋) 经检验,合格

4.2简支梁支座截面

截面设计:

计算梁的支座弯矩,弯矩值为

初拟s 40mm a =则0s 70040660mm h h a =-=-=

()2

2

1.2 1.4(/4)8

(1.218.525 1.48.8)(7.5/4)60.732 kN m

2

k

k g q l M +?=-

?+??==-? m 60.732kN m kN 849.12102100-66010014506.90.126

01?=>?=???? ??????=???

? ?

?

'-

''-M h h h b f f f f c α所以该截面为第一类截面。于是有

6

22

1f 060.732100.01

1.09.61450660s c M f b h αα?==='???

110.010050.550b ξξ===<=

1c 0

2

s y

1.09.614500.01005660

307.77mm 300

f f b h A f αξ'????=

=

=

2

s min (())0.2%(250700(2200250)100740mm f f A bh b b h ρ'

所以按最小配筋率配筋,取4φ16,A s = 804 mm 2。 截面复核:

假设箍筋选取双肢φ6,则:

s 16

20+5+6+

=39mm 2

a =0s 70039661mm h h a =-=-= 属于第一类截面

y s

1c 300804

17.33mm

1.09.61450

f

f A x f b α?=

=

='??

6

u 1c f 0017.331.09.6145017.3366110

22157.365 kN m 1.0 60.732kN m 60.732 kN m x M f b x h M αγ-????'=-=????-? ? ????

?=?>=??=?

显然,满足安全性要求。 相对受压区高度为b 017.330.0260.550661

x h ξξ=

==<=(非超筋) 1min 804(())(250700(2200250)100

0.22%0.2%s f f A bh b b h ρρ=

=

'+-?+-?=>=

(非少筋)

因受压区也配有钢筋,故构件实际承载能力大于Mu ,检验合格

5.斜截面配筋

截面设计: 根据截面尺寸可知

w f f 700100100500 mm h h h h '=--=--=

w 50024250

h b ==<,属一般梁 因此可以检查截面尺寸限制条件:

3c c 0129.564kN 0.250.25 1.09.625066010396kN V f bh β-=<=?????=

满足条件。

检查是否需要按计算配置腹筋:

3t 0129.564kN 0.70.7 1.1025066010127.05kN V f bh -=>=????=

必须按计算配置腹筋。

暂定只配箍筋,选用双肢φ6箍筋,则

2

2sv sv16256.6 mm 4

A nA π?==?

=

因此箍筋间距应满足0sv yv t 0

46056.6300

4481.38 mm 0.7129564127050

h A f s V f bh ??≤

=

=--

由《混规》得箍筋间距还应满足:max 250 mm s ≤ 所以选取200 mm s =

t min yv 56.6 1.10.1132%0.240.240.088%250200300

sv sv A f bs f ρρ=

==>==?=?

由于正截面纵向钢筋太少且剪力设计值较小且配置有箍筋,所以无需设置弯起筋。 截面复核:

s 16

20+5+6+

=39mm 2

a =0s 70039661mm h h a =-=-= 2

2

sv sv16256.6 mm 4

A nA π?==?

=

截面最大剪力设计值为:max 129.564kN V = 下限值验算:

3t 0max 0.70.7 1.1025066110127.242kN<129.564kN

f bh V -=????==

由《混规》知箍筋直径和箍筋间距满足要求

t min yv 56.6 1.10.1132%0.240.240.088%250200300

sv sv A f bs f ρρ=

==>==?=?

非斜拉破坏。

上限值验算:

w 50024250

h b ==<,属一般梁 3c c 0129.564kN 0.250.25 1.09.625066110396.6kN

V f bh β-=<=?????=

非斜压破坏。

t 0sv yv 33max 0.7661

0.7 1.102506611056.630010200

183.361kN>129.564kN

u cs h V V f bh A f s

V --==+

=????+???== 经检验,合格

6.翼缘抗弯设计

截面设计:

翼缘尺寸如图所示

2

0.9750.10.0975m

A=?=,取单位宽度b1m

=

则翼缘的永久荷载标准值:1250.112 4.5kN/m

k

g=??+?=

翼缘的可变荷载标准值:144kN/m

k

q=?=

此时所有荷载均为不利荷载应判断永久荷载控制还是可变荷载控制:

当永久荷载控制时:

1.35 4.5+1.40.749.995kN/m q=???=

当可变荷载控制时:

1.2 4.5+1.4411kN/m q=??=

应取由可变荷载控制的组合进行承载力极限状态计算,即

22max

11(0.975) 1.307 kN m 88

ql M ?===?

初拟s 25mm a =则0s 1002575mm h h a =-=-=

6

0s 22

1c 0 1.0 1.307100.0242

1.09.6100075M f bh γαα??===???

110.02450.550b ξξ===<=(非超筋)

2

1c 0

s y

1.09.610000.024575

58.8mm 300

f b h A f αξ????=

=

=

()min

4545 1.1max 0.2,

%max 0.2,%max 0.2,0.165%0.2%300t

y f f ρ?????==== ? ? ????

?

2

s min 0.2%1000100200mm A bh ρ

所以按最小配筋率配筋,2

s min 0=0.2%100075150mm A bh ρ?=??=

根据《混规》中的规定选取φ6@140(2s =202mm A ),符合《混规》箍筋设计中最小直径和最大间距的构造要求,因此也将此钢筋当作正截面上下翼缘部分的箍筋。

7.跨中裂缝及挠度验算

正常使用极限状态下,使用准永久组合计算裂缝和挠度。

取准永久组合系数为

0.4

?=

准永久组合荷载为:

+0.418.5250.48.822.045kN/m k k q g q ==+?=

跨中最大弯矩为:

2222

(/4)22.0457.522.045(7.5/4)116.253 kN m

8282q ql q l M ??=-=-=?

支座处最大弯矩为:

22

(/4)22.045(7.5/4)38.75 kN m

22

q q l M ?===? 7.1跨中挠度验算

对于一类环境,三级裂缝控制等级,查《混规》得构件受力特征系数为:

54tk cr s 5

s 0s 4

1.54 MPa 1.9

2.010 MPa 2.5510 MPa

2.0107.8470041659mm c 20+5+6=31mm

2.5510c E s c f E E E h h a E αα===?=??====-=-==?1256

0.34%

(())(250700(2200250)100

s f f A bh b b h ρ=

=='+-?+-?

1256

0.44%<0.01,0.01

0.5()0.5250700(2200250)100

s te f f A bh b b h ρ=

=='+-??+-?取

f 0'()(1450250)100

0.728

250659

f

f

b b h bh γ''--?=

=

=?

6

q1

sq 0s 116.25310161.2 MPa

0.870.876591256

M h A σ?===??

tk

te sq

1.54

1.10.65

1.10.650.48

0.01161.2

f ψρσ=-=-?

=?

