四氯化硅氢化

四氯化硅氢化
四氯化硅氢化

四氯化硅氢化

一、副产物四氯化硅

1.四氯化硅的产生

在多晶硅生产中,无论是SiHCl3的合成还是氢还原制取多晶硅,都会产生大量的副产物四氯化硅,并随尾气排出,如:

在氢还原中:

主反应:3HCl+Si=SiHCl3+H2

副反应:4SiCl

Si+3SiCl4+2H3

3

2SiCl3 Si+2HCl+SiCl4

在SiHCl3合成中:

主反应:Si+3HCl=SiCl3+H2

副反应:Si+4HCl SiCl4+2H2

SiHCl3合成中副反应产生的SiCl4约占生产物总量的10~20%。这些副产物SiCl4是我们在生产中所不希望产生的,因为他消耗了原料和能源却得不到想要的产品。因此在实际生产中,需要尽量减少副反应及副产物的生成,但副反应又是不可避免的,因此对副产物必须进行综合利用,将其变为有用的产品,这样可以降低成本,创造效益。

2.四氯化硅的性质

四氯化硅在常温常压下是无色透明的液体,无极性,易挥发,有强烈的刺激性,水解后生成二氧化硅和HCl。能与苯、乙醚、氯仿等混合,与醇反应可生成硅酸酯。有用易水解,并生产HCl,所有在有水的环境下具有强烈的腐蚀性。四氯化硅的性质见下表:

SiCl4物理性质表

虽然四氯化硅也可以用氢气还原制备多晶硅,但是与采用三氯氢硅还原相比教,存在如下不足:

SiCl3与SiCl4的氢还原比较

可以看出,如果将这些副产物四氯化硅回收后用来直接制备多晶硅,从能耗和物耗上讲是不划算的。如果直接将这些四氯化硅作为废物处理掉,则更为不划算,原因如下:

1.副产物四氯化硅同样消耗了原料工业硅粉和液氯,作为废物处理掉就会

造成这部分原料的损失,造成多晶硅生产中物料单耗的上升,增加了多

晶硅的成本。

2.将四氯化硅作为废料处理会对环境带来污染。

3.将四氯化硅作为废料处理需花费大量资金。

因此,对副产物四氯化硅需要寻找另外的方法进行处理,既可避免对环境的污染又可降低多晶硅生产成本。目前,国内外采用得较多的方法是:a 四氯化硅氢化后转化为三氯氢硅生产多晶硅;b 用四氯化硅生产其他类型的产品,如:硅酸乙酯、有机硅和气相白炭黑等。

在目前先进的改良西门子多晶硅生产工艺中,四氯化硅氢化再利用是构成物料闭路循环的重要一环。因此,作为物料物尽其用比提高多晶硅产量的一个有效手段,四氯化硅经氢化转化为三氯氢硅生产多晶硅是许多多晶硅厂家首先考虑的方法。

结合国内的生产情况,下面对四氯化硅氢化工艺进行简单介绍。

二、四氯化硅氢化的方法

目前,国内外进行四氯化硅氢化转化为三氯氢硅的方法主要有两种。

一种采用的是如下的反应原理:

3SiCl4+Si+2H2——4SiCl3

这种方法是利用四氯化硅与硅粉和氢气在较高温度、压力的沸腾炉中反应,生成三氯氢硅(实际是三氯氢硅、四氯化硅、氢气等的混合气,需要冷凝后送精馏分离提纯)。据国外报道,其转化率最高为25%左右。这种氢化方法由于采用了工业硅粉,因此得到的产品纯度不高,需要进行进一步的精馏提纯,才能得到最终可供氢还原使用的二氯氢硅,这就加大了能耗。并且由于该反应温度较高,反应压力也较高(十多个大气压),对设备的要求也很高。此外,由于硅粉的硬度很大,在反应过程中呈沸腾状,对沸腾炉的内壁造成严重的摩擦,使内壁变薄,缩短沸腾炉的寿命。

近几年来国内外逐渐发展了另一种四氯化硅氢化的防腐,即“热氢化”,其反应原理如下:

将一定配比的四氯化硅、氢气的混合气体送人反应炉,在高温下进行反应,得到三氯氢硅,同时生成氯化氢。整个过程与氢化还原反应很相似,通用需要制备汽气混合物的蒸发器,氢化反应炉与还原炉也很相似,只不过得到的是三氯氢硅而不是多晶硅。热氢化的整个流程示意如下:

(全精馏提纯)

四氯化硅被送到蒸发器中蒸发为气态,并与回收氢气及补充的氢气按一定比例的配比(摩尔比)形成汽气混合物,这一过程的原理、设备及操作和氢还原的

蒸汽混合物制备过程相同,只是两者的控制参数不同。所制得的四氯化硅和氢气的混合气进入氢化炉中,在氢化炉内炽热的发热体表面发生反应,生成三氯氢硅和氯化氢。这个过程的四氯化硅并不是全部百分百的转化为三氯氢硅,真正参与反应的四氯化硅只占小部分。因此,从氢化炉内出来的尾气还含有大量的氢气和四氯化硅,已经三氯氢硅和氯化氢,这些尾气被送到回收装置中,将各个组分分离出来,氢气返回氢化反应中,氯化氢送去参与三氯氢硅合成,氯硅烷(其中四氯化硅占大部分,其余是三氯氢硅)送到精馏分离提纯后,四氯化硅返回氢化,三氯氢硅送到氢还原制取多晶硅。

三、四氯化硅热氢化

虽然四氯化硅热氢化过程与氢还原过程很相似,但是在反应的条件、设备及其他一些方面还是有较大的差别,下面就热氢化过程作分段详细叙述。

1.四氯化硅原料的来源

在多晶硅工厂中,四氯化硅是最主要的副产物,产量很大,比如在三氯氢硅合成中,生成三氯氢硅的同时,大约要生成20%的四氯化硅,另外还有氢化还原生成多晶硅的同时也要产生大量的四氯化硅,以及热氢化反应未转化的四氯化硅。这些四氯化硅混同其他氯硅烷经过尾气回收装置冷凝回收后,都在精馏工段分离提纯,得到纯净的四氯化硅作为热氢化的原料。

2.蒸汽混合物的制备

如同氢化还原一样,四氯化硅进入一个类似于换热器的容器中,在其中被加热蒸发,与通入容器中的氢气混合,形成混合气体。为了得到要求配比(摩尔比)的混合气,必须对四氯化硅的蒸发温度和容器的压力进行控制,使其在一规定的值。对设备及过程更详细的说明可参考还原蒸发器相关章节。

3.热氢化反应及反应炉

混合气进入氢化反应炉中,在1000℃以上的高温下反应。因为四氯化硅与氢气反应也可以生成多晶硅,但在这里需要避免这种情况出现,否则在氢化炉的发热体上将沉积一次多晶硅,对发热体及氢化炉体的使用带来影响,并且使四氯化硅对二氯氢硅的转化率降低。根据研究,当四氯化硅与氢气的配比在一定范围内时,并控制所需的反应温度压力,即可避免多晶硅的生成,而使反应向着生成三氯氢硅的方向进行。因此前面的蒸发器的操作尤为重要,运行要稳定且参数要合

