集成运算放大器的积分、微分电路

积分、微分、比例运算电路

模拟电路课程设计报告 题目:积分、微分、比例运算电路 一、设计任务与要求 ①设计一个可以同时实现积分、微分和比例功能的运算电路。 ②用开关控制也可单独实现积分、微分或比例功能 ③用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V),为运算电路提供偏置电源。此电路设计要求同时实现比例、积分、微分运算等功能。即在一个电路中利用开关或其它方法实现这三个功能。

方案一: 用三个Ua741分别实现积分、微分和比例功能,在另外加一个Ua741构成比例求和运算电路,由于要单独实现这三个功能,因此在积分、微分和比例运算电路中再加入三个开关控制三个电路的导通与截止,从而达到实验要求。 缺点:开关线路太多,易产生接触电阻,增大误差。此运算电路结构复杂,所需元器件多,制作难度大,成本较高。并且由于用同一个信号源且所用频率不一样,因此难以调节。 流程图如下: 图1 方案二: 用一个Ua741和四个开关一起实现积分、微分和比例功能,并且能够单独实现积分、微分或比例功能。 优点:电路简单,所需成本较低。 电路图如下: 积分运算电路 微分运算电路 比例运算电路 比例求和运算电路

图2 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 其流程图为: 图3 直流电源电路图如下: 电源变 压器 整流电路 滤波电路 稳压电路

V1220 Vrms 50 Hz 0?? U11_AMP T1 7.32 1D21N4007 D3 1N4007D4 1N4007 C13.3mF C23.3mF C3220nF C4220nF C5470nF C6470nF C7220uF C8220uF U2LM7812CT LINE VREG COMMON VOLTAGE U3LM7912CT LINE VREG COMMON VOLTAGE D51N4007D61N4007 LED2 LED1 R11k|?R21k|?23 4 5 D1 1N400715 16 6 7 14 17 图4 原理分析: (1)电源变压器: 由于要产生±12V 的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V 的变压器。 (2)整流电路: 其电路图如下: 图5 ①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,

集成运算放大器电路分析及应用(完整电子教案)

集成运算放大器电路分析及应用(完整电子教案) 3.1 集成运算放大器认识与基本应用 在太阳能充放电保护电路中要利用集成运算放大器LM317实现电路电压检测,并通过三极管开关电路实现电路的控制。首先来看下集成运算放大器的工作原理。 【项目任务】 测试如下图所示,分别测量该电路的输出情况,并分析电压放大倍数。 R1 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 R1 15kΩR2 15kΩ R3 15kΩ R4 10kΩ V2 4 V XFG1 1 VCC 5V U1A LM358AD 3 2 4 8 1 VCC 3 5 2 4 函数信号发生器函数信号发生器 (a)无反馈电阻(b)有反馈电阻 图3.1集成运算符放大器LM358测试电路(multisim) 【信息单】 集成运放的实物如图3.2 所示。 图3.2 集成运算放大 1.集成运放的组成及其符号 各种集成运算放大器的基本结构相似,主要都是由输入级、中间级和输出级以及偏置电路组成,如图3.3所示。输入级一般由可以抑制零点漂移的差动放大电路组成;中间级的作用是获得较大的电压放大倍数,可以由共射极电路承担;输出级要求有较强的带负载能力,一般采用射极跟随器;偏置电路的作用是为各级电路供给合理的偏置电流。