梁的短期刚度:

2

2

0'5142

s126 1.150.21.150101256659 1.3710 N mm 67.840.0034

0.481+3.50.7281+. 3.25s s E f

E A h B αρψγ???===??????++++

'2.00.40.0022.02

1.74

0.003.44

0ρρθ=-=-?=挠度增大系数

1.7(10.2)4

2.088

θ?+==由于翼缘位于受拉区,,

14

132

s1

1 1.3710=6.5610 N mm 2.088

B B θ

?=

=

??梁的刚度

4

4

111

4413

13

1,max 5384256522.045750022.0457500384 6.5610256 6.56109.69 mm<30mm ()250ql ql

f B B l

f =

-

???=-????===梁的跨中挠度 向上

()

满足要求

7.2跨中裂缝验算

eq =20mm

d 相关数据与上一问相同,故可直接带入,且

sq eq max cr s s te 5lim 1.90.08161.2201.90.48 1.9310.082.0100.010.16 mm

<0.30 mm ()

d w c E w σαψ

ρ?

?

=+ ???

??

=????+? ?

???

==满足要求

8.支座截面裂缝验算

5tk cr s s 0s eq 16

1.54 MPa

1.9

2.010 MPa 20+5+6+

=39mm 2

70039661mm c 20+5+6=31mm 16mm

s f E a h h a d α===?==-=-===查《混规》得: 804

0.00284<0.01,0.01

0.5()0.5250700(2200250)100

s te f f A bh b b h ρ=

=='+-??+-?取

6

q2

sq 0s 38.751083.81 MPa

0.870.87661804M h A σ?===??

f 0

'()(1450250)100

0.728

250659f

f

b b h bh γ''--?=

=

=?

tk

te sq

1.54

1.10.65

1.10.650.0940.2,0.2

0.0183.81

f ψψρσ=-=-?

=-<=?取

sq eq max cr s s te 5lim 1.90.0883.81161.90.2 1.9310.082.0100.010.03 mm

<0.30 mm d w c E w σαψ

ρ?

?

=+ ???

??

=????+? ?

???

==满足要求

隧道钻爆设计-《隧道工程》钻爆课程设计-西南交大峨眉校区

课程名称: 设计题目: 院系: 专业: 年级: 姓名: 指导教师: 西南交通大学峨眉校区 年月日

课程设计任务书 专业姓名学号 开题日期:年月日完成日期:年月日题目隧道钻爆设计 一、设计的目的 掌握隧道钻爆设计过程。 二、设计的内容及要求 根据提供的隧道工程,确定各炮眼类型的炮眼数目;编制钻爆参数表;绘制钻爆设计图;绘制爆破网络图 三、指导教师评语 四、成绩 指导教师(签章) 年月日

隧道爆破设计实例 一、 工程概况 某隧道穿越无区域性断裂构造地带,围岩较为破碎,裂隙较发育,普氏系数f=8~10。地下水以基岩裂隙水为主,水量较发育。隧道内围岩以Ⅳ类围岩为主,主要为片麻岩。隧道断面设计为半圆拱形,底宽B=4.5m 、高H=4.0m 。 二、 施工方案选择 为了保证隧道开挖质量,又能加快施工工期,采用全断面光面爆破施工方案。每月施工28d ,采用4班循环掘砌平行作业,月掘进计划进尺为210m 。 三、 爆破参数选择 1、计算炮眼数N τγ q S N = N ——炮眼数目,不包括未装药的空眼数。 q ——单位耗药量 S ——开挖断面积,m 2。 τ——装药系数,即装药长度与炮眼全长的比值,可参考表1 γ——每米药卷的炸药量,kg/m,2号岩石铵梯炸药的每米质量见表2 开挖断面 []{}23.13B 2B H 22 2B S m =?÷-+??? ?????÷÷=) ()(π 单位炸药消耗量根据表5——5选取,q=1.4kg/m 3。

装药系数τ根据表5——3,并综合考虑各类炮眼的装药系数选取,τ=0.43。 根据表5——4选取γ=0.78,代入上式则有 5 .5578 .043.03 .134.1N =??= 个 实际取55个炮眼。 2、每循环炮眼深度 本工程的月掘进循环计划进尺为210m ,每掘进循环的计划进尺数l=210÷28÷4=1.875m,本设计取炮眼利用率η=0.93,则根据炮眼深度计 算式有L =l/η=1.875/0.93=2.02m 实际取炮眼深度为2m ,每循环进尺l ′=2.0×0.93=1.86m 一般深掏槽眼较炮眼深度加深0.15~0.25m 。 3、炮孔直径 由于地下水以基岩裂隙水为主,水量较发育,因此,选用2号岩石乳化炸药,其药卷直径为32mm ,长度为200mm ,每卷质量为0.15kg 。

西南交通大学java课程设计

JAVA综合实验:滑板反射小球游戏专业:电子科学与技术(微电子方向) 学号:20132116 姓名:李瑞婷 2014-2015第二学期

源代码: ball.java packageorg.crazyit.ball; importjava.awt.Image; importjava.io.File; importjavax.imageio.ImageIO; importjava.io.IOException; public class Ball extends BallComponent { // 定义球的竖向速度 privateintspeedY = 10; // 定义弹球的横向速度 privateintspeedX = 8; // 定义是否在运动 privateboolean started = false; // 定义是否结束运动 privateboolean stop = false; /** * m 有参数构造器 * * @parampanelWidth * int 画板宽度

* @parampanelHeight * int 画板高度 * @param offset * int 位移 * @param path * String 图片路径 */ public Ball(intpanelWidth, intpanelHeight, int offset, String path) throwsIOException { // 调用父构造器 super(panelWidth, panelHeight, path); // 设置y坐标 this.setY(panelHeight - super.getImage().getHeight(null) - offset); } /** * 设置横向速度 * * @param speed * int 速度 * @return void */ public void setSpeedX(int speed) { this.speedX = speed; } /** * 设置竖向速度 * * @param speed * int 速度 * @return void */

西南交通大学项目管理课程设计

题目:国台大厦基坑支护方案 专业:土木工程 姓名: 学号: 班级: 土木工程学院 2010 年 12月

一、综合说明 (一)编制说明: 1.施工指导规划: 业主下发的招标文件、施工图及工程量清单结合本工程实际勘察情况及我公司多年的施工经验。2.编制依据: (1)《现行建筑施工规范大全》等国家有关规范、规程。 (2)省市发布的有关建筑施工质量、安全文件。 (3)我公司有关技术管理、质量管理、安全管理、文明施工的文件。 (3)工程建设标准强制性条文及台州市提高建筑安装工程质量100条规定。 (4)浙江省工程勘察设计勘察资料。 (5)浙江大学建筑设计院设计的施工图。 3.施工组织原则: 1.遵循《资格预审文件》要求的原则。根据《资格预审文件》的规定和要求,本着全面规划、统筹安排、合理部署、科学管理、精心施工的原则进行编制。 2.坚持专业化作业与综合管理相结合的原则。组织专业队伍充分发挥专业人员、设备的优势,采用综合管理手段,合理调配,以达到整体优化的目的。 3.安全生产的原则。采取先进可靠的安全预防措施,确保施工生产和人身安全。 4.保护环境、文明施工的原则。树立环保意识,保护好周围生态环境,做到文明施工。 (二)工程概况 1.建筑工程概况 拟建场地位于台州市区人民西路北,东临天开大厦,南临小内河,西靠市花鸟市场,北临住宅楼。拟建建筑物包括主楼和裙房,主楼地上为21~25 层(共3 幢),框架-剪力墙结构,裙房2层,框架结构均设1层地下室,基础桩型采用大直径钻孔灌注桩。2.基坑工程概况 地下室基坑呈发V 形,长约150m,宽约25m,基坑开挖较深,大面积开挖深度为5.2m。自然地面平整相对标高为-0.500m,基坑开挖深度考虑到地梁垫层底(垫层厚