理,以确保得到的所需配比的汽气混合物进入氢化炉。

热氢化炉与还原炉很相似,有着类似的炉体结构。但也存在许多不同之处。

⑴发热体。还原炉的发热体是硅芯,多晶硅就沉积在硅芯上,硅芯逐渐变粗成为最终产品多晶硅棒。氢化炉的发热体由一种特殊材料制成,它提供反应所需的温度,并且反应也在其表面进行,但是并没有固体物质沉积在上面。

⑵还原炉属于间歇式生产,当炉内的硅棒生长到所需直径后便会停止反应,将硅棒取出后,再装入硅芯,进行新一炉的生长。氢化炉是连续性生产,一旦混合气通入炉内,便不再停止,因为它的产品并不需要将炉子打开才能得到,产品(三氯氢硅)连同四氯化硅及氢气、HCl源源不断地从出气管道中排出。除非设备进行检修,否则不会停炉。

⑶由于氢化炉中的发热体本身就是电的良导体,而不像硅芯一样冷电阻高不易导电,因此氢化炉的启动不需要专门的如高压启动或预热启动装置。

⑷氢化炉的炉筒冷却水温度低于还原炉的炉筒冷却水温。

⑸氢化炉的进气是从顶部进气,从底部出气。

催化加氢总结

催化加氢学习知识总结 一、概述 催化加氢是石油馏分在氢气的存在下催化加工过程的通称。 ?炼油厂的加氢过程主要有两大类: ◆加氢处理(加氢精制) ◆加氢裂化 ?加氢精制/ 加氢处理 ◆产品精制 ◆原料预处理 ◆润滑油加氢 ◆临氢降凝 ?加氢裂化 ◆馏分油加氢裂化 ◆重(渣)油加氢裂化 ?根据其主要目的或精制深度的不同有: ◆加氢脱硫(HDS) ◆加氢脱氮(HDN) ◆加氢脱金属(HDM) 加氢精制原理流程图 1-加热炉;2-反应器;3-分离器; 4-稳定塔;5-循环压缩机 ◆加氢裂化:在较高的反应压力下,较重的原料在氢压及催化剂存在下进行裂解和加 氢反应,使之成为较轻的燃料或制取乙烯的原料。可分为: ●馏分油加氢裂化 ●渣油加氢裂化 加氢精制与加氢裂化的不同点:在于其反应条件比较缓和,因而原料中的平均分子量和分子的碳骨架结构变化很小。 二、催化加氢的意义

1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 三、国内外几家主要公司的馏分油加氢裂化催化剂 四、加氢过程的主要影响因素 1 反应压力 反应压力的影响往往是通过氢分压来体现的,系统的氢分压取决于操作压力、氢油比、循环氢纯度和原料的汽化率等 ①汽油加氢精制 ?氢分压在2.5MPa~3.5PMa后,汽油加氢精制反应的深度不受热力学控制,而是取 决于反应速度和反应时间。 ?在气相条件下进行,提高反应压力使汽油的反应时间延长,压力对它的反应速度影 响很小,因此加氢精制深度提高。 ?如果压力不变,通过氢油比来提高氢分压,则精制深度下降。 ②柴油加氢精制 ?在精制条件下,可以是气相也可是气液混相。 ?处于气相时,提高反应压力使汽油的反应时间延长,因此加氢精制深度提高。 ?但在有液相存在时,提高压力将会使精制效果变差。氢通过液膜向催化剂表面扩散

有机反应和反应机理总结

有机反应和反应机理总结(二) 来源:王悦的日志 有机反应和反应机理总结(二) (5)还原反应 1乌尔夫-凯惜纳-黄鸣龙还原:将醛或酮、肼和氢氧化钾在一高沸点的溶剂如一缩二乙二醇(HOCH2CH2OCH2CH2OH,沸点245˚C)中进行反应,使醛或酮的羰基被还原成亚甲基,这个方法称为乌尔夫-凯惜纳(Wolff L−Kishner N M)-黄鸣龙方法还原。对酸不稳定而对碱稳定的羰基化合物可以用此法还原。 2去氨基还原:重氮盐在某些还原剂的作用下,能发生重氮基被氢原子取代的反应,由于重氮基来自氨基,因此常称该反应为去氨基还原反应。 3异相催化氢化:适用于烯烃氢化的催化剂有铂、钯、铑、钌、镍等,这些分散的金属态的催化剂均不溶于有机溶剂,一般称之为异相催化剂。在异相催化剂作用下发生的加氢反应称为异相催化氢化。 4麦尔外因—彭杜尔夫还原:醛酮用异丙醇铝还原成醇的一种方法。这个反应一般是在苯或甲苯溶液中进行。异丙醇铝把氢负离子转移给醛或酮,而自身氧化成丙酮,随着反应进行,把丙酮蒸出来,使反应朝产物方面进行。这是欧芬脑尔氧化法的逆反应,叫做麦尔外因—彭杜尔夫(Meerwein H-Ponndorf W)反应。5卤代烃的还原:卤代烃被还原剂还原成烃的反应称为卤代烃的还原。还原试剂很多,目前使用较为普遍的是氢化锂铝,它是个很强的还原剂,所有类型的卤代烃包括乙烯型卤代烃均可被还原,还原反应一般在乙醚或四氢呋喃(THF)等溶剂中进行。 6伯奇还原:碱金属在液氨和醇的混合液中,与芳香化合物反应,苯环被还原为1,4-环己二烯类化合物,这种反应被称为伯奇还原。 7均相催化氢化:一些可溶于有机溶剂中的催化剂称为均相催化剂。在均相催化剂作用下发生的加氢反应称为均相催化氢化。 8克莱门森还原:醛或酮与锌汞齐和浓盐酸一起回流反应。醛或酮的羰基被还原成亚甲基,这个方法称为克莱门森还原。 9罗森孟还原法:用部分失活的钯催化剂使酰氯进行催化还原生成醛。此还原法称为罗森孟(Posenmund, K. W.)还原法。 10斯蒂芬还原:将氯化亚锡悬浮在乙醚溶液中,并用氯化氢气体饱和,将芳腈加入反应,水解后得到芳醛。此还原法称为斯蒂芬(Stephen, H.)还原。 11催化氢化:在催化剂的作用下,不饱和化合物与氢发生的加氢反应称之为催化氢化。 12催化氢解:用催化氢化法使碳与杂原子(O,N,X等)之间的键断裂,称为催化氢解。苯甲位的碳与杂原子之间的键很易催化氢解。 13酮的双分子还原:在钠、铝、镁、铝汞齐或低价钛试剂的催化下,酮在非质子溶剂中发生双分子还原偶联生成频哪醇,该反应称为酮的双分子还原。 14硼氢化-还原反应:烯烃与甲硼烷作用生成烷基硼的反应称为烯烃的硼氢化反