图3.3集成运算放大电路的结构组成 集成运放的图形和文字符号如图 3.4 所示。 图3.4 集成运放的图形和文字符号 其中“-”称为反相输入端,即当信号在该端进入时, 输出相位与输入相位相反; 而“+”称为同相输入端,输出相位与输入信号相位相同。 2.集成运放的基本技术指标 集成运放的基本技术指标如下。 ⑴输入失调电压 U OS 实际的集成运放难以做到差动输入级完全对称,当输入电压为零时,输出电压并不为零。规定在室温(25℃)及标准电源电压下,为了使输出电压为零,需在集成运放的两输入端额外附加补偿电压,称之为输入失调电压U OS ,U OS 越小越好,一般约为 0.5~5mV 。 ⑵开环差模电压放大倍数 A od 集成运放在开环时(无外加反馈时),输出电压与输入差模信号的电压之比称为开环差模电压放大倍数A od 。它是决定运放运算精度的重要因素,常用分贝(dB)表示,目前最高值可达 140dB(即开环电压放大倍数达 107 )。 ⑶共模抑制比 K CMRR K CMRR 是差模电压放大倍数与共模电压放大倍数之比,即od CMRR oc A K =A ,其含义与差动放大器中所定义的 K CMRR 相同,高质量的运放 K CMRR 可达160d B 。 ⑷差模输入电阻 r id r id 是集成运放在开环时输入电压变化量与由它引起的输入电流的变化量之比,即从输入端看进去的动态电阻,一般为M Ω数量级,以场效应晶体管为输入级的r id 可达104M Ω。分析集成运放应用电路时,把集成运放看成理想运算放大器可以使分析简化。实际集成运 放绝大部分接近理想运放。对于理想运放,A od 、K CMRR 、r id 均趋于无穷大。 ⑸开环输出电阻 r o r o 是集成运放开环时从输出端向里看进去的等效电阻。其值越小,说明运放的带负载能力越强。理想集成运放r o 趋于零。 其他参数包括输入失调电流I OS 、输入偏置电流 I B 、输入失调电压温漂 d UOS /d T 和输入失调电流温漂 d IOS /d T 、最大共模输入电压 U Icmax 、最大差模输入电压 U Idmax 等,可通过器件

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

运放构成的积分器电路分析

通过将电阻器用作增益调整设置元件,建立起了在DC 情况下运算放大器(op amp) 的传输函数。在一般情况下,这些元件均为阻抗,而阻抗中可能会包含一些电抗元件。下面来看一下图1 所示的这种一般情况。 图 1 运算放大器反馈的一般情况使用这些项重写本系列第一篇文章所得的结果后,传输函数为:增益= V(out)/V(in)= - Zf/Zi在图2 所示电路的稳定状态下,该结果减小至:V(out) = -V(in)/2πfRiCf其适用于稳定状态下正弦波信号。 图 2 配置为积分器的运算放大器正如最初所做的分析那样,流入求和节点的电流必须等于流出该节点的电流。换句话说,流经Ri 的电流必须等于流经Cf 的电流。这种情况可以表述为下列传输函数:利用该传输函数,我们便可以得到一款普通积分器。由于积分中包含了该运算放大器的DC 误差项,因此该电路通常不会在直接信号链中使用。但是,在控制环路中,其作为一种功能强大的电路得到了广泛使用。请回顾本系列第5 部分“仪表放大器介绍”(下方有链接)所述的仪表放大器。在许多高增益应用中,虽然与DC 值没有丝毫关系,但INA 的电压偏移还是缩小了有效动态范围。 图 3 使用积分器归零偏移图3 显示了积分器的一种理想应用。来自INA 和信号源的输入DC 偏移电压

均出现在输入端,并被INA 增益倍乘。该电压出现在积分器输入端。运算放大器积分器进行驱动以使反相输入与非反相输入相等(这种情况下,非反相输入为接地(GND)),这样一来INA 的电压偏移被消除了。这种应用让电路看起来像是一个单极高通滤波器。截止频率的情况如下:当Ri = 1 MΩ且Cf = 0.1 μF 时,截止频率为1.59 Hz。电路的DC 偏移被降至运算放大器的Vos。在一些单电源应用中,将运算放大器的非反相输入偏置为GND 以上是必需的。积分器是一种反相电路,因此正输入信号会尽力将输出驱动至负电源轨GND 以下。出现在运算放大器非反相输入端的偏置电压为INA 输出时将维持零输入的电压。