土力学复习资料整理.doc

填空: 土体一般由固相(固体颗粒)、液相(土中水)和气相(气体)三部分组成,简称“三相体系二 常见的粘土矿物有:蒙脱石、伊利石和高岭石。 由曲线的形态可评定土颗粒大小的均匀程度。如曲线平缓则表示粒径大小相差很大,颗粒不均匀,级配良好;反之, 则颗粒均匀,级配不良。 颗粒分析试验方法:对于粒径大于0. 075mm的粗粒土,可用筛分法;对于粒径小于0. 075mm的细粒土,可用沉降分析法(水分法)。 土的颗粒级配评价:根据颗粒级配曲线的坡度可以大致判断土的均匀程度或级配是否良好。 粒径级配曲线:颗粒级配曲线的越陡,说明颗料粒径比较一致,级配不良。相反,颗粒级配曲线的越缓,说明颗粒不均匀,级配良好。 土中水按存在形式分为:液态水、固态水和气态水。土中液态水分为结合水和自由水两大类;结合水可细分为强结合水和弱结合水两种。 含水量试验方法:土的含水量一般采用“烘干法”测定;在温度100?105°C下烘至恒重。 塑性指数1P越大,表明土的颗粒愈细,比表面积愈大,土的粘粒或亲水矿物含量愈高,土处在可塑状态的含水量变化范围就愈大。 槊性指数定名土类按槊性指数:Ip >17为粘土;10 3|,时,lL>0, 土体处于流动状态;当3在3p和3|,之间时,Il,二0?1, 土体处于可塑状态。粘性土根据液 性指数可划分为坚硬、硬塑、可塑、软塑及流塑五种软硬状态。 土的结构和构造有三种基本类型:单粒结构、蜂窝结构及絮凝结构。 影响土的击实(压实)特性的因素:含水量影响、击实功(能)的影响、土类及级配的影响。 人工填土按组成物质分类:素填土、杂填土和冲填土三类。 有效应力原理,即有效应力等于上层总压力减去等效孔隙压力;其中,等效孔隙压力等于孔隙压力与等效孔隙压力系数之积,等效系数介于0和1之间。 饱和的有效应力原理:(1)饱和土体内任一平面上受到的总应力等于有效应力加孔隙水压力之和;(2)土的强度的变化和变形只取决于土中有效应力的变化。 压缩系数。1.2给土分类:1); ai.2<0.1 MPa1为低压缩性土;2) 0.1 MPa-y0.2vO.5MP广为中压缩性土;3) (7I.2>0.5 MPa*1属高压缩性土。 分层厚度 抗剪强度指标的测定方法选用:直接剪切试验、三轴压缩试验、无侧限抗压强度试验、十字板剪切试验。 弟切破坏而位置: 抗剪强度指标c、(P值的确定:粗粒混合土的抗剪强度c、(P值通过现场剪切试验确定。 地基破坏形式分为:整体剪切破坏、局部剪切破坏、冲剪破坏。 荷载效应组合:1)作用短期效应组合;2)作用长期效应组合。 地基基础方案类型:浅基础和深基础。 浅基础进行稳定性验算内容:1.基础倾覆稳定性验算;2.基础滑动稳定性验算。 摩擦桩的传力机理:大部分荷载传给桩周土层,小部分传给桩端下的土层 水中基坑的围堰工程类型:土围堰、草(麻)袋围堰、钢板桩围堰、双壁钢围堰、地下连续墙围堰。 桩基础组成:多根桩组成的群桩基础。 桩按受力(承载性状)分类:竖向受荷桩、横向受荷桩、桩墩。 桩基础按设置效应分类:挤土桩、部分挤土桩、非挤土桩。 桩基础按承台位置分类:高桩承台基础和低桩承台基础。 我国主要的区域性特殊土类型:湿陷性黄土、膨胀土、软土和冻土。

西南交通大学钢筋混凝土伸臂梁课程设计92#题

钢筋混凝土伸臂梁课程设计第0页钢筋混凝土伸臂梁设计 姓名:XXX 学号:XXX 班级:XXX 指导老师:XXX 设计时间:XXX

钢筋混凝土伸臂梁课程设计第0页 目录 1、钢筋混凝土伸臂梁设计任务书 (1) 2、设计资料 (3) 3、内力计算 (4) 3.1设计荷载值 (4) 3.2组合工况 (4) 2.3 包络图 (6) 4、正截面承载力计算 (7) 4.1 确定简支跨控制截面位置 (7) 4.2 配筋计算 (7) 5、斜截面承载力计算 (10) 5.1 截面尺寸复核 (10) 5.2 箍筋最小配筋率 (10) 5.3 腹筋设计 (10) 6、验算梁的正常使用极限状态 (12) 6.1 梁的挠度验算 (14) 6.1.1 挠度限值 (14) 6.1.2 刚度 (14) 6.1.3 挠度 (17) 6.2 梁的裂缝宽度验算 (17) 7、绘制梁的抵抗弯矩图 (19) 7.1 按比例画出弯矩包络图 (19) 7.2 确定各纵筋及弯起钢筋 (20) 7.3 确定弯起钢筋的弯起位置 (20) 7.4 确定纵筋的截断位置 (20)

1、钢筋混凝土伸臂梁设计任务书 (编写:潘家鼎 2013.10.26) 一、设计题目:某钢筋混凝土伸臂梁设计 二、基本要求 本设计为钢筋混凝土矩形截面伸臂梁设计。学生应在指导教师的指导下,在规定的时间内,综合应用所学理论和专业知识,贯彻理论联系实际的原则,独立、认真地完成所给钢筋混凝土矩形截面伸臂梁的设计。 三、设计资料 某支承在370mm 厚砖墙上的钢筋混凝土伸臂梁,如图1所示。 g k 、g k 、q 2k q 1k l 2 l 1 185 185 185 185 C B A 图1 梁的跨度、支撑及荷载 图中:l 1——梁的简支跨计算跨度; l 2——梁的外伸跨计算跨度; q 1k ——简支跨活荷载标准值; q 2k ——外伸跨活荷载标准值; g k =g 1k +g 2k ——梁的永久荷载标准值。 g 1k ——梁上及楼面传来的梁的永久荷载标准值(未包括梁自重)。 g 2k ——梁的自重荷载标准值。 该构件处于正常坏境(环境类别为一类),安全等级为二级,梁上承受的永久荷载标准值(未包括梁自重)g k1=21kN/m 。 设计中建议采用HRB500级别的纵向受力钢筋,HPB300级别的箍筋,梁的混凝土和截面尺寸可按题目分配表采用。 四、设计内容 1.根据结构设计方法的有关规定,计算梁的内力(M 、V ),并作出梁的内力图及内力包络图。 2.进行梁的正截面抗弯承载力计算,并选配纵向受力钢筋。 3.进行梁的斜截面抗剪承载力计算,选配箍筋和弯起钢筋。