三氯氢硅、四氯化硅相关反应

02.三氯氢硅氢还原反应基本原理 用氢气作为还原剂,在1100~1200℃下还原SiHC13,是目前多晶硅生产的主要方法。由于氢气易于净化,而且在硅中的溶解度极低,所以用氢气还原生产的 多晶硅较其他还原剂(如锌、碘)所制得的多晶硅纯度要高得多。 2.1 三氯氢硅氢还原反应原理 SiHCl 3和H 2混合,加热到900℃以上,就能发生如下反应: )(H C l 3)( Si )( H )(SiHCl 110090023气固气气℃~+???? →←+ 同时,也会产生SiHCl 3的热分解以及SiCl 4的还原反应: 2490032H 3SiCl Si 4SiHCl ++??→←℃ 4HCl Si 2H SiCl 24+?→←+ 此外,还有可能有 43SiCl 2HCl Si 2SiHCl ++?→← HCl SiCl SiHCl 23+?→← 以及杂质的还原反应: 6HC1 2B 3H 2BCl 23+?→←+ 6HC1 2P 3H PCl 23+?→←+ 这些反应,都是可逆反应,所以还原炉内的反应过程是相当复杂的。在多晶 硅的生产过程中,应采取适当的措施,抑制各种逆反应和副反应。以上反应式中, 第一个反应式和第二个反应式可以认为是制取多晶硅的基本反应,应尽可能地使 还原炉内的反应遵照这两个基本反应进行。

四氯化硅氢化 1. 四氯化硅来源与性质 1.1 四氯化硅的产生 在多晶硅生产过程中,在SiHCl 3 合成工序和氢还原制取多晶硅工序,会产生大量的副产物SiCl 4,并随着尾气排出。 在氢还原工序中,会发生以下几个反应: 主反应:Si 3HCl H SiHCl 23+?→?+ 副反应:2490032H 3SiCl Si 4SiHCl ++???→?℃以上 43SiCl 2HCl Si 2SiHCl ++?→? 在SiHCl 3合成工序中主要发生以下反应: 主反应: 23H SiHCl 3HCl Si +?→?+ 副反应: 242H SiCl 4HCl Si +?→?+ SiHCl 3合成中副反应产生的SiCl 4约占生成物总量的约 10% ,在氢还原工序中也有部分SiHCl 3 发生副反应生成了SiCl 4 。在实际生产中,副反应不可避免,但对工艺过程加以控制,可以尽量减少副反应发生,减少副产物的生成。另一方面对于副产物必须进行综合利用,使其转化为有用的原料或产品。这样可以就可以降低总体生产成本,创造出良好的经济效益。 1.2 四氯化硅的性质 四氯化硅在常温常压条件下是无色透明的液体,无极性,易挥发,有强烈的刺激性,遇水即水解生成二氧化硅和 HCl 。并能与苯、乙醚、氯仿等互溶,与乙醇反应可生成硅酸乙酯。由于四氯化硅易于水解,并生成 HCl 所以在有水的

Fe—PNP螯合物催化酮氢化反应机理的DFT研究

Fe—PNP螯合物催化酮氢化反应机理的DFT研究 【摘要】本文采用密度泛函理论(DFT),对Fe-PNP螯合物催化酮氢化反应机理作了深入的理论研究。利用密度泛函理论中的B3LYP方法对反应物、产物、过渡态(TS)的几何构型进行全参数优化,并通过振动频率分析确认各稳定点和过渡态的真实性。计算结果表明,整个催化循环主要有三个步骤:(1)负氢转移过程;(2)一分子氢气异裂加成过程;(3)负氢转移同时Fe-O断裂生成醇并使催化剂再生过程。整个催化过程决速步骤是氢异裂加氢过程,氢异裂加氢反应过程的活化能垒为52.6kJ mol-1,放出热量76.2kJ mol-1。 【关键词】构型优化;密度泛函理论;Fe-PNP螯合物;反应机理 0 引言 酮加氢还原生成醇的反应在有机合成化学特别是精细化工,香料和医药合成中起着重要的作用。目前,催化氢化反应的高效双官能团催化剂主要以钌、铑、铱这类贵金属为活性中心,稀有,价格昂贵,并且具有一定的毒性。有相似活性的铁配合物成为近年人们研究的热点,铁是地球上含量最丰富的过渡金属,其毒性低,价格低,铁配合物对环境友好等,其应用前景宽广[1,2]。以铁为活性组分的催化剂在最近取得了长足的进展,但在铁催化还原酮领域的研究报道还比较少[3,4]。最近Milstein 等合成出一种新的催化剂[Fe(Br)(CO)(H)(PNP-iPr)],他们通过实验方法对催化反应的机理进行了初步探索,推出了反应的中间体,但催化过程过渡态不明确[5]。本文拟采用理论方法对该反应机理进行分析,以期为以后研究铁配合物的催化提供较好的参考和理论指导。 1 研究方法 利用密度泛函理论(DFT)中的B3LYP[6-8]方法对反应物、产物、过渡态(TS)的几何构型进行全参数优化,其中对Fe原子采用LANL2DZ[9]基组,其它原子用6-31+G(d,p)基组进行全面优化,这两个基组的组合记做BS1。然后通过振动频率分析确认各稳定点(没有虚频)和过渡态(有且仅有一个虚频)的真实性,得到各驻点的零点能(ZPE)。除非另有说明,本文中报道的能量值都是在B3LYP/BS1水平上获得的电子能量加上零点振动能(ZPE),以kJ mol-1为单位。以上所有的计算均由Gaussian 03程序[10]完成。 2 结果与讨论 2.1 催化剂和底物的结构 首先对模型催化剂Fe-PNP螯合物和底物苯乙酮在B3LYP/BSI水平上进行结构优化和频率分析,优化得到的Fe-PNP螯合物和底物苯乙酮的几何构型和结构参数如图1所示。将优化得到的Fe-PNP螯合物构型与实验上通过X-射线分析得到的Fe-iPr PNP晶体结构参数进行了对比,发现把异丙基简化为甲基计算得到的