运算放大器组成的基本运算电路

实验五运算放大器组成的基本运算电路 一、实验目的 1、了解运算放大器的基本使用方法。 2、应用集成运放构成的基本运算电路 3、学会使用线性组件u A741。 4、掌握加法运算、减法运算电路的基本工作原理及测试方法。 5、学会用运算放大器组成积分电路。 二、实验属性 验证性实验 三、实验仪器设备及器材 1、实验台 2、数字万用表 3、示波器 4、计时表 四、实验内容及步骤 1.调零:按图 7-1 接线,接通电源后,调节调零电位器 RW 使输出 0V。运放调零后, 在后面的实验中均不用调零了。 图7-1 仿真参考电路:

电路如图7-2 所示,根据电路参数计算A V=Vo/V i,并按照表7-1 给定的V i 计算和测量对应的Vo值,并把结果记入表7-1 中。 图7-2 仿真参考电路:

电路如图7-3 所示,根据电路参数计算A V=Vo/V i,并按照表7-2 给定的V i 计算和测量对应的Vo值,并把结果记入表7-2 中。 图7-3 仿真参考电路:

电路如图7-4 所示,按照表7-3 给定的V i1 和V i2 计算和测量对应的Vo 值,并把结果记入表7-3中。 图7-4 仿真参考电路:

电路如图7-5 所示,按照表7-4 给定的V i1 和V i2 计算和测量对应的Vo 值,并把结果记入表7-4中。 图7-5 仿真参考电路:

五、实验报告 1.整理实验数据,填入表中。 答:整理数据如上表中。 2.分析各运算关系。 答: 反相比例运算:U0=-(R f/R1)X(U i) 放大倍数 A uf=-R f/R1 随着电压的不断增加,实际运放也不断变大,误差逐渐减小同相比例运算:U0=(1+(R f/R1))X(U i) 放大倍数 A uf=1+(R f/R1) 随着电压的不断增加,误差逐渐减小,越来越趋近于理论值加法运算:U0=-((R f/R i1))X(U i1)+ (R f/R i2))X(U i2)) 改变任一电路的输入电阻时,对其他路没有任何影响减法运算:U0=(1+(R f/R1))X(R3/(R2+R3))X(U i2)-(R f/R1)X(U i1) 输出与两个输入信号的差值成正比

模拟电路课程设计积分微分比例运算电路

物理与电子信息学院模拟电路课程设计成绩评疋表

2013 年1 月1U 口模拟电路课程设计报告设计课题:积分、微分、比例运算电路 专业班级:__________________ 学生姓名;_______________________ 学号:_______________________ 指导教师:_______________ 设计时间:2012.12-2013.1 ______

积分、微分、比例运算电路 .设计任务与姜求 1. 设计一个叮以同时实现积分、徼分和比例功能的运算电路; 2. 用开关控制也町单独实现积分、微分或比例功能: 3. 用桥式整流电容滤液集成稳压块电路设计电路所需的正负直谎电源(土 12V ). 二、方案设计与论证 用桥式娄流电容滤波集成稳压块电路设计电路所需的正负直潦电流(±12人 为运篦电路捉供了电源。此电蹄要求设汁同时宝现积分、微分利比例功能的运算 电路。在电路中用开关控制也可实现这个功能. L 方案一、用丄个论741分别实现积分、微分和比例功能”另外加一个l :MI 比 例求和运算电路「耍单独实现这功能,所以要再加二个开关分别控制电路的导通, 达到现象赳 不足Z 处見线路欽产生接触电阻,误兼儿述有电路复朵*器件欽成本 高,频率不一,难调节甘 设计框图如下: 图2-1 设计框图 造计原理电路图如F: JU -AW 10hQ 图2 2 设计凍理电路图

2?方案二* 用一个和四个开关-?起实规这功能,并能单独枳分、微分和比例功能。优点:电路简单。 方案二 三、单元电路设计与参数计算 1?盲流稳压电源电路 直流源的制作由四部分组成:电源变压器.整流电路,滤波电踣及稳压电路。变压器部分通过变压器降压使得进入整流的电床减小:整流道路部分利用二极管的单向亍电件实现交流电流电压的转变*即将正眩波电压转换为单一方向的脉冲电压;滤波部分采用大电容,利用电容的允殷电作用便输出电圧趋于平滑;稳压通过稳压管的稳压作用使输出II流电乐莹木不受电网电斥波动和负载电阻变化的影响口稳用电源的组成框图如图3-1所示「直流稳压电源电路原理图如图3-2所示.