土力学复习资料

:正常毛细水带、毛细网状水带、毛细悬挂水带三种。:不固结不排水 剪、固结不排水剪、固结排水剪。形式有:整体剪切破坏、局部剪切破坏、刺入剪切破坏;,小于某粒径土的百分含量y 与土粒粒径x 的关系为y=0.5x ,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好(填好、不好、一般)试验土样体积60cm3,质量300g ,烘干后质量为260g ,则该土样的干密度为4.35g/ cm 3 。为300g ,恰好成为塑态时质量为260 g ,恰好成为液态时质量为340 g ,则该土样的液性指数为0.5,自然状态下土体处于可塑状态。流速度为0.1m/s ,该土样的渗透系数为5×10-8 m/s ,则当水在土样中流动时产生的动水力为2×1010 N/m 3。2m ,宽1m ,自重5kN ,上部载荷20kN ,当载荷轴线与矩形中心重合时,基底压力为12.5kN/m 2;当载荷轴线偏心距为基础宽度1/12时,基底最大压力为18.75kN/m 2,基底最 小压力为6.25kN/m 2。工程上常用不同粒径颗粒的相对含量来描述土的颗粒组成情况,计算地下水位以下土层的自重应力时应当用有效重度。可用塑性指数来衡量。用液性指数来描 水在砂性土体中渗流过程中,渗流速度与水头梯度成正比。动水力指水流作用在单位体积土体中土颗粒上的力。:土的有效应力等于总应力减去孔隙水压力;土的有效应力控制了土的变形及强度性能。:外界力的作用破坏了土体内原有的应力平衡状态;土的抗剪强度由于受到外界各种因素的影响而降低。 答:土的密度ρ=m/v ;土粒密度ρ=ms/vs ;含水量;ω=m ω/ms ; 干密度ρd=ms/v ;饱和密度ρsat=(mw+ms )/v ;浮重度γ’=γsat-γw ;孔隙比e=vv/vs ;孔隙率n=vv/v ;饱和度 Sr=vw/vv 。答:土的矿物成分、颗粒形状和级配;含水量;原始密度;粘性土触变 、液限、塑性指数和液性指数?怎样测定?答:1.塑限:粘性土由半固态变到可塑状态的分界含水量,称为塑限。用“搓条法”测定;2.液限:粘性土由可塑状态变化到流动状态的分界含水量,称为液限。用“锥式液限仪”测定;3.塑性指数:液限与塑性之差。4.液限指数:IL=(ω-ωp )/(ωL -ωp ), 天然含水量用“烘干法”测定。?其测定方法有哪些?答:1.土体抵抗剪切破坏的极限承载能力,称为土的抗剪强度 2.测定方法有:直接剪切试验;三轴剪切试验;无侧限抗压试验;十字板剪切试验;大型 有哪几种确定方法?答:1.是指地基土单位面积上所能承受荷载的能力;2.确定方法有:现场载荷试验;理论计算;规范法。 及冻胀现象对工程的危害?答:1.其主要原因是,冻结时土中未冻结区水分向冻结区迁移和积聚的结果;2.对工程危害:使道路路基隆起、鼓包,路面开裂、折断等;使建筑物或桥梁抬起、开裂、倾斜或倒塌。 ,可能出现怎样的工程危害,试根据所学土力学知识说明危害成因及处理方法?答:1.基坑开挖采用表面直接排水可能发生流沙现象;原因是动水力方向与土体重力方向相反,当土颗粒间的压力等于0时,处于悬浮状态而失稳,则产生流沙现象;处理方法为采用人工降低地下水位的方法进行施工。 2.路堤两侧有水位差时可能产生管涌现象;原因是水在砂性土中渗流时,土中的一些细小颗粒在动水力作用下被水流 带走;处理方法为在路基下游边坡的水下部分设置反滤层。前许多都出现了下述现象:路面松软、开裂、冒泥(翻浆)。试根据所学土力学知识说明现象成因及影响因素?答:成因主要来源于季节性冻土的冻融,影响因素如下:1.土的因素:土粒较细,亲水性强,毛细作用明显,水上升高度大、速度快,水分迁移阻力小,土体含水量增大,导致强度降低,路面松软、冒泥;2.水的因素:地下水位浅,水分补给充足,所以冻害严重,导致路面开裂;3.温度的因素。冬季温度降低,土体冻胀,导致路面鼓包、开裂。春季温度升高,土体又会发生融沉;。 地基荷载是否为基底压力?请说明原因?答:不是。1.由于桥墩基础埋置较深,基础底面荷载是作用在地基内部某深度处;2.因此计算附加应力时应去除基础所占空间处原有土体自重的影响, 即计算桥墩基础下的地基附加应力时应用P 0计算;3.P 0=p-γD (p-基底压力,γ-土体重度,D-基础埋深)土坡、粘性土土坡的坡高是否受限制?请说明原因?答:1.砂性土土坡的坡高不受限制;根据土坡稳定性分析理论,砂性土的安全系数为:K=tan Φ/tan β,所以只要坡角不超过其内摩擦角即可,与坡高无关;;2.粘性土土坡的坡高受

最新西南交通大学地下工程课程设计(1)

地铁车站主体结构设计(地下矩形框架结构) 西南交通大学地下工程系

目录 第一章课程设计任务概述 0 1.1 课程设计目的 0 1.2 设计规范及参考书 0 1.3 课程设计方案 0 1.3.1 方案概述 0 1.3.2 主要材料 (3) 1.4 课程设计基本流程 (4) 第二章平面结构计算简图及荷载计算 (5) 第三章结构内力计算 (8) 第四章结构(墙、板、柱)配筋计算 (11)

