参数化主义

参数化主义
参数化主义

浅析参数化主义

帕特里克·舒马赫介绍:“参数化主义”并不是指的一种设计工具,而是一种设计风格,这种风格是和现代主义设计风格在一个平起平坐的地位上的,现代主义风格在二十世纪前半叶处于统治地位,但在七十年代后产生一些危机,基于这些危机,产生了后现代主义设计风格,现代主义和解构主义虽然对这种危机做了一些弥补,但没有解决根本问题。参数主义真正做到了新的思潮和设计风格,参数化的关键是我们可以对物体有一个参数化的操控性,在物体内部可以进行关系的整合,不像以前是几个几何体的并置,在物体外部可以自我改变去适应外部环境。参数主义对几何体进行了重新的定义,几何体不是独立存在,而是互相融合,互相交接的,具有一定的塑性和延展性,几何体的初始状态和最终效应已经和传统定义上的几何体截然不同。

扎哈?哈迪德建筑事务所在业界是独树一帜的,在数字化以及三维复杂形体设计方面都有着独到之处。扎哈?哈迪德建筑事务所的真正核心是反现代建筑的方盒子秩序,讲究建筑的流线秩序,复杂度,而不是杂乱。讲操控电脑程序模拟自然形态逻辑来辅助设计,讲用电脑技术来解决复杂度带来的建造上的挑战。

帕特里克·舒马赫以扎哈?哈迪德建筑事务所设计的银河SOHO为例,提出:我们未来的社会,未来的城市是多维的,人和建筑会和植物一样要自由地伸展,自由成长和自由地交往。过去的那种固定的关系、直线化的、平面化的表达方式、思维习惯和建筑空间都将受到巨大的冲击。建筑、城市规划都是为人服务的,而今天人的生活方式、工作方式,包括行为方式都发生了巨大的变化。今天技术的进步和信息的发展,使我们能更进一步理解了未来的世界是多维的世界,是更多元素的融合和有机交互。所以我们的建筑和我们的思维也应该是多维的。

我们追求的参数化设计范式所有的方式,使该学科的各个角落渗透。系统的,适应变化,不断分化,而不是单纯的品种,和动态的,涉及所有参数外型设计任务,从城市化水平的产品构造细节,室内陈设和世界。

参数化主义意味着所有的建筑元素和复合物的参数化的可塑性。这意味着在基本的,根本的本体论架构组成部分的转变。古典与现代在刚性几何图形的依赖而不是矩形,立方体,圆柱体,金字塔和动画几何实体、样条。这是根本的动力系统的几何积木一样的头发,布,水滴和元球的反应吸引和共鸣,可向每个通过脚本等。

参数化主义组织和明确的目标范围内的后福特主义社会最先进的网络中心的日益多样化,社会机构和生命过程的复杂性。它旨在建立一个复杂多样的空间秩序,使用脚本来区分和关联所有元素和设计子系统。我们的目标是加强内部的建筑设计,内部相互依存关系,以及在复杂的外部背景与城市环境的连续性。

禁忌原则

?避免刚性形式

?避免简单的重复、品种缺乏

?拼贴避免孤立的,无关的元素、治安混乱

?避免僵化的定型功能

?避免功能区划

积极原则

?所有表格必须软

?所有系统都必须区别和相互依存

?所有功能都参数活动方案

?所有活动互相沟通

哈迪德设计的奥地利因斯布鲁克罗,德帕克缆车道车站。在成功的设计了伯吉瑟尔滑雪台之后,哈迪德又对阿尔卑斯因斯布鲁克北部山脉沿途索道的四个车站进行了设计。在每个车站的入口处,由计算机生成的半透明顶棚设计呈现出流动性,看起来似乎漂浮在混凝土底座上,如同一片云彩、一堆积雪或是一块冰雕。

哈迪德也设计过如波涛起伏般的沙发、桌子和椅子,她的景观系列源于自然界中一些动态的景观形式如冰川和受侵蚀的山坡所赋予的灵感。白色和蓝色的沙发分别被称为“冰川”和“冰渍”,是一种软垫泡沫做成的;而由雕木制作的一对白色椅子则被叫做“钟乳石”和“石笋”。

玛茜艺术中心内部。哈迪德设计的带状墙、复杂编排的楼梯和不固定的走廊,共同构成了她所谓的“流动的空间”。这种建筑的效果堪称奇异,就如同18世纪艺术大师皮拉内西想象的雕刻建筑成为了现实。玛茜艺术中心内部蛇行的黑色楼梯与建筑周围的小道在风格上十分协调,哈迪德的设计就是要达到这种效果。

奥地利因斯布鲁克伯吉瑟尔滑雪台。通过将混凝土曲面弯向天空,哈迪德为这座高耸的滑雪台兼咖啡馆营造出一种动态的抽象图腾,使得整个苍穹成为了障碍滑雪的帷幕。

德国莱茵河畔威尔城,维特拉消防站。位于德国维特拉制造园区的一个消防站是哈迪德完成的第一个完整建筑作品,几何体的组合。

哈德德设计的伦敦水上中心,对于一个总是把“流动的空间”挂在嘴上的建筑师来说,让她去设计奥运会游泳池是再好不过的差事了,因为这样她就可以将个人喜好与指派任务完美的融合在一起了。

辛辛那提的当代艺术博物馆是哈迪德在美国完成的第一个完整建筑作品,其拐角位置看起来就像是一辆开动中的火车头。整个建筑的外围是由黑白搭配的混凝土层堆夹杂着条状玻璃墙,在狭窄末端互锁的外层向前伸展形成一个多角的表面,这种建筑构建让人感受到艺术的创造性张力,这是一幕足以创造新秩序的暴烈奇景。

扎哈·哈迪德并不是解构主义大师。哈迪德本人也不认为她是一位解构主义建筑师。她与解构大师屈米、埃森曼是有区别的。虽然建筑形式相似,但是屈米的思想源自德里达,而哈迪德则是受到马列维奇至上主义的影响。屈米及埃森曼解构主义的共性是在于对现代主义建筑的批判,对现代主义建筑和传统建筑二元对立的瓦解。屈米重构了一种非二元对立的理论,埃森曼重构了一种后功能主义。他们在重构的同时,都走向了各自瓦解对象的对立面。而哈迪德则是通过对传统观念的批判,进而对建筑的本质进行重新定义,从而发展适合新时代的建筑,这才是哈迪德在建筑中所要实现的本质目的。