功率放大器电路设计资料

电子技术课程设计论文 ---功率放大器电路设计 院系:电气工程学院 专业:测控技术与仪器 班级: 姓名: 学号: 指导教师: 2014 年 6 月 24 日

目录 第一章绪论 (1) 第二章系统总体设计方案 (2) 2.1 功率放大电路 (2) 2.2放大器原理 (2) 2.3方案设计 (3) 2.3.1 前置放大极 (4) 2.3.3 三极管性能的简单测试 (4) 2.3.3 电路形式的选择 (4) 2.3.4 电路原理 (5) 第三章仿真及电路焊接及调试 (6) 3.1 Protues 简介 (6) 3.2 原理图绘制的方法和步骤 (6) 3.3 电路板的制作 (9) 3.4 电路焊接 (9) 3.5 元器件安装与调试 (10) 第四章元器件介绍 (11) 4.1 LM386 (11) 4.2 9013晶体管 (12) 4.3电容 (13) 4.4 扬声器 (13) 4.5驻极体 (14) 第五章总结 (15) 致谢 (16) 附录 (17)

第一章绪论 现在多用于高校功放课程设计的有两种电路,一种是集成功放 LM386组成的音频功率放大电路,一种是集成功放TDA2030A组成的音频功率放大电路。我们此次的课程设计所用的芯片是集成功放LM386。 本次音频功率放大系统的设计,我们采用了LM386音频功率放大器作为核心元件。它具有自身功耗低、更新内链增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点的功率放大器,主要应用于低电压消费类产品,广泛应用于录音机和收音机之中。应用LM386时,为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至 200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。

运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

实验七比例求和运算及微分运算电路

实验七比例求和运算及微分运算电路 一.实验目的 1.掌握集成运算放大器的特点,性能及使用方法。 2.掌握比例求和电路,微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.GOS-620模拟示波器 2.GFG-8250A信号发生器 3.台式三位半数字万用表 4.指针式交流毫伏表 5.SPD3303C直流电源 三.实验内容及步骤 1.搭接电压跟随器并验证其跟随特性,测量2-3组数据进行验证。 2.测量反向比例电路的比例系数,测量其计算值与理论值进行比较

理论值:Uo=-(R F/Ri)*Ui,ui=7mV,uo=-70mV 实际值: uo=7mV,ui=69mV 3.测量同相比例放大器的比例系数及上限截止频率 理论值:uo=-(1+RF/Ri)*ui,ui=6.9mV,uo=75.9mV 实际值:ui=6.9mV,uo=76mV 4.测量反相求和电路的求和特性,注意多路输入信号可通过电阻分压法获取 仿真值如下图所示, Ui1=3.185mV,Ui2=1.706mV,Uo=48.899mV, 满足输入与输出运算关系: Uo=-[(RF /R1)*Ui1+( RF /R2)*Ui2]

5.验证双端输入求和的运算关系

6.积分电路 如图所示连接积分运算电路,检查无误后接通±12V直流电源 ①取ui=-1V,用示波器观察波形uo,并测量运放输出电压值的正向饱和电压值 正向饱和电压值为11V ②取ui=1V,测量运放的负向饱和电压值。注意±1V的信号源可用1Hz交流信号代替 反向饱和电压值为-11V ③将电路中的积分电容改为0.1uF,ui分别输入1kHz幅值为2V的方波和正弦波信号, 观察ui和uo的大小及相位关系并记录波形,计算电路的有效积分时间。 Ui=1.414V,Uo=222.157mV