第一章课程设计任务概述 1.1 课程设计目的 初步掌握地铁车站主体结构设计的基本流程;通过课程设计学习,熟悉地下工程“荷载—结构”法的有限元计算过程;掌握平面简化模型的计算简图、荷载分类及荷载的组合方式、弹性反力及其如何在计算中体现;通过实际操作,掌握有限元建模、划分单元、施加约束、施加荷载的方法;掌握地下矩形框架结构的内力分布特点,并根据结构内力完成配筋工作。为毕业设计及今后的实际工作做理论和实践上的准备。 1.2 设计规范及参考书 1、《地铁设计规范》 2、《建筑结构荷载规范》 3、《混凝土结构设计规范》 4、《地下铁道》(高波主编,西南交通大学出版社) 5、《混凝土结构设计原理》教材 6、计算软件基本使用教程相关的参考书(推荐用ANSYS) 1.3 课程设计方案 1.3.1 方案概述 某地铁车站采用明挖法施工,结构为矩形框架结构,结构尺寸参数详见表1-1。车站埋深3m,地下水位距地面3m,中柱截面的横向(即垂直于车站纵向)尺寸固定为0.8m(如图1-1标注),纵向柱间距8m。为简化计算,围岩为均一土体,土体参数详见表1-2,采用水土分算。路面荷载为2 kN,钢筋混凝土 20m /

西南交大继电保护及课程设计

-、问答题(16分) 1.三段式电流保护其各段是如何实现选择性的?比较三段式电流保护第1. I.川段的灵敏度和保护范围。 电流I段是靠电流动作值来实现动作选择性的,因为动作电流大于本线路末端短路时可能通过保护的最大短路电流,保证了区外短路时不会误动。 电流II段是通过动作电流和动作时限共同实现选择性的,因为II段的动作电流大于相邻线路电流I段的动作电流,因此相邻线路I段以外的范围短路,保护不会误动,而I段范围内的短路,则因为其动作时限大于相邻线路I段的动作时限而不会误动。 电流III段是通过动作电流和动作时限实现选择性的,因为III段的动作值满足灵敏度逐级配合关系,且动作时限是按阶梯原则整定的,则距离电源最远的保护动作时限最短,然后逐级增加一个时限级差△t。 由于电流III段的动作电流是按躲过最大负荷电流整定的,因此动作值最小,从而动作最灵敏。 二单项选择题(88分) 2.小电流配电系统的中性点经消弧线圈接地,普遍采用()。 A.全补偿 B.过补偿C、欠补偿 正确答案: B 3.考虑助增电流的影响,在整定距离保护I段的动作阻抗时,分支系数应取()。 A.大于1,并取可能的最小值 B.大于1,并取可能的最大值 C.于1,并取可能的最小值 正确答案: C 4、() 既能作被保护线路的主保护,又可作相邻线路的后备保护。 A.闭锁式方向纵联保护B、闭锁式距离纵联保护 C.纵联电流相位差动保护 正确答案: B 5.大接地电流系统发生单相接地故障,故障点距母线远近与母线上零序电压的关系是() . A.无关 B.故障点越远零序电压越高C、故障点越远零序电压越低 正确答案: 6、以下关于三段式电流保护的说法,正确的是(). A.电流速断保护在最小运行方式下的保护范围最大 B.限时电流速断保护-般在本线路首端发生短路时不应该动作切除故障 C、定时限过电流保护在本线路输送最大负荷时应该动作跳闸 正确答案: B 7.方向闭锁高频保护发信机起动后,当判断为内部短路时,() 。 A.两侧发信机立即停信B、两侧发信机继续发信 C.反方向-侧发信机继续发信 正确答案,A 8.电力系统发生故障时,由故障设备(或线路)的保护首先切除故障,是继电保护()的要求。 A.选择性B、可靠性 c.灵敏性 正确答案: A 9.对具有同步检定和无电压检定的重合闸装置,在线路发生瞬时性故障跳闸后()。 A.先台的-侧是检同期侧B、先合的-侧是检无压侧 c.两侧同时台闸 正确答案: B 10、在高频保护的通道加工设备中的()主要是起到阻抗匹配的作用,防止反射,以减少衰耗。 A. 高频阻波器 B. 耦合电容器C、结合滤波器 正确答案: C 11.变压器差动保护的范围为() . A.变压器低压侧 B.变压器高压侧 C.压器两侧电流互感器之问设备 正确答案: C

土力学复习资料(整理)知识讲解

土力学复习资料 第一章绪论 1.土力学的概念是什么?土力学是工程力学的一个分支,利用力学的一般原理及土工试验,研究土体的应力变形、强度、渗流和长期稳定性、物理性质的一门学科。 2.土力学里的"两个理论,一个原理"是什么?强度理论、变形理论和有效应力原理 3.土力学中的基本物理性质有哪四个?应力、变形、强度、渗流。 4. 什么是地基和基础?它们的分类是什么? 地基:支撑基础的土体或岩体。分类:天然地基、人工地基基础:结构的各种作用传递到地基上的结构组成部分。根据基础埋深分为:深基础、浅基础 5.★地基与基础设计必须满足的三个条件★ ①作用于地基上的荷载效应(基底压应力)不得超过地基容许承载力特征值,挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。即满足土地稳定性、承载力要求。 ②基础沉降不得超过地基变形容许值。即满足变形要求。 ③基础要有足够的强度、刚度、耐久性。 6.若地基软弱、承载力不满足设计要求如何处理?需对地基进行基础加固处理,例如采用换土垫层、深层密实、排水固结、化学加固、加筋土技术等方法进行处理,称为人工地基。 7.深基础和浅基础的区别? 通常把埋置深度不大(3~5m),只需经过挖槽、排水等普通施工程序就可以建造起来的基础称为浅基础;反之,若浅层土质不良,须把基础埋置于深处的好地层时,就得借助于特殊的施工方法,建造各种类型的深基础(如桩基、墩基、沉井和地下连续墙等。) 8.为什么基础工程在土木工程中具有很重要的作用? 地基与基础是建筑物的根本,统称为基础工程,其勘察、设计、施工质量的好坏直接影响到建筑物的安危、经济和正常使用。基础工程的特点主要有:①由于基础工程是在地下或水下进行,施工难度大②在一般高层建筑中,占总造价25%,占工期25%~30%③隐蔽工程,一旦出事,损失巨大且补救困难,因此基础工程在土木工程中具有十分重要的作用。 第二章土的性质与工程分类 1.土:连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不同的搬运方式,在各种自然环境中生成的沉积物。 2.三相体系:固相(固体颗粒)、液相(土中水)、气相(气体)三部分组成。 3.固相:土的固体颗粒,构成土的骨架,其大小形状、矿物成分及组成情况是决定土物理性质的重要因素。 土的矿物成分:土的固体颗粒物质分为无机矿物颗粒和有机质。 颗粒矿物成分有两大类:原生矿物、次生矿物。 原生矿物:岩浆在冷凝过程中形成的矿物,如石英、长石、云母。 次生矿物:原生矿物经化学风化作用的新的矿物,如黏土矿物。 黏土矿物的主要类型:蒙脱石、伊利石、高岭石(吸水能力逐渐变小) 土的粒组:粒度:土粒的大小。粒组:大小、性质相近的土粒合并为一组。画图: <——0.05——0.075——2——60——200——>粒径(mm) 粘粒粉粒| 砂粒圆砾| 碎石块石 细粒| 粗粒| 巨粒 土的颗粒级配:土中所含各颗粒的相对含量,以及土粒总重的百分数表示。△ 颗粒级配表示方法: 曲线纵坐标表示小于某土粒的累计百分比,横坐标则是用对数值表示的土的粒径。曲线平缓则表示粒径大小相差很大,颗粒不均匀,级配良好;反之,则颗粒均匀,级配不良。*书本P7 表2.2和图2.5 判断土质的好坏。