从她的最早的绘画和模型到当前处于进展中的建筑物和作品中,可以看到其中始终含有原创的和强烈的个性视觉,这种视觉已经改变了我们观察和体验空间的方法。哈蒂德的碎片几何结构和液体流动性比创造一个抽象且动态的美好事物要做更多工作,这是一种探索和表达我们生活于其中的世界的主要工作。扎哈哈迪德的这种参数化设计富有无穷的想象力。

“玛丽莲·梦露大厦”马岩松中标的加拿大密西沙加市地标建筑,这是一栋56层的公寓楼,“玛丽莲·梦露大厦”带给人无限遐思。马岩松说:“‘玛丽莲·梦露大厦’不是我们定的名字,而是当地一家著名媒体上的评论家这么叫起来的。他们认为,这大厦看起来与可以和玛丽莲·梦露婀娜的姿态媲美。而建筑作为一种大众艺术品,不是要刻意造型,而是真实地反映人性、自然,给人无限的想象空间,引发人们丰富的心理活动。这栋建筑有人说像玛丽莲·梦露,也有人说像流动的音乐,但都给人美的感受。”“我们所有的作品,都反对机器带给人的压迫感,也反对技术第一低成本复制的建筑,人需要从工业时代的紧张与压迫中解放出来,寻找平等、开放的空间,建筑要满足的功能性,在新的世纪里,应该延伸到人的精神世界,给人的生活创造更大的自由、更多的可能。”

马岩松设计的纽约曼哈顿“浮游之岛''-----纽约新世贸建筑模型,整个岛在概念里面拆碎混合了,削平高度,追求水平的交流。弗兰克.盖里说:“我很喜欢这个设计,它像一个从外太空来的生物,但是又和周围有那么密切的关系,是一个可行的设计。”马岩松本人则希望建立起新的价值观,而不是一处博物馆或纪念碑,也不应仅仅是一幢新建筑,所有出发点基于一个概念——发展。给予空间更高层次的复杂性以及表达现代的都市关系变得非常必要。

参数化主义的设计往往在施工上很难实现,哈迪德的设计固然很漂亮,但是场馆的建设估计费用也正从2004年的7300万英镑达到惊人的2亿多英镑。虽然此前一年多已经在不断修改哈迪德的设计方案,缩减预算开支,但仍无法达到预期目标。此外,组委会还认为,木质顶设计会给日后维护工作带来难度,奥运会后的改建费用也将是一笔不小的开支。一项最新发布的报告显示,水上运动中心在奥运会后甚至未必

适合用作社区服务设施。

马岩松的设计即使在美国也显得过于激进,重建“世贸”的“浮游之岛”虽然被建筑专家叫好,却被另一个极其平庸的设计取代。图纸似乎只能是图纸. 马岩松的作品往往因为结构复杂、施工难度巨大而成为前瞻性的概念建筑,基于造价和决策者的观念限制要从三维数字模型变成现实的可能性不大。毕竟在现实里构筑和建筑物的实用性是必需的,漂亮和复杂的外观是以烧钱为前提的。这种无奈让他一度将设计方案当成当代艺术来做.

参数化设计分析

参数化设计的建筑设计方法研究 摘要:非线性科学理论的不断发明,突破了线性科学对人类的束缚,人们对欧几里德几何体系产生了怀疑,影响到人类产品制造业,则表现为产品形态的非标准化;清除了时间与空间的二元对立,表现了时空统一的状态;歌颂了高度的连续性与流动性。建筑物也像其他人造物一样受这些新的科学理论的影响,开始摆脱规则标准几何形体的枷锁,走向非线性参数化的发展道路。参数化设计植根于软件的发展,发自建筑学对于周边领域或是学科的借鉴; 关键词:非线性建筑;现象学设计方法;生成性参数化设计; 关系构建式参数化设计;脚本设计 全球化经济是当代真实的准则,将所有的东西都变成了商品,所有的地方都变成了市场。过度的媒体文化缩小了天真的或是独特的发明的可能性,吸收了所有的不同和例外。所有的优势都已经被占有过,所有的事情也都被做过,想过,或是规划过。建筑也是如此,大多数的建筑会被层层的建筑规范,区域规划,工业准则,标准化参数,市场需求甚至政治需要所包围,事实上建筑师所拥有的自由是一种已经被限定过的自由。先进的建筑诞生于建筑师终于认识到自己跳不出这种已经被限定过的自由,而所有“创造美好世界”的幻想都只是庸人自扰,于是伴随着名称的变化也伴随着所标榜的“主义”的变化,从“批判”变成了“后批判”(从解构到后解构,从后现代到后后现代)。这种变化实际上代表了一种倒退——因为“后”并不代表“超越”,而仅仅代表“之后”。在当代先进的建筑师中两个最大的力量,“Dutch派”和“Parametric派”,“Dutch派”算是一种简称——代表库哈斯和他的模仿者及追随者们。他们的作品建立在差异的人类特性和弱点之上,喜欢寻找已知社会和系统的漏洞,然后进行反向的设计,并且喜欢用大量的统计学数据和量化的研究来兜售他们机智的结果。而另外一种建筑学的力量可以称为“Parametric派”,或是”Parametric Design”(参数化设计)。 在这里有必要先介绍一下非线性建筑的概念,非线性建筑人们往往忽视最普通的自然现象,比如自然界中的万物都是非规则的形状便是一例。无论植物、生物还是动物,包括人本身在内,其形状没有一个是规则状的。但是,在人类世界中,人造物大部分却都是规则规范的几何形体,建筑更是如此。原因之一可能与人类坚信欧几里德几何理论有关,原因之二也许是因为人类生产能力有限,技术条件不够,因而,依靠仅有的生产技术能力只能制造出简单标准的人造物体。然而上世纪中叶开始,非线性科学理论的不断发明,突破了线性科学对人类的束缚,人们对欧几里德几何体系产生了怀疑,影响到人类产品制造业,则表现为产品形态的非标准化。模糊理论、混沌学、耗散结构理论、涌现理