氢化丁腈橡胶技术进展及市场现状

第25卷 第8期2009年4月 甘肃科技 Gansu Science and Technol ogy V ol.25 N o.8 A pr. 2009氢化丁腈橡胶技术进展及市场现状 李 刚,何 春 (兰州石化公司研究院,甘肃兰州730060) 摘 要:介绍了国内外氢化丁腈橡胶生产技术进展和市场现状,总结了存在的不足,并对未来国内氢化丁腈橡胶的发展提出建议。 关键词:氢化丁腈橡胶;生产技术;市场现状 中图分类号:T Q333.7 氢化丁腈橡胶(HNBR)是一种高饱和的腈类弹 性体,是将丁腈橡胶(NBR)链段上的丁二烯单元进 行有选择的加氢制得的。它不仅具有NBR的耐油、 耐磨、耐低温等性能,而且还具有更优异的耐高温、 耐氧化、耐臭氧、耐化学品性能,高腈HNBR的低温 柔韧性更好。HNBR的工艺性能与NBR相似,易混 炼,存放稳定性好,操作安全。主要用于汽车油封、 燃油系统部件、汽车传动带、钻井保持箱和泥浆用活 塞、印刷和纺织用胶辊,坦克带衬垫,航天航空用密 封件,空调密封制品,减震材料等领域。 1 HNBR生产技术进展 HNBR的制备方法主要有3种:NBR溶液加氢 法、NBR乳液加氢法和乙烯-丙烯腈共聚法。 1.1 HNBR溶液加氢法 NBR溶液加氢法是目前工业化采用的主要生 产方法。溶液加氢法首先将NBR粉碎,溶于适宜的 溶剂,在高温、高压反应器中,由贵金属催化作用与 氢气反应,其中催化剂是关键,氢化NBR时,催化剂 只对二烯单元的双键选择性加氢还原成饱和键,并 不氢化丙烯腈单元的侧链腈基-C≡N。目前已开 发的加氢催化剂有钯(Pd)、铑(Rh)、钌等第Ⅷ族贵 金属元素的均相配位催化剂和非均相载体催化剂。 首先问世的非均相载体催化剂是以碳为载体的 Pd/C催化剂,这种催化剂的选择性高,氢化率最高 达95.6%。但在加氢反应中,与炭黑亲合的二烯类 橡胶易吸附在炭黑表面,搅拌时炭黑易凝聚成块存 在于HNBR中,对其硫化特性会产生不良影响。日 本瑞翁公司选用Si O 2为载体的Pd/Si O 2 催化剂,已 实现了工业化。这两种载体催化剂氢化NBR时, NBR催化剂残留物或聚合反应中使用的助剂可能粘附于载体表面或滞留在微孔内,使催化剂活性急剧下降,影响再次使用。 均相配位催化剂目前常见的有3种:钯催化剂、铑催化剂和催化剂。钯型催化剂如[Pd (OAc) 2 ]3,对水和空气稳定,贮运方便,可反复回收利用,价格便宜,但活性和选择性差;钌型催化剂氢化NBR具有非常高的活性,价格较便宜,但选择性差,加氢反应的同时易发生副反应,产生大量凝胶; 铑型催化剂如PhCl(PPh 3 ) 3 具有最高的活性和选择性,氢化率最低为95%。但铑资源紧张、价格昂贵,大规模生产应回收利用。有报道用三氨基硅烷可吸收HNBR中8l%的残余铑。另外,目前关于钌、铑双金属络合物催化剂的专利报道也有许多,我国台湾南帝公司也取得了相关的专利[1]。 1.2 HNBR的乳液加氢法 NBR乳液加氢法是指在NBR的胶乳中直接加入催化剂及其他必要的添加剂制备HNBR方法。目前已报道的有2类,即水溶性W ilkins on催化剂乳液加氢法和水合肼氢化NBR胶乳法。 水溶性W ilkins on催化剂即三(二苯基磷间苯磺酸钠)氯化铑。Singha等利用W ilkins on催化剂对NBR胶乳进行氢化,氢化温度75℃,常压下反应12h,可得氢化度大于60%的HNBR,但有凝胶产生。催化剂浓度提高,氢化度明显增大,但凝胶质量分数也迅速上升。水溶性W ilkins on催化剂催化NBR胶乳加氢虽不需高压设备,且有利于提高生产效率,但是胶乳氢化度不高,还有凝胶生成,产品仅适用于某些直接利用胶乳的场合,而且该催化剂仍要使用贵金属,若要工业化尚需进一步研究。 水合肼氢化法不需在体系中加入氢气,可就地产生强还原剂偶胺,在Cu2+催化下加氢。1984年由W ide Man首次发表了用二酰亚胺作还原剂制备乳液HNBR的工艺,发现NBR胶乳可在水合肼、氧气或

氮化硅材料的性能、合成方法及进展

氮化硅材料的性能、合成方法及进展 摘要:氮化硅作为一种新型无机材料,以其有良好的润滑性,耐磨性,抗氧化等特性受到广泛的关注和深入的研究。以下对氮化硅的材料的性能、合成方法、意义和进展作简单介绍。 关键词:无机材料;氮化硅;合成方法;性能;进展 1前言 由于科学技术的不断发展需要,科学家们一直在不停顿地寻找适用于苛刻条件下使用的理想的新材料。在层出不穷的大量新材料队伍中,氮化硅陶瓷可算是脱颖而出,十分引人注目,日益受到世界各国科学家们的重视。 2氮化硅的材料的性能\合成方法、意义和进展 2.1氮化硅的性能和应用 氮化硅(Si3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。 氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 2.1.1优异的性能 氮化硅陶瓷的优异的性能对于现代技术经常遇到的高温、高速、强腐蚀介质的工作环境,具有特殊的使用价值。比较突出的性能有: (1)机械强度高,硬度接近于刚玉,有自润滑性,耐磨。室温抗弯强度可以高达980MPa以上,能与合金钢相比,而且强度可以一直维持到1200℃不下降。 (2)热稳定性好,热膨胀系数小,有良好的导热性能,所以抗热震性很好,从室温到1000℃的热冲击不会开裂。 (3)化学性能稳定,几乎可耐一切无机酸(HF除外)和浓度在30%以下烧碱(NaOH)溶液的腐蚀,也能耐很多有机物质的侵蚀,对多种有色金属熔融体(特别是铝液)不润湿,能经受强烈的放射辐照。 (4)密度低,比重小,仅是钢的2/5,电绝缘性好。

(完整版)有机化学反应机理详解(共95个反应机理)

一、Arbuzow反应(重排) 亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷: 卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。 本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得: 如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下: 这是制备烷基膦酸酯的常用方法。 除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:

反应机理 一般认为是按 S N2 进行的分子内重排反应: 反应实例 二、Arndt-Eister 反应 酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。 反应机理

重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。 反应实例 三、Baeyer----Villiger 反应 反应机理 过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。因此,这是一个重排反应

具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排: 不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为: 醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。 反应实例

催化氢化反应安全操作规范讲义

竭诚为您提供优质文档/双击可除催化氢化反应安全操作规范讲义 篇一:精细化工之氢化反应的控制 精细化工之氢化反应的过程控制 一、前言 精细化工是生产精细化学品的化工行业,主要包括医药、染料、农药、涂料、表面活性剂、催化剂,助剂和化学试剂等传统的化工部门,也包括食品添加剂、饲料添加剂、油田化学品、电子工业用化学品、皮革化学品、功能高分子材料和生命科学用材料等近20年来逐渐发展起来的新领域,通 常具有以下特点: 1.品种多,更新换代快; 2.产量小,大多以间歇方式生产; 3.由于具有功能性或最终使用性,因此要求产品质量高; 4.技术密集高,要求不断进行新产品的技术开发和应用技术的研究,重视技术服务; 5.设备投资较小; 根据省安全生产监督管理局“关于推进化工企业自动化控制及安全联锁技术改造工作的意见”的要求,根据国内现