铁路路基工程课程设计西南交大

课程名称:铁路路基工程 设计题目:软土地基加固设计 专业:铁道工程 年级: 姓名: 学号: 设计成绩: 指导教师(签章 西南交通大学峨眉校区 年月日 设计任务书 专业铁道工程姓名唐强学号20087125 开题日期:2011 年 5 月11 日完成日期:2011 年 6 月10 日题目软土地基加固设计

一、设计的目的 通过设计,巩固所学的软土地基处理的基本知识,熟悉软土地基处理的原理和方法,从而加深对所学内容的理解,提高综合分析和解决实际工程问题的能力。(参考 二、设计的内容及要求 1.路基边坡坡度及边坡防护设计 2.计算路堤极限高度 H,判断是否需要采用加固措施; c 3.通过比选确定应选择何种加固方案; 4.掌握中轴线线下应力的计算和沉降量的计算; 5.固结度修正的计算; 6.绘制路基加固断面图; 三、指导教师评语 四、成绩 指导教师(签章 年月日 一、设计目的 本课程设计的目的是使学生能综合应用《铁路路基工程》课程所学知识,并熟悉铁路路基设计的基本过程。

二、设计内容 1.路基边坡坡度的设计; 2.路基本体工程的设计; 3.路基边坡防护工程的设计; 4.基底设计(针对软土地区。 三、设计资料 1.线路资料 常速,直线地段,单线路堤,路堤高m 7,路基面宽m 5.7,边坡坡度75.1:1:1=m ,线路等级按I 级次重型标准,活载换算高度m h 4.30=,宽m l 5.30=。 2.地基条件 地面以下m 13范围内为软土,灰黑色、流态;m 13以下为中砂层,地下水位与地面齐平。软土竖向固结系数为s cm C v /10323-?=,径向固结系数为 s cm C r /10 423 -?=; 变形模量为2/30cm kg ,泊松比4.0=μ,容重3 /3.17m kN =γ, kPa C u 18=,?=5.4u ?,?=20cu ?。 3.填料

土力学期末复习资料

土力学与基础工程 0.土:地球表面的整体岩石在大气中经受长期的风化作用而形成的、覆盖在地表上碎散的、没有胶结或胶结很弱的颗粒堆积物。 1.土的主要矿物成分:原生矿物:石英、长石、云母 次生矿物:主要是粘土矿物,包括三种类型 高岭石、伊里石、蒙脱石 2.粒径:颗粒的大小通常以直径表示。称为粒径(mm)或粒度。 3.粒组:粒径大小在一定范围内、具有相同或相似的成分和性质的土粒集合。 4.粒组的划分:巨粒(>200mm) 粗粒(0.075~200mm) 卵石或碎石颗粒(20~200mm) 圆砾或角砾颗粒(2~20mm) 砂(0.075~2mm) 细粒(<0.075mm)粉粒(0.005~0.075mm) 粘粒(<0.005mm) 5.土的颗粒级配:土由不同粒组的土颗粒混合在一起所形成,土的性质主要取决于不同粒组的土粒的相对含量。土的颗粒级配就是指大小土粒的搭配情况。 6.级配曲线法:纵坐标:小于某粒径的土粒累积含量 横坐标:使用对数尺度表示土的粒径,可以把粒径相差上千倍的粗粒都表示 出来,尤其能把占总重量少,但对土的性质可能有主要影响的颗粒部分清楚 地表达出来. 7.不均匀系数:可以反映大小不同粒组的分布情况,Cu越大表示土粒大小分布范围广,级配良好。 8.曲率系数:描述累积曲线的分布范围,反映曲线的整体形状 9.土中水-土中水是土的液体相组成部分。水对无粘性土的工程地质性质影响较小,但粘性

土中水是控制其工程地质性质的重要因素,如粘性土的可塑性、压缩性及其抗剪性等,都直接或间接地与其含水量有关。 10.结晶水:土粒矿物内部的水。 11.结合水:受电分子吸引力作用吸附于土粒表面的土中水。 12.自由水:存在于土粒表面电场影响范围以外的土中水。 13.表示土的三相组成部分质量、体积之间的比例关系的指标,称为土的三相比例指标。主 要指标有:比重、天然密度、含水量(这三个指标需用实验室实测)和由它们三个计算得出的指标干密度、饱和密度、孔隙率、孔隙比和饱和度。 14.稠度:粘性土因含水量的不同表现出不同的稀稠、软硬状态的性质称为粘性土的稠度。 15.粘性土的界限含水量:同一种粘性土随其含水量的不同,而分别处于固态、半固态、可塑状态及流动状态。由一种状态转变到另一种状态的分界含水量,叫界限含水量 16.可塑性是粘性土区别于砂土的重要特征,可塑性的大小用土处在可塑状态时的含水量的变化范围来衡量,从液限到塑限含水量的变化范围越大,土的可塑性越好。 17.塑性指数:指液限和塑限的差值(省去%号),即土处在可塑状态的含水量变化范围,用IP表示。 18.塑性指数是粘性土的最基本、最重要的物理指标,其大小取决于吸附结合水的能力,即与土中粘粒含量有关,粘粒含量越高,塑性指数越高(粘土矿物成分、水溶液)。 19.液性指数:粘性土的天然含水量和塑限的差值与塑性指数之比,用I L表示。 20.液性指数表证天然含水量与界限含水量间的相对关系,可塑状态的土的液性指数在0~1之间;液性指数大于1,处于流动状态;液性指数小于0,土处于固态或半固体状态。21.渗透:土孔隙中的自由水在重力作用下发生运动的现象称为水的渗透,而土被水流透过的性质,称为土的渗透性。 22.土渗透性的影响因素:土的粒度成分及矿物成分、合水膜厚度、土的结构构造、水的粘滞度、土中气体 23.渗透水流施于单位土体内土粒上的力称为渗流力、动水压力。

西南交大钢桥课程设计讲解学习

第二章 主桁杆件内力计算 第一节 主力作用下主桁杆件内力计算 1恒载 桥面 p 1=10kN/m ,桥面系p 2=6.29kN/m,主桁架 p 3=14.51,联结系p 4=2.74kN/m , 检查设备 p 5=1.02kN/m , 螺栓、螺母和垫圈 p 6=0.02(p 2+p 3+p 4),焊缝 p 7=0.015(p 2+p 3+p 4) 每片主桁所受恒载强度 P=[10+6.29+14.51+2.74+1.02+0.02(6.29+14.51+2.74)+0.015(6.29+14.51+2.74)]/2 =17.69 kN/m , 近似采用 p =18 kN/m 。 2 影响线面积计算 (1)弦杆 影响线最大纵距12 l l y lH ?= 影响线面积12 l y Ω=? A1A3: 1218.4273.68 18.42,73.68,0.2, 1.16492.112.664 l l y α-?==== =-? ()1 92.1 1.16453.582 Ω=??-=-m E2E4:1227.6364.47 27.63,64.47,0.3, 1.52792.112.664 l l y α?==== =? 1 92.1 1.52770.332 Ω=??=m 其余弦杆计算方法同上,计算结果列于表中。 (2) 斜杆 ' '22 11,,sin sin l l y y l l θθ=?=?