水化热参数化分析

一.概要 1. 水化热分析 浇筑混凝土时,水泥在水化过程中产生大量热量会使混凝土的温度升高。虽然随时间的推移混凝土的温度会慢慢冷却,但结构各个位置的温度下降速度不均匀,结构不同位置将发生相对温差,此温差会使混凝土发生温度应力。 温度裂缝发生类型 混凝土浇筑初期,因内部温度升高将发生膨胀,但混凝土表面的温度下降较快,相对应变较小,从而使混凝土表面产生拉应力。 混凝土内部不同的温度分布引起的不同的体积变化而导致的应力称为内部约束应力。此类拉应力裂缝主要发生在构件尺寸比较大的结构。 混凝土在高温状态下温度下降会发生收缩,但受到与其接触的已浇筑混凝土或者地基等的约束而产生的拉力,像这样变形受外部边界约束的状态称为外部约束。此类应力主要发生在像墙这样约束度比较大的结构中。 利用温度裂缝指数预测温度裂缝 韩国混凝土规范中使用温度裂缝指数(抗拉强度与发生的温度应力之比)i 值预测是否发生裂缝。 一般采用下面的值。 FEA 程序的水化热分析 水化热分析主要分为热传导分析和热应力分析。. 热传导分析主要计算水泥的水化过程中发热、传导、对流等引起的随时间变化的节点温度。将得到的节点温度作为荷载加载后,计算随时间变化的应力称为热应力分析。 因此通过查看温度分布可以看出输入数据是否有误,如果温度分布没有问题可说明输出的应力结果也是正确的。 2. 水化热参数化分析 水化热分析必须进行反复计算 大体积混凝土的温度裂缝可以利用温度裂缝指数(Crack Ratio, Icr) 来验 算。温度裂缝指数要满足结构的重要 性、功能、环境条件等因素的要求。 温度裂缝指数受水泥的类型、浇筑温度、养生方法等多因素的影响,所以需要对多种条件进行反复分析以找出最佳的浇筑方法。 参数化分析功能 为比较多种条件的分析结果需要建立 多个模型进行分析,分析结束后需要整理大量的分析结果、还要进行结果保存、对比等工作。 通过FEA 的水化热参数化分析功能,可以实现一个模型多种条件分析。可以大大减少单纯繁琐的反复分析过程,从而提高工作效率。 参数化分析的使用方法 首先建立一个基本模型,在基本模型里使用替换变量的方式定义分析工况。下图是把材料作为变量条件的示例,“Case I ”为将混凝土C24变更为C30的工况,“Case II ”为将混凝土C35变更为C40的工况。 | 参数化分析的构成 | 参数化分析里可以考虑的变量 在水化热参数化分析的功能里可以调整的变量有五个,较常用的调整方法具体如下。 ? 施工阶段: 降低浇筑高度缩小各阶段的温度差。浇筑间距过小的话很难 达到分段浇筑的效果,但如果太大分界面会产生较大的温差。. ? 对流边界:对流系数较低时,热量不容易对外流失,可以减少内外温差。 ? 材料:使用弹性模量大的材料时,抗拉强度也较大,可增大裂缝指数。 ? 发热特性:是变量中最为敏感的因素, 定义水化过程中发生的热量。 ? 是否考虑自重:使混凝土产生压应力的荷载,在一定程度上可以减少拉应力,但效果不明显。 温度裂缝指数与裂缝发生几率 | 裂缝指数(i) = 混凝土抗拉强度 发生的温度应力 ? 防止裂缝发生时:1.5 以上 ? 限制裂缝发生时:1.2 ~ 1.5 ? 限制有害裂缝发生时:0.7 ~ 1.2 | 内部约束产生的裂缝(放热时)| | 外部约束产生的裂缝(冷却时)|

WRF物理过程参数化方案简介

WRF物理过程参数化方案简介(WRF V2) 分类:WRF相关 | 时间:2009-06-19 00:40 | 阅读:508人/次 | 发布者:laiwf 作者:胡向军, 陶健红 ,郑飞 ,王娜,张铁军,刘世祥,尚大成 1 辐射过程参数化 1.1 RRTM长波辐射方案 来自于MM5模式,采用了Mlawer等人的方法。它是利用一个预先处理的对照表来表示由于水汽、臭氧、二化碳和其他气体,以及云的光学厚度引起的长波过程。 1.2 Dudhia 短波辐射方案 来自于MM5模式,采用Dudhia的方法,它是简单地累加由于干净空气散射、水汽吸收、云反射和吸收所引起的太阳辐射通量。采用了Stephens的云对照表。 1.3 Goddard短波辐射方案 它是由Chou和Suarez发展的一个复杂光学方案。包括了霰的影响,适用于云分辨模式。 1.4 Eta Geophysical Fluid Dynamics Laboratory(GFDL)长波辐射方案 这个辐射方案来自于GFDL。它将Fels和Schwarzkopf的两个方案简单的结合起来了,计算了二氧化碳、水汽、臭氧的光谱波段。 1. 5 Eta Geophysical Fluid Dynamics Laboratory(GFDL) 短波辐射方案 这个短波辐射方案是Lacis和Hansen参数化的GFDL版本。用Lacis和Hansen的方案计算大气水汽、臭氧的作用。用Sasamori等人的方案计算二氧化碳的作用。云是随机重叠考虑的。短波计算用到时间间隔太阳高度角余弦的日平均。 2 微物理过程参数化 2.1 Kessler暖云方案 来自于COMMAS模式,是一个简单的暖云降水方案,考虑的微物理过程包括:雨水的产生、降落以及蒸发,云水的增长,以及由凝结产生云水的过程,微物理过程中显式预报水汽、云水和雨水,无冰相过程。 2.2 Purdue Lin方案 微物理过程中,包括了对水汽、云水、雨、云冰、雪和霰的预报,在结冰点以下,云水处理为云冰,雨水处理为雪。所有的参数化项都是在L in等人以及Rutledge和Hobbs的参数化方案的基础上得到的,某些地方稍有修改,饱和修正方案采用Tao的方法。这个方案是WRF模式中相对比较成熟的方案,更适合于理论研究。 2.3 Eta Ferrier方案