行的危险度评价法,从物质、容量、温度、压力和操作等5 个方面,对化工企业各装置的危险度大小进行综合分析,危险等级在高度及以上(危险度分值≥16)的化工生产、储存装置,重点是硝化、氧化、磺化、氯化、氟化、重氮化、加氢反应等危险工艺的化工生产装置,进行化工企业自动化控制及安全联锁技术的改造。由于,精细化工生产过程与一般大化工、石油化工生产具有不同的特点与要求,对它的生产过程进行控制一直是行业内推行的难点,不论是他的环境控制、还是安全控制或者是他的工艺控制都是较难实施的问题。本文仅就精细化工的特点,结合安全改造实施的具体要求,讨论一下具体实施工作中的经验与看法,供大家参考。 二、氢化反应的特点 氢化是有机化合物与氢分子的反应,在医药化工领域,氢化一般有如下两种类型:不饱和键的氢化、脱去某些保护基团(又称氢解)。 在氢化中,高压可以可增加氢在溶剂中的溶解度,氢压对反应速度的影响可以是线性的,也可以是二次方的,甚至更强烈的影响。因此,氢化反应大多采用高压工艺环境。 另外,催化剂在氢化反应中起着重要的作用,大部分氢化都是在催化剂的催化下才得以完成的。 篇二:高压氢化釜操作要点 高压反应釜的操作过程分为安装、加氢、取样、泄氢、

氢化丁腈橡胶的研究进展

氢化丁腈橡胶的研究进展 邓磊高材0904 200921100 摘要:简要介绍了氢化丁腈橡胶(HNBR)的发展概况、化学结构,优异性能和生产工艺,针对不同配方所具有的材料性能特点,重点阐述了基于不同性能要求的氢化丁腈橡胶的配方选择。与其它弹性体相比,氢化丁腈橡胶在耐油、耐老化等性能上均表现出不同程度的优越性,具有优良综合性能。白20世纪90年代以来,氢化丁腈橡胶在汽车、油田、军工等机械工业领域和市场逐步得到广泛应用,对其用途作了简要介绍和展望。 关键词:氢化丁腈橡胶性能运用进展市场 氢化丁腈橡胶(HNBR)是一种高饱和的腈类弹性体,是将丁腈橡胶(NBR)链段上的丁二烯单元进行有选择的加氢制得的。它不仅具有NBR 的耐油、耐磨、耐低温等性能,而且还具有更优异的耐高温、耐氧化、耐臭氧、耐化学品性能,高腈HNBR的低温柔韧性更好。HNBR的工艺性能与NBR相似,易混炼,存放稳定性好,操作安全。主要用于汽车油封、燃油系统部件、汽车传动带、钻井保持箱和泥浆用活塞、印刷和纺织用胶辊,坦克带衬垫,航天航空用密封件,空调密封制品,减震材料等领域。 1.HNBR的结构和性能关系 NBR氢化改性是在催化剂催化下,将其丁二烯单元进行选择性加氢。乳液聚合得到的NBR含有大量1,4链节和少量1,2镟节,在选择加氢时,1,2一链节往往优先1,4璇节加氢。如碘值约为300的NBR选择性加氢至碘值70左右时,1,2谎节的双键全部氢化,此时仅存1,4璇节双键,腈基未被还原。HNBR分子链中主要包括:丙烯腈单元,提供优异的耐油性能和高拉伸强度;氢化了的丁二烯单元,类似于EPR(乙丙橡胶)链段,提供良好的耐热、耐老化和低温性能;少量含有双键的丁二烯单元,提供交联所需的不饱和键。 分子结构中,一CH,一CH—CH—CHz一结构的含量取决于加氢产物的氢化程度,氢化度越高,其含量越低。 2.HNBR的生产技术进展 HNBR的制备方法主要有三种:乙烯一丙烯腈共聚法、HNBR溶液加氢法和NBR乳液加氢法。目前,工业上HNBR的生产一般采用NBR的溶液加氢法,但这种方法的溶剂消耗量大,要使用贵重金属盐类催化剂,因此,有待于革新。 由于乙烯和丙烯腈共聚的反应条件苛刻,制品性能差,这种直接共聚法与另一种NBR乳液加氢法都处于试验阶段。 3.国内目前研发进展及行业现状 国内有许多厂家涉足HNBR领域。1992年,北京化工大学同台湾南帝化学工业股份公司合作率先开展NBR的加氢催化剂和加氢工艺的研究;随后,

氢化丁腈橡胶的结构与性能_图文(精)

加工?应用合成橡胶工业,2008-03-15,31(2:118~121 CH I N A SY NTHETI C RUBBER I N DUSTRY 氢化丁腈橡胶的结构与性能 朱景芬1,2,黄光速1,李锦山2,胡海华2 (11四川大学高分子科学与工程学院,四川成都610065;21中国石油兰州化工研究中心,甘肃兰州730060 摘要:考察了丁腈橡胶(NBR氢化过程中聚丁二烯的顺式-1,4-结构、反式-1,4-结构及乙烯基 微观结构的变化,讨论了不同氢化度的氢化丁腈橡胶(HNBR的热氧化稳定性、硫化特性和力学性能的 差异。结果表明,在NBR加氢过程中,聚丁二烯的乙烯基加氢速率最快,其次是反式-1,4-结构,加氢 速率最慢者是顺式-1,4-结构,腈基未被氢化;氢化度为90%的HNBR的热氧化稳定性远优于NBR, 而氢化度为95%的HNBR的热氧化稳定性更优;随着氢化度的增加,HNBR的硫化特性未见明显改变; HNBR硫化胶的拉伸强度高于NBR,而其扯断伸长率则小于NBR,并且随着HNBR氢化度的提高, HNBR与NBR的拉伸强度、扯断伸长率差值增大。 关键词:氢化丁腈橡胶;丁腈橡胶;微观结构;热氧化稳定性;硫化特性;力学性能