1 1.236 sinθ === ()() ''' 1212 11 , 22 l l y l l y Ω=+?Ω=+? 式中' 111 1 ''' 1 88 , l l l y l y y y y y - === + E0A1: 12 82.89 9.21,82.89,0.1, 1.236 1.11 92.1 l l y α ====?= 1 92.1 1.1151.23 2 Ω=??=m A3E4:' 22 55,26 55.26,29.43, 1.2360.742 92.1 l l y ===?=, ' 11 29.439.210.742 1.2360.371, 6.14 92.10.7420.371 y l ? =-?=-== + , 6.14 0.1 55.26 6.14 α== + , '' 1 3.07 9.21 6.14 3.07,0.1 27.63 3.07 lα =-=== + , () 1 6.1455.260.74222.78 2 Ω=+?=m, ()() ' 1 3.0727.630.371 5.70 2 Ω=+?-=-m, 22.78 5.7017.08 Ω=-= ∑m 其余斜杆按上述计方法计算,并将结果列于表中。 (3)吊杆 1.0 y=, 1 118.429.21 2 Ω=??=m 3恒载内力 p N p =Ω ∑,例如 02 E E:18.030.14542.54 p N kN =?= 45 E A:() 18.0 5.4497.92 p N kN =?-=- 55 A E:18.09.21165.78 p N kN =?= 4活载内力 (1)换算均布活载k

土力学复习资料

1、某一块试样在天然状态下的体积为60cm3,称得其质量为108g ,将其烘干后称得质量为96.43g ,根据试验得到的土粒相对密度ds 为2.7,试求试样的湿密度、干密度、饱和密度、含水率、孔隙比、孔隙率和饱和度。 【解】(1)已知V =60cm3,m=108g , 得 ρ=m / v=180 / 60=1.8g/cm3 (2)已知ms=96.43g , 则 mw=m -ms=108-96.43=11.57g 于是 w= mw / ms =11.57/96.43=12% (3)已知ds=2.7,则 Vs= ms / ρs=96.43 /2.7=35.7cm3 Vv=V -Vs=60-35.7=24.3cm3 于是 e= Vv / Vs =24.3 /35.7=0.68 (4) n= Vv / V =24.3 /60=40.5% (5)根据ρw 的定义 Vw = mw /ρw=11.57 /1=11.57cm3 于是 St= Vw / Vv=11.57 /24.3=48% 2、某一施工现场需要填土,基坑的体积为2000m3,土方来源是从附近土丘开挖,经勘察,土的比重为 2.70,含水量为15%,孔隙比为0.60,要求填土的含水量为17%,干重度为17.6KN/m3,问: ⑴取土场土的重度、干重度和饱和度是多少? ⑵应从取土场开采多少方土? ⑶碾压时应洒多少水?填土的孔隙比是多少? 31,0.6,10.6 1.6, 2.701 2.70 0.15 2.700.405 0.4052.700.405 3.105 3.1051019.41/,1.6 2.701.6 s s s s s s s s w s w w w s w s d d d e V m m m m V m m m m g g kN m V m g g V ρρωργργρ=∴===+=+===?===?====+=+=∴==?===V V 令V 与在数值上相等, 取土场的土的重度为: 土的干重度为:V V V V V ==331016.88/,2.700.6 1.01020.63/1.6s v w sat sat kN m m V g g kN m V ργρ?=++?= =?=土的饱和重度为:= 2)设原状土的体积为V , 则()1S V V e =+---------①

西南交通大学路基课程设计

西南交通大学《路基工程》课程设计报告 学生姓名: 学生学号: 班级编号: 指导教师:王迅 2015 年 6月 5 日

目录 1设计资料 (1) 2说明书 (1) 3计算书 (5) 4设计图纸 (13) 5参考文献 (15) 6附录 (16)

1设计资料 1.1线路基本信息 某Ⅰ级重型双线铁路,旅客列车设计行车速度140km/h,K2+500~K3+500 段路堤处于直线地段,路堤挡土墙高度9m,挡土墙上部路堤高度为1m。根据实际情况,需设置重力式挡土墙。 1.2设计荷载 只考虑主力(主要力系)的作用,且不考虑常水位时静水压力和浮力。 1.3设计材料 挡土墙材料为片石砌体,墙背填料为碎石类土。相关参数可以参考附表。 2说明书 2.1认真分析设计任务书所提供的设计依据。 2.2依据 依据《铁路路基设计规范(TB10001-2005)》,确定双线铁路的线间距,并确定路基各部分尺寸。 2.3换算土柱的确定 进行路基及其加固建筑物的力学检算时,系将路基面上的轨道静载和列车竖向活载一起换算成与路基土体容重相同的矩形土体,此为换算土柱。 绘制出换算土柱高度及分布宽度计算图示,并选取参数进行计算。计算结果可参照《铁路路基设计规范(TB10001-2005)》附表A进行检查。 当墙后填料不均匀时,为方便计,可将墙后填料视作均质材料进行计算,容重可取墙后填料的平均容重。 2.4挡土墙尺寸的初步拟定 采用重力式仰斜挡土墙。根据规范,初步拟定墙顶宽度、墙背和墙胸的坡度、墙底宽度和坡度,然后进行检算。

2.5挡土墙设计荷载的计算 作用在挡土墙上的力,一般可只计算主力,在浸水地区、地震动峰值加速度为0.2g (原为八度)及以上地区及有冻胀力等情况下,尚应计算附加力和特殊力。本设计中只考虑如下主力: 1、墙背填料及荷载的主动土压力 作用在挡土墙墙背的主动土压力,一般按库仑主动土压力公式计算。 当破裂面交于路基面时,破裂棱体的面积S 随着挡土墙及破裂面位置而变化, 但都可归纳为一个表达式: 00tan S A B θ=- 式中 ()00,,A f H a h = ()000,,,,,,B f H a b h K l α= 当边界条件确定后,A 0、B 0为常数,并可从破裂棱体的几何关系求得。 附表《各种边界条件下的库仑 主动土压力公式》给出了不同边界条件下的库仑主动土压力计算公式。在具体计算时,由于无法预知破裂面的位置,一般是先假设破裂面位置,然后按此情况计算出破裂角θ,再根据几何关系来校核假设是否正确。若假设不合理,则需选用另外的破裂面位置重新计算,直至校核合理。最后可根据附表中公式计算土压力的大小,方向和作用点位置。 编程思路:限定破裂角θ由α~900-υ循环,给定搜索步长Δθ=0.1~0.50,以不同破裂角θ值确定相应土压力,从中找出最大值即为主动土压力。 2、墙身重力及位于挡土墙顶面上的恒载 (1)墙身重力可由挡墙面积乘以挡墙圬工的容重得到; (2)挡土墙顶面上的恒载:若设计中的换算土柱一部分已侵入挡土墙墙顶范围,则此部分换算土柱应计入挡土墙顶面上的恒载。 3、基底的法向力及摩擦力