PROE参数化教程

第10章创建参数化模型 本章将介绍Pro/E Wildfire中文版中参数化模型的概念,以及如何在Pro/E Wildfire 中设置用户参数,如何使用关系式实现用户参数和模型尺寸参数之间的关联等内容。 10.1 参数 参数是参数化建模的重要元素之一,它可以提供对于设计对象的附加信息,用以表明模型的属性。参数和关系式一起使用可用于创建参数化模型。参数化模型的创建可以使设计者方便地通过改变模型中参数的值来改变模型的形状和尺寸大小,从而方便地实现设计意图的变更。 10.1.1 参数概述 Pro/E最典型的特点是参数化。参数化不仅体现在使用尺寸作为参数控制模型,还体现在可以在尺寸间建立数学关系式,使它们保持相对的大小、位置或约束条件。 参数是Pro/E系统中用于控制模型形态而建立的一系列通过关系相互联系在一起的符号。Pro/E系统中主要包含以下几类参数: 1. 局部参数 当前模型中创建的参数。可在模型中编辑局部参数。例如,在Pro/E系统中定义的尺寸参数。 2. 外部参数 在当前模型外面创建的并用于控制模型某些方面的参数。不能在模型中修改外部参数。例如,可在“布局”模式下添加参数以定义某个零件的尺寸。打开该零件时,这些零件尺寸受“布局”模式控制且在零件中是只读的。同样,可在PDM系统内创建参数并将其应用到零件中。 3. 用户定义参数 可连接几何的其它信息。可将用户定义的参数添加到组件、零件、特征或图元。例如,可为组件中的每个零件创建“COST”参数。然后,可将“COST”参数包括在“材料清单”中以计算组件的总成本。 ●系统参数:由系统定义的参数,例如,“质量属性”参数。这些参数通常是只读 的。可在关系中使用它们,但不能控制它们的值。 ●注释元素参数:为“注释元素”定义的参数。 在创建零件模型的过程中,系统为模型中的每一个尺寸定义一个赋值的尺寸符号。用户可以通过关系式使自己定义的用户参数和这个局部参数关联起来,从而达到控制该局部参数的目的。

ADAMS VIEW 参数化和优化设计实例详细讲解

ADAMS/VIEW 参数化和优化设计实例详解 本例通过小球滑落斜板模型,着重详细说明参数化和优化设计的过程。 第一步,启动adams/view(2014版),设置工作路径,设置名称为incline。 名称 存储路径第二部,为满足模型空间,设置工作网格如图参数。 修改尺寸 第三部创建斜板。点击Bodies选项卡,选择BOX,然后建模区点击鼠标右键,分别设置两个点,坐标为(0,0,0)和(-500,-50,0),创建完模型,然后右键Rename,修改名称为xieban。

右键输入坐标,创建点BOX rename 输入xieban

第四部创建小球。点击Bodies选项卡,选择Sphere,然后建模区点击鼠标右键,分别设置两个点,球心坐标为(-500,50,0)和半径坐标(-450,50,0),创建完模型,然后右键Rename,修改名称为xiaoqiu。 输入两点 Rename,及创建效果 第五部创建圆环。点击Bodies选项卡,选择Torus,然后建模区点击鼠标右键,分别设置两个点,圆环中心坐标为(450,-1000,0)和大径坐标(500,-1000,0),创建完模型,然后右键Rename,修改名称为yuanhuan。完成后效果如下图: 第六部修改小球尺寸及位置。首先修改小球半径为25mm,在小球上右键,选择球体,点击Modify,然后设置如下图;然后修改小球位置,将Y坐标移到25mm处,选择Marker_2点,

右键点击Modify,然后设置坐标位置如下图。 右键编辑球半径 修改半径为25 改后效果 修改球的位置

设置球坐标 完成修改后效果 第七部修改圆环尺寸及位置。将圆环绕X轴旋转90度,选择Marker_3点,右键点击Modify,然后设置坐标位置如下图。修改圆环尺寸,大径为40mm,截面圆环半径为12mm,右键,选择圆环体,点击Modify,然后设置如下图。至此,模型建立完毕。 修改圆环位置

UG建模和参数化建模分析

UG软件的建模与参数化技术分析 (2) 第一章简介 (2) 第二章UG建模分析 (3) 2.1实体建模 (3) 2.2特征建模 (3) 2.3自由形体建模 (4) 2.4实体特征建模 (4) 2.4.1基本体素特征建模 (5) 2.4.2扩展特征建模 (5) 2.4.3成型特征建模 (7) 2.4.4特征操作 (8) 2.5总结 (9) 第三章参数化设计 (10) 3.1参数化设计的定义【7】【8】 (10) 3.2参数化设计的类型 (11) 3.2.1基于特征的参数化设计 (11) 3.2.2基于草图的参数化设计 (13) 3.2.3基于装配的参数化设计 (14) 3.3基于Excel表格的参数化设计【4】【5】 (15) 3.4总结 (18) 参考资料 (19)

UG软件的建模与参数化技术分析 第一章简介 Unigraphics(简称UG)是全球主流MCAD 系统,是计算机辅助设计、辅助制造、辅助工程和产品数据管理(CAD/CAM/CAE/PDM)一体化的软件系统之一,应用十分广泛【1,2】。UG 基于完全的三维实体复合造型、特征建模、装配建模技术,能设计出各种各样复杂的产品模型,并且具有强大的参数化设计功能,能够很好地表达设计意图,易于修改参数化模型。另外UG 提供了完善的二次开发工具,二次开发程序可以建立起与UG 系统的链接,使用户开发的功能与UG 实现无缝集成。利用UG 二次开发技术,用户可以开发专用CAD 系统,满足实际的应用需求。 UG软件是第三代CAD系统的典范,是基于特征建模和基于约束的参数化和变量化的建模方法。为什么说UG为第三代CAD系统?【7】 第一代CAD系统主要用于二维绘图,其技术特征是利用解析几何的方法定义有关点、线、圆等图素。 第二代CAD系统主要是二维交互绘图系统及三维几何造型系统,其发展过程是从计算机辅助绘图到计算机辅助设计,从二维绘图到三维设计,进而到三维集成化设计的过程。在几何造型方面分别采用了三维线框模型、表面模型和实体模型。在实体造型上广泛采用了实体几何构造法(CSG法)和边界表示法(B-rep 法),CSG法即用简单实体(称为体素)通过集合运算交、并、差构造复杂实体的方法;B-rep法即是用物体封闭的边界表面描述物体的方法。 第三代CAD系统在建模方法上出现了特征建模和基于约束的参数化和变量化建模方法,由此出现了各种特征建模系统、二维或三维的参数化设计系统以及两种建模方法互相交叉、互相融合的系统。UG软件中参数化三维设计的核心技术便是特征建模,所以UG软件第三代CAD系统的典范,在接下来的章节将介绍三代建模方法(特征建模)相比较二代CAD的优势。