中图分类号:T Q33317文献标识码:B文章编号:1000-1255(200802-0118-04 丁腈橡胶(NBR通过氢化作用使其分子链中聚丁二烯链节上的双键达到饱和,从而得到了高性能的氢化丁腈橡胶(HNBR。HNBR中的饱和结构赋予其优异的弹性、耐热性、耐氧化性、化学稳定性及低温曲挠性等。国内外许多学者对HNBR的制备及应用进行了广泛的研究[1-9],但对其结构与性能的研究却涉及较少,且研究的侧重点与本研究有所不同[10]。本工作主要考察了氢化过程中聚丁二烯的顺式-1,4-结构、反式-1,4-结构及乙烯基3种微观结构的变化规律,讨论了不同氢化度HNBR的热氧化稳定性、硫化特性和力学性能的差异。 1实验部分 111原材料 氢化度分别为60%,80%,90%,95%,99%的HNBR,采用质量分数为10%的NBR 氯苯溶液,以氯化铑的络合物为催化剂,在温度为70~ 120℃、压力为7~12MPa下进行氢化反应,用甲醇凝聚胶液,真空烘干后即得不同氢化度的HNBR,中国石油兰州化工研究中心中试产品; NBR,牌号为N21,结合丙烯腈质量分数为40%,门尼黏度为82,中国石油兰州石化公司产品;其他均为橡胶工业常用助剂。112HNBR(NBR硫化胶的制备 基本配方(质量份:HNBR(NBR100,氧化锌5,硬脂酸1,聚酯5,炭黑N66045,过氧化二异丙苯(DCP315,三烯丙基异氰酸酯115。 首先在(45±5℃下加入HNBR(NBR塑炼,2m in时加入氧化锌和DCP,6m in时加入硬脂酸,7m in时加入1/2的炭黑,10m in时加入剩余炭黑,13m in时加入三烯丙基异氰酸酯,16m in 时加入剩余助剂混炼4m in,薄通6次,下片。将下片后的混炼胶放置2~24h,在160℃、10MPa、25m in的条件下硫化,得到HNBR(NBR硫化胶。113分析与测试

四氯化硅氢化

四氯化硅氢化 一、副产物四氯化硅 1.四氯化硅的产生 在多晶硅生产中,无论是SiHCl3的合成还是氢还原制取多晶硅,都会产生大量的副产物四氯化硅,并随尾气排出,如: 在氢还原中: 主反应:3HCl+Si=SiHCl3+H2 副反应:4SiCl Si+3SiCl4+2H3 3 2SiCl3 Si+2HCl+SiCl4 在SiHCl3合成中: 主反应:Si+3HCl=SiCl3+H2 副反应:Si+4HCl SiCl4+2H2 SiHCl3合成中副反应产生的SiCl4约占生产物总量的10~20%。这些副产物SiCl4是我们在生产中所不希望产生的,因为他消耗了原料和能源却得不到想要的产品。因此在实际生产中,需要尽量减少副反应及副产物的生成,但副反应又是不可避免的,因此对副产物必须进行综合利用,将其变为有用的产品,这样可以降低成本,创造效益。 2.四氯化硅的性质 四氯化硅在常温常压下是无色透明的液体,无极性,易挥发,有强烈的刺激性,水解后生成二氧化硅和HCl。能与苯、乙醚、氯仿等混合,与醇反应可生成硅酸酯。有用易水解,并生产HCl,所有在有水的环境下具有强烈的腐蚀性。四氯化硅的性质见下表: SiCl4物理性质表

虽然四氯化硅也可以用氢气还原制备多晶硅,但是与采用三氯氢硅还原相比教,存在如下不足: SiCl3与SiCl4的氢还原比较 可以看出,如果将这些副产物四氯化硅回收后用来直接制备多晶硅,从能耗和物耗上讲是不划算的。如果直接将这些四氯化硅作为废物处理掉,则更为不划算,原因如下: 1.副产物四氯化硅同样消耗了原料工业硅粉和液氯,作为废物处理掉就会 造成这部分原料的损失,造成多晶硅生产中物料单耗的上升,增加了多 晶硅的成本。 2.将四氯化硅作为废料处理会对环境带来污染。 3.将四氯化硅作为废料处理需花费大量资金。 因此,对副产物四氯化硅需要寻找另外的方法进行处理,既可避免对环境的污染又可降低多晶硅生产成本。目前,国内外采用得较多的方法是:a 四氯化硅氢化后转化为三氯氢硅生产多晶硅;b 用四氯化硅生产其他类型的产品,如:硅酸乙酯、有机硅和气相白炭黑等。 在目前先进的改良西门子多晶硅生产工艺中,四氯化硅氢化再利用是构成物料闭路循环的重要一环。因此,作为物料物尽其用比提高多晶硅产量的一个有效手段,四氯化硅经氢化转化为三氯氢硅生产多晶硅是许多多晶硅厂家首先考虑的方法。 结合国内的生产情况,下面对四氯化硅氢化工艺进行简单介绍。 二、四氯化硅氢化的方法

硅氢化反应

硅氢化反应:文献综述 (XX 大学化学化工学院 XXX 214562) 摘要:硅氢化反应是氢化物加到不饱和有机化合物上,从而生成各种有机硅化合物的反应。硅氢加成反应自1947 年sommer 等人发现以来, 经过半个多世纪的发展, 已经成为有机硅化学中应用最广、研究最多的一个反应。由于硅一氢键主要向碳双键和碳三键加成, 生成水解稳定性好的硅碳键, 所以在硅单体、偶联剂、硅橡胶和许多含硅高分子中得到广泛应用。本文主要就硅氢化反应的机理及其应用做了一些讨论。 关键词:硅氢化反应 合成 有机硅 前言 硅氢加成反应是指Si-H 基与不饱和碳碳键的加成反应, 这是有机硅化学中研究最多的一个反应。Si- H 基具有类似金属氢化物的性质, 比较活泼但又比金属氢化物稳定, 便于保存和使用; 能够与不饱和碳碳键进行加成反应, 生成水解稳定性好的Si C 键。在催化剂作用下,在室温或稍高于室温的温度下即可进行。因此,硅氢加成反应被广泛用于合成含硅聚合物[ 1- 2] 。硅氢加成反应常用过渡金属作催化剂, 其中以铂的配合物最有效。此类催化剂又分为均相催化剂和多相催化剂。对于均相催化剂, 由于可通过改变配位体来调节金属活性中心的立体效应或电子环境, 从而改变其活性和选择性, 所以发展较快[ 3- 4] 。 1硅氢加成反应的一般原理 1.1简介 硅氢加成反应的方程式如下[ 2, 3] : 这里有两个技术关键: 首先, 要在硅胶表面形成Si —H 键。可以将全羟基化的多孔硅胶改性, 将Si —OH 基转化为Si —H 基; 或者直接制备聚氢硅氧烷凝胶( HSiO 3/ 2) n [ 5 , 6] 。也可以用化学蒸气沉积法( CVD) , 将1, 3, 5, 7-四甲基环四硅氧烷覆盖在硅胶表面以形成Si —H 键。另一个技术关键是提高硅氢加成反