2.4G放大器电路原理图

2.4G 射频双向功放的设计与实现 在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。前者实现成本较高,而后者则相对较便宜,且容易实现。现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。 双向功率放大器的设计 双向功率放大器设计指标: 工作频率:2400MHz~2483MHz 最大输出功率:+30dBm(1W) 发射增益:≥27dB 接收增益:≥14dB 接收端噪声系数:< 3.5dB 频率响应:<±1dB 输入端最小输入功率门限:

运算放大器积分电路图

运算放大器积分电路图 原理图1 积分运算电路的分析方法与加法电路差不多,反相积分运算电路如图1所 示。根据虚地有, 于是 由此可见,输出电压为输入电压对时间的积分,负号表明输出电压和输入电压在相位上是相反的。 当输入信号是阶跃直流电压U I时,电容将以近似恒流的方式进行充电,输出 电压与时间成线性关系。即 例:在图1的积分器的输入端加入图2中给定输入波形,画出在此输入波形作用下积分器的输出波形,电容器上的初始电压为0。积分器的参数R=10kW、C=0.1mF。 图2给出了在阶跃输入和方波输入下积分器的输出波形。画出积分器输出波形,应对应输入波形,分段绘制。例如对于图2(a)阶跃信号未来之前是一段,阶跃信号到来之后是一段。 对图2(a),当t<t0时,因输入为0,输出电压等于电容器上的电压,初始值为0; 当t≥t0时,u I = -U I,积分器正向积分,输出电压 要注意,当输入信号在某一个时间段等于零时,参阅图2(b)的1ms~2ms、 3ms~4ms…各段。积分器的输出是不变的,保持前一个时间段的最终数值。因为虚地的原因,当输入为零时,积分电阻 R 两端无电位差,故R中无电流,因此 C 不能放电,故输出电压保持不变。 实际应用积分电路时,由于运放的输入失调电压、输入偏置电流和失调电流的影响,会出现积分误差;此外,积分电容的漏电流也是产生积分误差的原因之一。

(a) 阶跃输入信号(b)方波输入信号 图2 积分器的输入和输出波形 实际的积分电路,应当采用失调电压、偏置电流和失调电流较小的运放,并在同相输入端接入可调平衡电阻;选用泄漏电流小的电容,如薄膜电容、聚苯乙烯电容,可以减少积分电容的漏电流产生的积分误差。

实验九积分与微分电路

实验九积分与微分电路 学院:信息科学与技术学院专业:电子信息工程 :刘晓旭 学号:2011117147

一.实验目的 1.掌握集成运算放大器的特点、性能及使用方法。 2.掌握比例求和电路、微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。三.预习要求 1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有 效值为2V时,u o =? 2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出 u o =? 3.拟定实验步骤,做好记录表格。 四.实验原理 集成运放可以构成积分及微分运算电路,如下图所示: 微积分电路的运算关系为: 五.实验内容: 1.积分电路 按照上图连接积分电路,检查无误后接通+12,-12V直流电源。 (1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值。

(2)取U i=1V,测量运放的负向饱和电压值。 (3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。 (4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。 2.微分电路 实验电路如上图所示。 (1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。 (2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。 (3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验。 (4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验 3.积分-微分电路 实验电路如图所示 (1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。 (2)将f改为500Hz,重复上述实验。 解答: 1.(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值 电路仿真图如下图所示:

功率放大器,功率放大器的特点及原理

功率放大器,功率放大器的特点及原理是什么? 利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。 一、功率放大器的特点 向负载提供信号功率的放大器,通常称为功率放大器。功率放大器工作时,信号电压和电流的幅度都比较大,因此具有许多不同于小信号放大器的特点。 l.功率放大器的效率 功串放大的实质是通过晶体管的控制作用,把电源提供给放大器的直流功率转换成负载上的交流功率。交流输出功串和直流电源功率息息相关。一个功率放大器的直流电源提供的功率究竟能有多少转换成交流输出功率呢?我们当然希望功率放大器最好能把直流功率(PE= EcIc)百分之百转换成交流输出功率(Psc=Uscisc)实际上却是不可能的。因为晶体管自身要有一定的功率消耗,各种电路元件(电阻、变压器等)要消耗一定的功率,这就有个效率问题了。放大器的效率η指输出功率Psc与电源供给的直流动率PE之比,即通常用百分比表示: η=Psc/PE 通常用百分比表示: η=Psc/PE×100% 效率越高,表示功率放大器的性能越好。 晶休管在大信号工作条件下,工作点会上下大幅度摆动。一旦工作点跳出输入或输出特性曲线的线性区,就会出现非线性失真。所以对声频功率放大器来说,输出功率总要和非线性失真联系在一起考虑。一般声频功率放大器都有两个指标棗最大输出功率和最大不失真输

集成电路运算放大器的定义

第四章集成运算放大电路 第一节学习要求 第二节集成运算放大器中的恒流源 第三节差分式放大电路 第四节集成电路运算放大器 第五节集成电路运算放大器的主要参数 第六节场效应管简介 第一节学习要求 1. 掌握基本镜象电流源、比例电流源、微电流源电路结构及基本特性。 2. 掌握差模信号、共模信号的定义与特点。 3. 掌握基本型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。 4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。会计算A VD、R id、 R ic、 R od、 R oc、K CMR。 5.熟悉运放的主要技术指标及集成运算放大电路的一般电路结构。 学习重点:

掌握集成运放的基本电路的分析方法 学习难点: 集成运放内部电路的分析 集成电路简介 集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。 集成电路在结构上的特点: 1. 采用直接耦合方式。 2. 为克服直接耦合方式带来的温漂现象,采用了温度补偿的手段 ----输入级是差放电路。 3. 大量采用BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。 4. 采用复合管接法以改进单管性能。 集成电路分为数字和模拟两大部分。 返回 第二节集成运算放大器中的恒流源 一、基本镜象电流源

电路如图6.1所示。T1,T2参数完全相同,即 β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2 当β>>2时, 式中I R=I REF称为基准电流,由上式可以看出,当R确定后,I R就确定,I C2也随之而定,我们把I C2看作是I R的镜像,所以称图6.1为镜像恒流源。 改进电路一:

LM3886功率放大器原理图及PCB

LM3886原理图: LM3886 _PCB: LM3886 3D效果图:

元器件清单: 说明封装序号0.1U R AD0.2 C14 0.1U R AD0.2 C13 0.1U R AD0.2 C12 0.1U R AD0.2 C11 0.47U RAD0.2 C4 0.47U RAD0.2 C2 0.47U RAD0.2 C3 0.47U RAD0.2 C1 0.7UH AXIAL0.6 L2 0.7UH AXIAL0.6 L1 10 AXIAL0.6 R12 10 AXIAL0.6 R11 100U RB.2/.4 C18 100U RB.2/.4 C17 10A BRIDGE-H1 DBR1 10K AXIAL0.4 R8 10K AXIAL0.4 R7 1K AXIAL0.4 R4 1K AXIAL0.4 R2 1K AXIAL0.4 R3 1K AXIAL0.4 R1 2.7 AXIAL0.5 R10 2.7 AXIAL0.5 R9 20K AXIAL0.4 R16

20K AXIAL0.4 R15 20K AXIAL0.4 R13 20K AXIAL0.4 R14 220P RAD0.2 C16 220P RAD0.2 C15 22K AXIAL0.4 R6 22K AXIAL0.4 R5 22U RAD0.2 C20 22U RAD0.2 C19 4.7U R AD0.2 C10 4.7U R AD0.2 C9 470U RB.2/.4 C8 470U RB.2/.4 C6 470U RB.2/.4 C7 470U RB.2/.4 C5 50P RAD0.2 C22 50P RAD0.2 C21 6800U RB.3/.6 C26 6800U RB.3/.6 C25 6800U RB.3/.6 C24 6800U RB.3/.6 C23 LM3886 ZIP-11V U2 LM3886 ZIP-11V U1 Output PORT2 J1 POWER FLY3 J3 SIG_INPUT PHONE J2