SOLIDWORK教程-功能简介及参数化草图绘制

第 1 章Solidworks设计基础 【教学提示】 SolidWork是由美国SolidWorks公司(该公司是法国Dassult System公司的子公司)于 1995年推出的三维机械CAD软件,它具有基于特征、单一数据库、参数化设计及全相关性等特点。本章主要对Solidworks做个概略性的介绍,使学生对SolidWorks的基本知识有一定的了解,为以后的学习打好基础。 【教学要求】 了解SolidWorks 软件的特点 熟悉SolidWorks 工作环境 掌握在SolidWorks 工作环境中文件的打开、保存等基本操作,掌握三维建模的流程。 1.1 CAD 技术的发展及SolidWorks 概述 CAD(Computer Aided Design)就是设计者利用以计算机为主的一整套系统在产品的全生命周期内帮助设计者进行产品的概念设计、方案设计、结构设计、工程分析、模拟仿真、工程绘图、文档整理等方面的工作。CAD既是一门多学科的交叉学科,它涉及计算机学科、数学学科、信息学科、工程技术等;CAD也是一项高新技术,它对企业产品质量的提高、产品设计及制造周期的缩短、提高企业对动态多变市场的响应能力及企业竞争能力都具有重要的作用。CAD技术在各行各业都得到了广泛的推广应用。SolidWorks 正是优秀CAD软件的典型代表之一。SolidWorks 作为Windows 平台下的机械设计软件,完全融入了Windows 软件使用方便和操作简单的特点,其强大的设计功能可以满足一般机械产品的设计需要 1.1.1 CAD技术的产生与发展 20世纪60年代初,美国麻省理工学院MIT开发了名为Sketchpad的计算机交互处理系统,并描述了人机对话设计和制造的全过程,这就是CAD/CAM的雏形,形成了最初的CAD 概念:科学计算、绘图。计算机在设计过程中的应用,形成了CAD 系统。 从20世纪60年代初到70年代中期,CAD从封闭的专用系统走向开放式的商品化软件系统,主要技术特点是二维、三维线框造型,其软件系统只能表达基本的几何信息,不能有效表达几何数据间的拓扑关系;且系统需配备大型计算机系统,价格昂贵。此时期有代表性的产品是:美国通用汽车公司的DAC-1,洛克希德公司的CADAM系统。在此时期CAD开始进入应用阶段。 20世纪70年代后期,CAD系统进入发展时期。一方面CAD系统硬件价格下降;同时,飞机和汽车工业蓬勃正值发展时期,飞机和汽车制造中遇到了大量的自由曲面问题,法国达索飞机制造公司率先开发出以表面模型为特点的曲面建模方法,推出了三维曲面造型系统CATIA,该系统采用多截面视图、特征纬线的方式来近似表达自由曲面。该阶段的主要技术特点是自由曲面造型。曲面造型系统为人类带来了第一次CAD技术革命。此后一些军用工业相继开发了CAD 软件,如美国洛克希德公司的CADAM、美国通用电气公司的CADAM、美国通用电气公司的CALMA、美国波音公司的CV、美国国家航空及宇航局(NASA)支持开发的I-DEAS、美国麦道公司开发的UG等。 -可编辑-

参数化建模介绍

2:参数化建模介绍 UG标准件开发都是基于标驱动参数化的标准件UG模板部件,因此UG标准件开发的实现,最重要的环节是建立参数化的标准件UG模板部件。在建立参数化标准件UG模板部件过程中要大量地应用到草图、参数化建模、表达式及装配建模等技术。 2.1参数化草图技术在UG标准件开发中的应用 在此部分不再详述草图的功能,介绍一些技巧: 1. 合理地设置草图的放置面,以达到标准件在调用时能够实现自动地装配定位。在此我们一般先建立绝对基准坐标系(Absolute CSYS,位于绝对位置的基准坐标系)或位于绝对工作坐标原点的固定基准面和固定基准轴,然后建立与绝对基准坐标系或过顶基准面呈一定偏置关系的相关基准面,并以此相关基准面作为草图的放置面。 2. 合理运用相关参数点、基准轴和相关基准面,建立标准件的草图定位原点。例如当我们使用相关参数点作为标准件的草图定位原点,只要在标准件管理器中,将相关参数点的坐标值设置为理想的目标值,标准件就能自动装配定位到指定位置。 2.2参数化建模技术在UG标准件开发中的应用 UG虽然支持非参数的标准件开发,但是,如果开发非参数的标准件就失去了其本质意义,因为它不能建立系列规格的零件尺寸标准,不能控制零件的几何及尺寸的变更。在真正意义上的UG标准件开发中,我们必然要使用全参数建模技术,用参数去驱动和控制标准件的结构和尺寸规格,因此在UG标准件开发过程中要具有参数化建模的观点和思想。要实现UG标准件的参数化建模,注意一下细节和技巧。 1. 前期要吃透标准件的特点,根据标准件的特点定义好设计意图、规划好结构设计实现方法、规划主控参数。 2. UG支持在一个部件文件中有多个主体结构体,我们在标准件的开发中一

【Adams应用教程】第10章ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计

本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及ADAMS/View 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。其中DOE是通过ADAMS/Insight来完成,设计研究和优化分析在ADAMS/View中完成。通过本章学习,可以初步了解ADAMS参数化建模和优化的功能。 10.1 ADAMS参数化建模简介 ADAMS提供了强大的参数化建模功能。在建立模型时,根据分析需要,确定相关的关键变量,并将这些关键变量设置为可以改变的设计变量。在分析时,只需要改变这些设计变量值的大小,虚拟样机模型自动得到更新。如果,需要仿真根据事先确定好的参数进行,可以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真,以便于观察不同参数值下样机性能的变化。 进行参数化建模时,确定好影响样机性能的关键输入值后,ADAMS/View提供了4种参数化的方法: (1)参数化点坐标在建模过程中,点坐标用于几何形体、约束点位置和驱动的位置。点坐标参数化时,修改点坐标值,与参数化点相关联的对象都得以自动修改。 (2)使用设计变量通过使用设计变量,可以方便的修改模型中的已被设置为设计变量的对象。例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。当设计变量的参数值发生改变时,与设计变量相关联的对象的属性也得到更新。 (3)参数化运动方式通过参数化运动方式,可以方便的指定模型的运动方式和轨迹。 (4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。当以上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。 参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动,而且可以达到对模型优化的目的。参数化机制是ADAMS中重要的机制。 10.2 ADAMS参数化分析简介 参数化分析有利于了解各设计变量对样机性能的影响。在参数化分析过程中,根据参数化建模时建立的设计变量,采用不同的参数值,进行一系列的仿真。然后根据返回的分析结果进行参数化分析,得出一个或多个参数变化对样机性能的影响。再进一步对各种参数进行优化分析,得出最优化的样机。ADAMS/View提供的3种类型的参数化分析方法包括:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。 10.2.1 设计研究(Design study) 在建立好参数化模型后,当取不同的设计变量,或者当设计变量值的大小发生改变时,仿真过程中,样机的性能将会发生变化。而样机的性能怎样变化,这是设计研究主要考虑的内容。在设计研究过程中,设计变量按照一定的规则在一定的范围内进行取值。根据设计变