加氢裂化反应原理及影响因素

加氢裂化反应原理及影响因素 一、加氢反应过程 加氢裂化装置的精制反应部分,是除去原料油中的硫化物、氮化物、氧化物等非烃化合物,为裂化部分提供合格进料,同时使烯烃和稠环芳烃饱和,裂化反应则使大分子裂解成小分子,使得产物中氢含量提高、硫和氮含量进一步降低,轻、中质产品生成,从而获得优质的重整料、柴油或喷气燃料。 本工艺使用的催化剂既有加氢精制催化剂,又有加氢裂化催化剂,因此在该工艺中发生的化学反应几乎包罗了馏分油加氢过程的所有平行—顺序反应综合过程。这些反应有: 1)含硫、含氮、含氧化合物等非烃类的加氢分解反应; 2)烷烃的加氢裂化反应; 3)环烷烃的开环反应; 4)烷烃和环烷烃的异构化反应; 5)烯烃和芳烃的加氢饱和反应; 6)烷基芳烃的断链反应; 在上述反应之外,还存在着由分解产物进行二次反应生成缩合物的可能性,引起催化剂上的碳沉积量增加。在多数情况下,缩合反应的中间产物是稠环芳烃。一定温度下,采

用较高的氢分压将会降低这类中间产物的浓度,从而减少催化剂上焦炭的生成。温度的升高有利于生成中间产物,催化剂表面积炭增加。原料油中的稠环分子浓度越高,焦炭的生成也就越多。 以上这些反应进行的深度和速度除与原料的化学组成有关外,还与催化剂的性能和反应条件有密切的关系。 二、加氢精制的原理 1.加氢脱硫(HDS)反应 原料油中的硫化物,在加氢精制条件下,可以转化为H2S 和相应的烃类,烃类留在产品中,而H2S从反应物中脱除,从而脱除掉硫。主要的反应如下: 硫醇加氢反应:RSH + H2 RH + H2S 硫醚加氢反应:RSR`+ 2H2 RH + R`H + H2S 二硫化物加氢反应:RSSR`+ 3H2 RH + R`H + 2H2S 杂环硫化物加氢反应:HC CH HC CH + 4H2 C4H10 + H2S S 馏分油中的含硫化合物类型主要包括脂肪族类和非脂肪族(噻吩)类硫化物,非脂肪族类硫化物又可以按照分子中并含苯环的多少而分为噻吩类、苯并噻吩类、二苯并噻吩类等硫化物。各类硫化物在馏分油中的分布是不同的。 脂肪族类硫化物是指硫原子不在噻吩环上的硫化物。该

三氯氢硅及合成工艺

三氯氢硅及合成 一、三氯氢硅的基本性质 三氯氢硅在常温常压下为具有刺激性恶臭、易流动、易挥发的无色透明液体。分子量:135.43,熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):1350kg/m3;相对密度(气体,空气=1):4.7;蒸气压(-16.4℃):13.3kPa;(14.5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸极限:6.9~70%;在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,三氯氢硅燃烧时发出红色火焰和白色烟;三氯氢硅的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,三氯氢硅在900℃时分解产生氯化物有毒烟雾;遇潮气时发烟,与水激烈反应;在碱液中分解放出氢气;三氯氢硅与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷;在氢化铝锂、氢化硼锂存在条件下,三氯氢硅可被还原为硅烷。容器中的液态三氯氢硅当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。 二、三氯氢硅的用途 用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅偶联剂中最基本的单体,同时也是制备多晶硅的主要原料。将三氯硅烷与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基

或丙烯基系列硅烷偶联剂产品。硅烷偶联剂几乎可以与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方面扮演着重要的角色,并在这些行业中发挥着不可或缺的重要作用。 三、三氯氢硅生产工艺 1、主要化学反应方程式为: Si + 3HCl = SiHCl3 + H2 Si + 4HCl = SiHCl4 + 2H2 2、生产装置主要由氯化氢干燥、三氯氢硅合成、三氯氢硅提纯和分离工序组成。生产工艺流程简述如下: 用管道送来的氯化氢气体,经冷却除水干燥、加压后依次进入氯化氢缓冲罐、-35℃石墨冷却器,酸雾脱水后,进入硫酸液环泵加压。加压后的氯化氢先经酸雾捕集器、氯化氢缓冲罐、再分别经流量调节阀、流量计、止逆阀进入三氯氢硅合成炉。外购袋装硅粉倒入硅粉池,用胶管借水环真空泵的抽力吸至硅粉干燥器,干燥后的硅粉经计量罐计量后由给料阀加入三氯氢硅合成炉,与来自氯化氢缓冲罐氯化氢在合成炉反应生成三氯氢硅和四氯化硅。 氯化氢与硅粉在三氯氢硅合成炉内反应生成三氯氢硅、四氯化硅、氢气。混合气体经沉降器、旋涡分离器、袋式过滤器、一级水冷器、二级水冷器、-35℃冷凝器,大部分三氯硅烷在膜压机前先冷凝下来,进入机前计量罐中,未冷凝的少量三氯硅烷、氯化氢和氢气进

催化氢化反应安全操作原则(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 催化氢化反应安全操作原则(通 用版) Safety management is an important part of production management. Safety and production are in the implementation process

催化氢化反应安全操作原则(通用版) 1.催化剂领用量应遵循按需领用的原则。需要多少领多少,要避免一次领用过多,长期放置不用,而导致催化剂活性降低甚至失活,或者干燥失水甚至自燃。暂时存放须用氮气保护。 2.仪器设备的检查与使用 (1)实验室里进行催化氢化反应,实施前必须仔细检查所用仪器,不得使用有明显破损、有裂痕以及有大气泡的玻璃仪器; (2)对所使用的氢气袋子必须用氮气检查是否漏气,不得使用漏气的氢气袋子; (3)检查所用的胶管是否老化不可用以及接头处是否松动; 对于使用高压釜进行的催化氢化反应,初次使用高压釜前必须有专人进行培训。使用设备前必须按规定逐项检查,主要内容包括:(1)场地是否整洁有序,避免摆放杂乱导致的安全隐患; (2)氢气及氮气的压力表头使用前必须进行打压试验,确认正

常后方可使用; (3)氢气及氮气钢瓶压力; (4)管路是否有裂纹,是否畅通; (5)各阀门是否漏气,并对确认其开/关状态; (6)热电耦温度计是否正常可用,线路是否完好不露电,插热电偶时注意插到底,使之真实反应体系温度等; 3.投料:向容器中加入溶剂和原料,搅拌溶解后,向容器中吹入氮气一段时间,使体系处于惰性气氛中,再加入催化剂。加入催化剂的动作要快,以尽可能减少催化剂自燃并引燃溶剂的可能性。或者先将催化剂加到溶剂中再一起转入反应器,再加入主原料,但因为体系呈黑色难以观察。 置换体系:用真空抽尽体系中的空气后,用氮气袋向体系中通入氮气,再抽尽氮气,如此重复操作3-5次,然后再抽尽氮气,用氢气袋通入氢气,如此重复操作2-3次,最后通入氢气进行反应。在高压釜中,要求置换次数均要多一些。 4.反应中间取样:取样前,先用氮气置换体系2-3此,或者吹