运算放大器应用电路的设计与制作(1)

运算放大器应用电路的设计与制作 (一) 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。

由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: i 1 f O U R R U - =

微分与积分电路分析

一、微分电路 输出信号与输入信号的微分成正比的电路,称为微分电路。 原理:从图一得:Uo=Ric=RC(duc/dt),因Ui=Uc+Uo,当,t=to时,Uc=0,所以Uo=Uio随后C充电,因RC≤Tk,充电很快,可以认为Uc≈Ui,则有: Uo=RC(duc/dt)=RC(dui/dt)---------------------式一 这就是输出Uo正比于输入Ui的微分(dui/dt) RC电路的微分条件:RC≤Tk 图一、微分电路 二、积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 原理:从图2得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk, 充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c)∫icdt=(1/RC)∫icdt 这就是输出Uo正比于输入Ui的积分(∫icdt) RC电路的积分条件:RC≥Tk 图2、积分电路 微分电路电路结构如图W-1,微分电路可 把矩形波转换为尖脉冲波,此电路的输出波 形只反映输入波形的突变部分,即只有输入 波形发生突变的瞬间才有输出。而对恒定部 分则没有输出。输出的尖脉冲波形的宽度与 R*C有关(即电路的时间常数),R*C越小, 尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。 积分电路 电路结构如图J-1,积分电路可将矩形 脉冲波转换为锯齿波或三角波,还可将锯 齿波转换为抛物波。电路原理很简单,都 是基于电容的冲放电原理,这里就不详细 说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于

protel99se 集成运算放大电路实验报告

一、 实验目的 1. 研究集成运算放大器的组成及其工作原理。 2. 学习并掌握运用Protel 99se 软件绘制集成运算放大器原理图及PCB 文 件。 二、 实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 1 反相比例运算放大器 反相比例运算放大器电路是集成运放的一种最基本的接法,如图2.6.1所示。电路的输出电压o u 与输入电压i u 的关系式为:f o i 1 R u u R =- 。 o U i 图1 反相比例运放电路 2 反相加法器 如果在运算放大器的反相端同时加入几个信号,接成图2.6.2的形式,就构成了能对同时加入的几个信号电压进行代数相加的运算反相加法器电路。电路的输出电压o u 与输入电压i u 的关系式为:f f o i1i21 2 R R u ( u u ) R R =-+ 。 o U U 图2 反相加法器电路

3 差动运算放大电路 差动输入运算放大器电路如图2.6.3所示。根据电路分析,该电路的输出电压o u 与输入电压i u 的关系式为:f o i2i11 R u (u -u ) R = 。该关系式说明了两个输入端的信 号具有相减的关系,所以这种电路又称为减法器。同时,电路中同相输入电路参数与反相输入电路参数应保持对称,即同相输入端的分压电路也应该由电阻f R 和 1 R 来构成,其中3 f R R =,2 1 R R =。 o U U 图3 差动运算放大电路 4 积分器电路 由运算放大器构成的基本积分电路如图2.6.4所示,它的基本运算关系是: o i 11u u dt R C =- ? 当i u 为恒定直流电压时,即i i u U =,o i 11 u U t R C =- ,这时输出电压是随时间作 直线变化的电压,其上升(或下降)的斜率是i 1U R C ,改变i U 、1 R 或C 三个量中的 任一个量都可以改变输出电压上升(或下降)的斜率。 积分器的反馈元件是电容器。无信号输入时,电路处于开环状态。所以运算放大器微小的失调参数就会使得运算放大器的输出逐渐偏向正(或负)饱和状态,使得电路无法正常工作。为了减小这种积分漂移现象,实际使用时应尽量选择失调参数小的运算放大器,并在积分电容两端并联一只高阻值电阻f R 以稳定直流工作点,构成电压反馈,限制整个积分器电路放大倍数。但f R 不能太小,否则将影响电路积分线性关系。

音频功率放大器的设计与实现

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

相关文档
最新文档