Maxwell参数化建模和优化分析

Maxwell参数化建模和优化设计 1前言 随着产业升级,各领域工业产品的性能指标需求逐步提高,设计工程师们发现仅依靠理论 和经验难以完成设计任务,在这种情况下借助高性能计算机和专业的仿真设计软件,让“电脑”代替“人脑”从海量的解集中搜寻最优设计方案成为必然趋势,设计工程师正逐渐转变为优化 算法策略的设计者。 以电机设计为例,电机的设计参数众多,同时涉及到多物理场的强耦合,电机工程师面对 的是大规模、高难度的优化设计问题。解决如此复杂的工程问题有两个重要的基础工作:即建 立复杂的参数化几何模型和制定合理的多目标优化策略并高效实施。ANSYS Maxwell作为业界最佳低频电磁场仿真设计软件,提供了多种几何参数化建模的方法,适用于不同复杂程度的工 程问题;同时,借助于ANSYS Workbench平台电磁、结构、流体以及优化模块,可进行电机 多物理场耦合的多变量多目标优化设计,另外借助于ANSYS平台强大的并行、分布式计算能力,工程师可在最短的时间内对复杂优化策略进行分析和验证,快速实现产品迭代创新。本文 将从参数化建模、优化设计两个方面介绍Maxwell的相关功能。 2参数化建模 通常可以将模型的几何参数、材料属性、温度、激励等设计参数设置成变量,当改变变量 的时候,模型会自动更新,以达到参数化模型的目的。参数化模型的优点:对设计参数进行更 改后模型会自动更新,可以快速方便的调整模型;轻松定义和自动创建同一系列的模型;便于 参数分析和优化分析;便于灵敏度分析、统计分析、公差分析等。参数化模型的目的:对于在 校学生可以快速搞清设计参数与性能指标的关系,加深对理论的理解;对于仿真工程师而言缩 短了建模时间、提高工作效率;对于研发工程师是产品优化设计、创新设计的重要基础工作。 Maxwell可以实现的参数化设置如下: ①几何模型参数化; ②激励源/外电路参数化; ③材料属性参数化; ④温度参数化; ⑤网格参数化; ⑥求解设置参数化。 对于ANSYS Maxwell平台的仿真分析,我们可用的几何参数化建模方法大致分为以下八种,

汽车零件参数化标准模板

汽车车身零件参数化标准模板1、车身零件建模统一参数化模板:SJTC_model

2、模板结构树说明: 2.1 PartBody:用“Final Part”中零件片体增厚,厚度为零件设计料厚,只允许存在一个片体增厚的结果。 2.2 external geometry:外部提取的参考面及重要特征,与其它零件无关联。 2.3 Final Part:零件片体设计的最后结果,通过命令“invert orientation”生成,作为“PartBody”的父级。 2.4 part difinition:零件片体参数化设计过程。 2.4.1 Eng_Tool_Direction:零件片体增厚方向标识。其中“DIE_PLANE”为零件基准平面;“Original_DIE_Point”为零件基准点;“DIE_DIR”为零件料厚线,线长为零件料厚的100倍,线型为实线,线型3:0.7mm,颜色为黄色。例:零件料厚d=1.2mm,则料厚线长L=120mm。 2.4.2 Main part:零件参数化过程。 2.4.2.1 working part:零件参数化设计中的重要过程。分别将“basic surface”、“depressions”、“flanges”、“trim”、“holes”中的结果通过命令“invert orientation”生成到“working part”中。“depressions”必须引用“working part”中的结果,不得在“basic surface”中引用。“flanges”、“trim”、“holes”的引用原则同上。 2.4.2.2 basic surface:零件基础面设计。 2.4.2.3 depressions:零件独立特征设计。

一个双波地形重力波拖曳参数化方案

一个双波地形重力波拖曳参数化方案 王元唐锦赟 南京大学大气科学系,中尺度灾害性天气教育部重点实验室,南京,210093 摘要 当地形次尺度强迫的作用与显式的经典动力作用效应相当时,地形重力波拖曳力对于环流的维持,以及动量和热量通量输送的动力效应变得十分显著。这种地形次尺度拖曳作用项可通过参数化的方法,在动力方程中加入额外的小项而引入数值模式。目前成熟的地形重力波拖曳参数化方法,如第1代基于线性单波理论的参数化方案;以及侧重考虑了临界层作用等因素对拖曳力的额外贡献的第2代参数化方案, 都无法有效表达风速垂直变化引起的波动应力随高度变化的特征。基于上述考虑,本文给出了一个双波参数化方案用于计算地形重力波拖曳中由线性自由传播重力波造成的波动应力的垂直分布。通过二阶WKB近似,它对由风速垂直变化引起的对波动应力的选择性临界层吸收过程和经典的临界层吸收过程做了显式处理;而在不发生临界层吸收现象的地区,则用两个单波同时在垂直方向上进行应力的传播,并利用波饱和标准进行应力耗散。进一步地在真实地形(以大别山地区为个例)条件下的测试结果表明,通过在不同理想风速廓线以及北半球冬季中纬度纬向平均风廓线下对波动应力垂直分布的计算,证明该方案确实能有效地给出应力随高度变化的特征。 关键词:地形重力波拖曳,双波参数化方案,临界层吸收,WKB近似。 初稿时间:2007年6月17日;修改稿时间:2007年7月20日。 资助课题:国家自然基金项目(40575017),国家重点基础研究发展规划项目(973:2004CB418301),博士点专项科研基金(2005028035)。 作者简介:王元,从事天气动力学方面的研究。Email:yuanasm@https://www.360docs.net/doc/824160750.html, A TWO-W A VE SCHEME FOR OROGRAPHIC GRA VITY WA VE DRAG PARAMETERIZATION Wang Yuan Tang Jinyun Wu Rongsheng The Department of Atmosphere Sciences, Nanjing University·Key Laboratory of Mesoscale Severe Weather/MOE, Nanjing 210093 Abstract When the magnitude of sub-scale ographic forcing is comparable with explicitly ordinary dynamic forcing, the drag effect reduced by ographic gravity wave is to be significant for maintaining dynamic balance of atmospheric circulation, as well as the momentum and energy transport. Such sub scale ographic forcing shouldbe introduced into numerically atmospheric model by the means of drag being parameterized. Furthermore, the currently mature ographic gravity wave drag parameterization, whatever the first-generation (based on lineal single wave theoretical framework) or the second generation drag parameterization (an important extra forcing by the contribution of critical level absorption), they can not correctly and effetely describe the vertical profile of wave stress under the influence of ambient wind shearing. Based on aforementioned consideration, a two-wave scheme was proposed to parameterize the ographic gravity wave drag by freely propagating gravity waves. It starts with a second order WKB approximation, and treats the wave stress attenuations caused either by the selective critical level absorption or the classical critical level absorption explicitly; while in regions where critical levels are absent, it transports the wave stress vertically by two sinusoidal waves and deposits them according to the wave saturation criteria. This scheme is thus used to conduct some sample