氢化丁腈橡胶的研究进展及分子模拟技术的应用

314 橡 胶 工 业2019年第66卷氢化丁腈橡胶的研究进展及分子模拟技术的应用 张振山,吴剑铭,王小蕾,王春芙* (青岛科技大学高分子科学与工程学院,山东青岛266042) 摘要:概述氢化丁腈橡胶(HNBR)的国内外研究状况以及制备方法,介绍应用分子模拟技术对HNBR分子结构和性能进行模拟和预测的方法。HNBR的规模生产主要采用溶液加氢法;采用分子模拟技术对HNBR分子结构与性能进行模 拟和计算并与试验数据对比,可有效预估HNBR分子结构参数对性能的影响,从而为制备高性能的HNBR提供理论依据, 实现HNBR结构与性能的可控制备。 关键词:氢化丁腈橡胶;研究进展;分子模拟技术;溶液加氢法;结构参数 中图分类号:TQ333.7 文章编号:1000-890X(2019)04-0314-05 文献标志码:A DOI:10.12136/j.issn.1000-890X.2019.04.0314 丁腈橡胶(NBR)大分子链上存在腈基(—CN),具有很好的耐油性和强极性以及较小的压缩永久变形,其性能优于丙烯酸酯橡胶等。现阶段NBR大面积应用于汽车、航天、军工等高科技领域[1],尤其因为其耐油性能优异,被广泛用于制作耐油型密封材料,是目前用量最大的耐油橡胶[2]。但是NBR中腈基含量增大容易带来压缩永久变形大、难加工等弊端,同时因其大分子链中存在不饱和烯烃链段单元,也导致其耐热和耐天候性能一般,从而限制了应用[3]。 氢化丁腈橡胶(HNBR)是对NBR中碳-碳双键进行选择性加氢制得,由腈基、亚甲基链和少量的碳-碳双键组成,腈基的存在赋予其良好的耐油性能,而达到饱和的亚甲基链则赋予其高强度,并提高其耐热氧老化性能[4],其氧化稳定性与NBR 相比提高约1 000倍,热降解温度比NBR高30~40 ℃。当氢化度超过80%时,HNBR的耐热氧老化性能更为凸显,压缩永久变形也在一定程度上减小;由于HNBR分子链基本达到饱和状态,活性的烯烃链段所剩无几,因此其耐油、耐热及耐天候性能得到极大改善。HNBR制品能够适应苛刻的使用环境,在石油开采、航空航天以及汽车等领域得到广泛应用[5-7]。 本文重点介绍近些年来国内外HNBR的研究进展,并且概述分子模拟技术在HNBR制备方面的应用。 1 HNBR研发现状 HNBR的产生源于对NBR性能的改进研究[8-9]。目前,在HNBR生产领域,可以进行HNBR 规模化生产的公司较少,主要有德国朗盛、日本瑞翁和荷兰帝斯曼3家公司。 朗盛公司生产的高性能HNBR——Therban AT系列产品的优点是门尼粘度较低,该公司后来又推出了具有很好流动性的新产品,方便流体注射成型和就地成型垫片,而且在制造硬度较小的密封圈时不需添加增塑剂。该公司还开发出结合丙烯腈含量极高(质量分数最高可达0.505)的HNBR(耐绿色燃料的溶胀性能好),其中5005 VP 和5008 VP牌号产品双键含量低,耐老化性能好,被用于生产生物燃料汽车用耐油橡胶制品。近年来,该公司开发了耐低温HNBR、耐热HNBR和易加工HNBR等专用产品,并开发出在高温条件下具有很高撕裂强度和较好耐磨耗性能的羧基氢化丁腈橡胶(HXNBR)[10]。 日本瑞翁公司于20世纪80年代末在以二氧化硅为载体的钯催化剂方面取得重大研究进展,这 基金项目:山东省重点研发计划(军民科技融合)资助项目(2018JMRH0205) 作者简介:张振山(1991—),男,山东德州人,青岛科技大学在读硕士研究生,主要从事氢化丁腈橡胶的研制以及应用分子模拟技术研究其分子结构和性能。 *通信联系人(2825203421@https://www.360docs.net/doc/82271305.html,)

加氢裂化反应机理

加氢裂化反应机理 加氢裂化反应机理,主要是加氢脱硫、脱氮、不饱和烃加氢饱和、杂环、稠环烃的加氢饱和、开裂,最终达到脱硫脱氮、不饱和烃饱和,以及根据目的产品的需要大分子烃的断裂、加氢饱和等。上述过程均是强放热过程。在此过程中,催化剂起到触媒和加速反应速度作用。 一、加氢精制 1、在较高的H2分压下,HDN反应由反应动力学平衡控制,是不可逆的。 2、HDN与HDS很相似,但C-S键断裂直接生成H2S,而C-N 键断裂,则:N杂环加氢饱和、C-N键断裂生成胺、胺氢解生成NH3和烃类。HDN从易到难:喹啉—吡啶—吲哚—吡咯 3、五元N杂环化合物:吲哚、吡咯等,属非碱性氮化合物,占总N 2/3。六元N杂环化合物:吡啶、喹啉等,属碱性氮化合物,占总N 1/3。 4、H2S对加氢反应有抑制作用,但对C-N键断裂有促进作用。说明担载Ni、Mo硫化物催化剂有两类活性中心:加氢中心和氢解中心(酸性中心)。 5、N杂环化合物加氢相对容易,但C-N键断裂困难,原因是前者活化能低。 6、C-N键能比C-S键能大12—38KJ/mol,所以脱S比脱N得多。 7、CoMo/Al2O3催化剂对HDS非常有效,NiMo/Al2O3催化剂

对HDN比CoMo/Al2O3更有效。P的加入对NiMo/Al2O3催化剂活性有显著促进作用。(MoO3/NiO 24/4m%,P 0.9m%) 二、加氢裂化 1、催化剂要具有较好的加氢活性和抗N性。 2、催化剂具有双功能:加氢组份和酸性组份。 3、氮化物对酸性中心和毒害(屏蔽)作用,酸性中心对进料N 化物有强烈的吸附作用。 4、一般要求进料N含量在10μg/g以下,但可以通过提温来补偿进料N含量增加。 5、无定型加氢裂化催化剂具有中油选择性高、液体收率高特点,而且在催化剂使用初期及末期,产品的分布和质量变化小,但无定型催化剂活性低、起始反应温度高。为了提高催化剂裂解活性,而又不过多损害其中油选择性,则必须在无定型硅铝载体中,添加一定量的分子筛,而且是抗N性能好的分子筛。所以,一般以无定型硅铝为主载体,添加一定量抗N性能好的分子筛,以增加催化剂的裂解和异构化活性。 6、加氢裂化催化剂使用性能关键控制因素是加氢活性和酸性(裂解活性)的匹配和催化剂的孔结构特性。 7、加氢活性强而酸性相对弱的催化剂,其裂化活性相对低些,能得到较高液收,抗氮性也相对好些;反之,裂化活性高,液收低,对石脑油馏分选择性高。 8、由于烃类加氢裂化反应属于扩散控制的多相催化反应,因此,

相关文档
最新文档