土力学与基础工程复习考试资料

一、名词解释 二、1. 最优含水率在击数一定时,当含水率较低时,击实后的干密度随着含水率的增加而增大;而当含水率达到某一值时,干密度达到最大值,此时含水率继续增加反而招致干密度的减小。干密度的这一最大值称为最大干密度,与它对应的含水率称为最优含水率。 2. 静止侧压力系数土体在无侧向变形条件下,侧向有效应力与竖向有效应力之比值。 3. 抗剪强度 土体抵抗剪切变形的最大能力或土体频临剪切破坏时所能承受的最大剪应力称为土的抗剪强度。 4. 主动土压力当挡土墙离开填土移动,墙后填土达到极限平衡状态时,作用在墙上的土压力称为主动土压力。 5. 允许承载力地基频临破坏时所能的基底压力称为地基的极限承载力,将土中的剪切破坏区限制在某一区域范围内,视地基土能承受多大的基底压力,此压力即为允许承载力。容许承载力等于极限承载力除以安全系数。 . 管涌:管涌是渗透变形的一种形式.指在渗流作用下土体中的细土粒在粗土颗粒形成的空隙中发生移动并被带出的现象. 被动土压力:当挡土墙向沿着填土方向转动或移动时,随着位移的增加墙后受到挤压而引起土压力增加,当墙后填土达到极限平衡状态时增加到最大值,作用在墙上的土压力称为被动土压力。 土:是各类岩石经长期地质营力作用风化后的产物,是由各种岩石碎块和矿物颗粒组成的松散集合体。 粒组:将工程性质相似,颗粒大小相近的土粒归并成组,按其粒径大小分成若干组别,称为粒组。 土的结构:指组成土的土粒大小、形状、表面特征,土粒间的连结关系和土粒的排列情况,其中包括颗粒或集合体间的距离、孔隙大小及其分布特点。 塑性指数:粘性土中含水量在液限与塑限两个稠度界限之间时,具有可塑性,且可塑性的强弱可由这两个稠度界限的差值大小来反映,这差值就称为塑性指数I P。即 渗透系数:反映土的透水性能的比例系数,是水力梯度为1时的渗透速度,其量纲与渗透速度相同。其物理含义是单位面积单位水力梯度单位时间内透过的水量。 角点法:利用角点下的应力计算公式和应力叠加原理推求地基中任意点的附加应力的方法称为角点法。 侧限压缩模量:土在完全侧限条件下,竖向附加应力σz与相应竖向应变εz之比值,即Es=σz/εz。 附加应力:在外荷作用下,土体中各点产生的应力增量。 基底压力:基础底面传递给地基表面的压力,由于基底压力作用于基础与地基的接触面上,故也称基底接触压力。 平均固结度:土层发生渗流固结,在某一时刻t,土层骨架已经承担起来的有效应力对全部附加压应力的比值,称为土层的平均固结度。 极限承载力:地基从局部剪损破坏阶段进入整体破坏阶段,即将丧失稳定性时的基底压力。临界荷载:塑性区最大深度限制在基础宽度的四分之一(或三分之一)时相应的基底压力。容许承载力:地基稳定有足够的安全度,并且变形控制在建筑物的容许范围内时,单位面积所能承受的最大荷载 抗剪强度:指土体抵抗剪切破坏的极限能力,其数值等于土体产生剪切破坏时滑动面上的剪

西南交通大学《建筑结构设计》课程设计

《建筑结构设计》 整体式单向板肋梁楼盖课程设计 指导教师: 姓名: 学号: 班级: 2014年4月

目录 一、设计资料 (2) 1、结构形式 (2) 2、建筑平面尺寸 (2) 3、楼面构造 (2) 4、荷载 (2) 二、结构平面布置 (2) 1、梁格布置 (2) 2、截面尺寸 (3) 三、板的设计 (3) 1、荷载计算 (3) 2、设计简图 (3) 3、配筋计算 (4) 4、配筋图 (5) 四、次梁设计 (6) 1、荷载计算 (6) 2、设计简图 (6) 3、内力计算 (7) 4、正截面承载力计算 (7) 5、斜截面强度计算 (9) 五、主梁设计 (10) 1、荷载计算 (10) 2、设计简图 (11) 3、内力分析 (11) 4、正截面承载力计算 (12) 5、斜截面承载力计算 (13) 6、抵抗弯矩图及配筋图 (14)

一、设计资料 1.结构形式 采用多层砖混结构,内框架承重体系。外墙厚370mm ,钢筋混凝土柱截面尺寸为 400mm ×400mm 。 2.建筑平面尺寸:m m 3021 ,第36题号(题号见附表七);图示范围内不考虑楼梯间。 3.楼面构造: 4. 荷载 永久荷载:包括梁、楼板及构造层自重。钢筋混凝土容重25kN/m3,水泥砂浆容重20 kN/m3,石灰砂浆容重17 kN/m3G=1.2或1.35。 可变荷载:楼面均布活荷载标准值见附表六,分项系数Q=1.4或1.3。 二、结构平面布置: 1、梁格布置: 梁格布置如图所示。主梁、次梁和板的跨度分别为6m 、4.2m 和2m 。

2、截面尺寸: 因结构的自重和计算跨度都和板的厚度、梁的截面尺寸有改观,故线确定板、梁的尺寸 (1)、板: 按刚度要求连续板的厚度取: mm l 5040 h => 对一般楼盖的板厚应大于60mm ,故取mm 80h =。 (2)、次梁的截面高度应满足 ,280~233)151~181h mm l ==(取2,150b ,300h ===b h mm mm 取。 (3)、主梁的截面高度应该满足 4.2,250b 600h ,750~489)81~141(h =====b h mm mm mm l 。取取 三、 板的设计 1、荷载计算 永久荷载计算: 水磨石面层 2 m /65.0kN 80mm 厚的钢筋混凝土板 2 m /0.208.025kN =? 板底粉刷 2 /25.0m kN 总永久荷载标注值:2 /9.265.025.00.2m kN g k =++= 总活载标准值: 3.1,/4/0.6Q 2 2=>=γ故取m kN m kN q k 总荷载值: 2 2 /72.11,/715.113.135.1m kN p m kN q g p k k k k ==?+?=取 2、设计简图 次梁的截面为mm mm b h 300150?=? 边跨:mm l mm h l l n n 1937025.118452 01=<=+ = 中跨:mm l l n 189002==

相关文档
最新文档