05 Maxwell_RMxprt参数化与优化设置

5 参数化分析和优化分析 优化设计由参数化分析(Parametric Analysis)和优化分析(Optimization)两部分构成。使用优化器optimetrics,用户可以从众多可行方案中找出一个最优解。一般原始设计方案,是一个初步的设计方案,需要将原始设计方案中的一些设计参数用变量定义,然后对这些变量进行优化。 Parametric Analysis(参数化分析):定义一个或多个扫描变量,并给每个扫描变量定义取值范围。优化器会在所有变量取值点进行计算,得到一系列的计算结果,这样用户就可以对结果进行比较从而确定每个设计变量对最终设计性能的影响。参数化分析常常可以用作优化分析的前期处理,因为它可以为优化分析提供变量的合理取值范围。 Target Optimization(目标优化):先确定优化目标和成本函数,优化器通过优化设计参数值来满足优化目标要求。 以上两个模块既可以单独使用,也可以结合使用。此外,优化器还具有良好的通用性,可用于与所选电机类型无关的其他优化设计。 5.1 RMxprt中的变量和参数 通过输入或输出参数,RMxprt界面可以与RMxprt求解器交换数据。RMxprt求解器从RMxprt 界面接收输入参数和设计参数,并返回输出参数(或简称为参数)给RMxprt界面。在RMxprt界面中,我们可以定义输入变量(或简称为变量)和输出变量。变量用来给设计参数赋值,而输出变量用来接收输出参数的值。 变量可以是一个数值,也可以是其他变量的函数。数值变量是一个独立变量,而函数变量则是一个相关变量。给设计参数赋值的变量可以是独立变量,也可以是相关变量,还可以是数学表达式。在下列几种情形中,变量是非常有用的: 1.当需要改变设计参数的值时。 2.当需要对不同的设计参数使用相同的值时。 3.在参数化分析中,需指定了一系列具有一定取值范围的扫描变量时。 4.在优化分析中,优化设计参数时。 在RMxprt中有两种类型的变量:project variables和design variables。 project variables(项目变量):项目变量在整个Maxwell项目都有效,项目变量可以赋值给该项目中的任何设计变量。在RMxprt中,通过在项目变量名称上加上前缀符号$,来区分项目变量和设计变量。用户可以在创建它时就手动的将符号$添加到项目变量中,或者RMxprt 自动添加。 design variables(设计变量):设计变量是与RMxprt设计有关的。设计变量可以赋值给RMxprt设计中的任何设计参数。 5.1.1 项目变量 5.1.1.1 添加项目变量 添加项目变量的步骤如下:

参数化三维设计软件-技术参数描述

参数化三维设计软件-技术参数描述 1.软件模块: a)提供业界最佳的3D实体造型,钣金设计,装配设计,基本曲面设计,焊接设计,2D 工程图绘制,机构设计,标准模型检查及渲染造型等的集成功能。 b)高级装配 c)交互式曲面扩展 d)高性能的渲染效果模块 e)行为建模技术扩展 f)电缆管路二维原理图、接线图设计 g)管路设计模块 h)电缆设计制造模块 i)钢结构设计专家系统 j)公差分析 k)机电协作扩展包 l)ECAD数据可视化 m)生成InterComm EDA 文件 n)数字化权限管理 o)基本结构、热分析包 p)高级结构、热分析包 q)疲劳强度分析、优化功能包 r)运动分析、优化功能包 s)模具设计包 t)注塑模架设计专家系统 u)级进模具设计专家系统 v)注塑流动分析包 w)基本加工包 x)高级加工包 y)加工专家系统 z)钣金加工包 aa)并行产品设计包 bb)产品可视化 2.架构在标准的基于特征,全相关的参数化实体建模核心基础上,实现尺寸驱动建模,并提供大量的工业标准及直接转换接口。完整的CAD/CAM/CAE/PLM的解决方案,并基于同一个数据库。 3.整个企业开发活动中可设计和管理中到超大型装配。它提供高级的功能工具进行设计标准管理,自顶向下装配设计,大装配管理,自动模型简化和装配工艺规划。

4.提供中高级复杂产品的设计能力,包含复杂曲面设计。可进行参数曲面造型,反向工程和复合设计. 5.电缆原理图设计,实现电缆原理图设计,定义元器件及其管脚,定义导线和电缆,确定分支位置,线缆连线方式,自动统计电缆配套表。 6.为管道布置的设计及加工提供综合的,全相关功能和标准库,能精确设计,走线和生成施工图. 7.该包为电器,电缆的设计及加工提供综合的,全相关功能和标准库,能精确设计,走线和生成施工图 8.提供专门公差分析解决方案、专门面向钢结构设计的专家系统,并可实现机械、电子设计协作,实现ECAD文件之间比较,原理图、PCB图和制造文件(Gerber)任意两者间的比较。9.提供快速自动地模具设计和装配功能,直接参照精确的产品设计模腔和芯盒,确保模具设计质量。 10.进行数控加工编程,刀具库,优化 3 轴铣,2- 4轴车,线切割,提供所有类型的CNC 数控加工编程。对体素类零件的高效加工专家。含有特定类型加工环境及工艺知识的自动捕捉,简化了编程工艺。 11.提供部门级范围内的设计数据的建立,共享和进展控制,通过安全保密机制,管理和通信三维设计软件中建立的相关设计数据来支持并行产品开发。核心支持并行工程,支持查询,检索,预览,权限设置,版本发放与审核控制。 12.可实现200多种数据格式文件的轻量化处理后的可视化,实现产品浏览、检查、测量、物性计算、剖切、干涉检查、装配拆卸模拟、批注、网上协同会议、异构CAD数据装配等等。 13.支持数字化动态出版物扩展,未来能够支持产品数据管理系统扩展,支持项目管理扩展,支持制造过程管理扩展,支持数字化动态出版物扩展。 14.厂商人数在中国超过600人,开发测试人员超过300人,并提供800免费电话支持。

实训 LoadRunner测试脚本的参数化模板

实训LoadRunner测试脚本的参数化 1.1实训目标 能够使用参数化数据解决系统压力问题 能够使用数据池中数据对参数变量实施参数化 能够使用数据库中数据对参数变量实施参数化 具备使用不同数据对系统施加预期压力的能力 1.2问题引出: 观察以下示例代码 web_url("MercuryWebTours", "URL=http://localhost/MercuryWebTours/", "Resource=0", "RecContentType=text/html", "Referer=", "Snapshot=t2.inf", "Mode=HTML", LAST); lr_think_time(5); web_submit_form("login.pl", "Snapshot=t3.inf", ITEMDATA, "Name=username", "Value=jojo", ENDITEM, "Name=password", "Value=bean", ENDITEM, "Name=login.x", "Value=53", ENDITEM, "Name=login.y", "Value=18", ENDITEM, LAST); 代码分析: 在这段代码中,用灰色背景黑色字体标识的是用户输入的用户名和口令,如果直接使用这段脚本对应用进行测试,则所有VU都会使用同一个用户名和口令登录系统。如果要模拟更加真实的应用场景(例如,不同权限的用户执行同一个操作),就有必要将用户名和口令用变量代替,为变量的取值准备一个“数据池”并设定变量的取值规则,这样每个VU在执行的时候就能根据要求取不同的值。 当然,要进行参数化的场合远远不止用户名和口令的处理。设想这样一种情况,需要模拟多个用户同时操作一个页面,该页面要求用户输入一条信息记录,且规定记录内容不能重复。对于这种情况,如果不采用参数化的方式,则必须为每个可能的VU使用一个不同的脚本。采用参数化方式时,只需要将输入的内容设置为参数,在参数池中给出大于VU 的数据即可。

“参数化设计”工作流程分析

龙源期刊网 https://www.360docs.net/doc/824160750.html, “参数化设计”工作流程分析 作者:杨满丰 来源:《中国科技博览》2015年第35期 [关键词]参数化;设计方法;计算机程序;设计 中图分类号:T3 文献标识码:B 文章编号:1009-914X(2015)35-0333-01 当今在建筑设计、规划设计、景观设计等领域中“参数化设计”已经成为不可不提的设计手段。从城市尺度上的规划设计到单体建筑的形态和表皮设计,从景观规划的场地布局到产品、家具的外观设计,参数化设计这种基于数字化技术的设计方法以极大包容的态度给设计领域带来了一种全新的工作方法与审美选择。本文从设计方案构思层面探讨参数化设计的特点及其工作流程。 一、参数化设计方法的特点 从方案设计层面上理解,参数化设计是指借助数字化技术手段将设计中的诸多要素,依据特定规则进行组织与关联,并获得设计结果的设计方法。参数化设计实际上是关联规则的设计,这个规则决定了一个系统中各要素间的关系和运行方式,给这个系统输入条件变量,系统就会依据规则生成结果。 传统设计方法由于受技术条件的限制通常被限定在以“几何体”为基本形式元素的思维框架内来解决功能问题。参数化设计将关注点转移到寻求设计要素与功能要求的逻辑关系组织上来,使用程序语言来组织设计条件与功能要求间复杂的逻辑关系,制定规则,并推演出结果是参数化设计方法的主要工作思路。计算机程序语言是处理参数化信息的主要技术手段。参数化设计方法从根本上突破了传统设计方法的几何思维限制和人脑计算能力的限制,这种方法可以获得传统设计手段难以表现的形态或形式组织方式。参数化设计方法中,设计师并不是通过设计形式来承载功能,而是通过寻找逻辑关系来设计一个能够推演出结果的系统。 二、参数化设计方法的一般设计过程 1、条件细分 条件细分是参数化设计方法的第一个工作环节。运用参数化设计方法的一个很重要的前提就是充分理解和认可影响设计的因素是复杂的。通过对复杂条件因素的细分,设计师将设计项目各主要条件因素分成足够数量且相对独立的基本单元。它们可以是基本实体单元如砌筑材料,墙、窗户、一个房间等,也可以是一些条件因素,如特定人群的行为、活动、喜好,气候因素,场地条件,人文因素等,细分内容甚至可以是更为抽象的形态构成元素如三维曲面的控制曲线的等。将以上这些与设计相关的各种条件信息,通过分析,找出其中的一种或几种关键

ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计 本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计((Design of Experiments, DOE)和优化分析(Optimization)。其中DOE是通过ADAMS/Insight 计研究和优化分析在ADAMS/View中完成。通过本章学习,可以初步了解ADAMS 建模和优化的功能。 10.1 ADAMS参数化建模简介 ADAMS 键变量,并将这些关键变量设置为可以改变的设计变量。在分析时, 以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真, 值下样机性能的变化。 进行差数参数化建模时,在确定好影响样机性能的关键输入值后,ADAMS/View 了4种参数化的方法: (1)参数化点坐标 点坐标参数化时,修改点坐标值时,与参数化点相关联的对象都得以自动修改。 (2)使用设计变量通过使用设计变量,可以方便的修改模型中的以已被设置为设计变量的对象。例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。 值发生改变时,与设计变量相关联的对象的属性也得到更新。 (3)参数化运动方式 (4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。 上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。 参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动, 以达到对模型优化的目的。参数化机制是ADAMS中重要的机制。 10.2 ADAMS参数化分析简介 参数化分析有利于了解各设计变量对样机性能的影响。在参数化分析过程中, 化建模时建立的设计变量,采用不同的参数值,进行一系列的仿真。 果进行参数化分析,得出一个或多个参数变化对样机性能的影响。然后再进一步对各种参数进行优化分析,得出最优化的样机。ADAMS/View提供的3 设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。

相关文档
最新文档