超简单的道路坐标计算

超简单的道路坐标计算
超简单的道路坐标计算

超简单的道路坐标计算、土方计算、出图软件,外行都看地懂!下载:https://www.360docs.net/doc/824225301.html,

(土方软件亦适用于河塘清淤,渠道大坝类土方工程,简单准确!CAD规范出图!)

水准仪及其使用方法

高程测量是测绘地形图的基本工作之一,另外大量的工程、建筑施工也必须量测地面高程,利用水准仪进行水准测量是精密测量高程的主要方法。

一、水准仪器组合:

1.望远镜

2.调整手轮

3.圆水准器

4.微调手轮

5.水平制动手轮

6.管水准器

7.水平微调手轮

8.脚架

二、操作要点:

在未知两点间,摆开三脚架,从仪器箱取出水准仪安放在三脚架上,利用三个机座螺丝调平,使圆气泡居中,跟着调平管水准器。水平制动手轮是调平的,在水平镜内通过三角棱镜反射,水平重合,就是平水。将望远镜对准未知点(1)上的塔尺,再次调平管水平器重合,读出塔尺的读数(后视),把望远镜旋转到未知点(2)的塔尺,调整管水平器,读出塔尺的读数(前视),记到记录本上。

计算公式:两点高差=后视-前视。

三、校正方法:

将仪器摆在两固定点中间,标出两点的水平线,称为a、b线,移动仪器到固定点一端,标出两点的水平线,称为a’、b ’。计算如果a-b≠a’-b’时,将望远镜横丝对准偏差一半的数值。用校针将水准仪的上下螺钉调整,使管水平泡吻合为止。重复以上做法,直到相等为止。

四、水准仪的使用方法

水准仪的使用包括:水准仪的安置、粗平、瞄准、精平、读数五个步骤。

1. 安置

安置是将仪器安装在可以伸缩的三脚架上并置于两观测点之间。首先打开三脚架并使高度适中,用目估法使架头大致水平并检查脚架是否牢固,然后打开仪器箱,用连接螺旋将水准仪器连接在三脚架上。

2. 粗平

粗平是使仪器的视线粗略水平,利用脚螺旋置园水准气泡居于园指标圈之中。具体方法用仪器练习。在整平过程中,气泡移动的方向与大姆指运动的方向一致。

3. 瞄准

瞄准是用望远镜准确地瞄准目标。首先是把望远镜对向远处明亮的背景,转动目镜调焦螺旋,使十字丝最清晰。再松开固定螺旋,旋转望远镜,使照门和准星的连接对准水准尺,拧紧固定螺旋。最后转动物镜对光螺旋,使水准尺的清晰地落在十字丝平面上,再转动微动螺旋,使水准尺的像靠于十字竖丝的一侧。

4. 精平

精平是使望远镜的视线精确水平。微倾水准仪,在水准管上部装有一组棱镜,可将水准管气泡两端,折射到镜管旁的符合水准观察窗内,若气泡居中时,气泡两端的象将符合成一抛物线型,说明视线水平。若气泡两端的象不相符合,说明视线不水平。这时可用右手转动微倾螺旋使气泡两端的象完全符合,仪器便可提供一条水平视线,以满足水准测量基本原理的要求。注意?气泡左半部份的移动方向,总与右手大拇指的方向不一致。

5. 读数

用十字丝,截读水准尺上的读数。现在的水准仪多是倒象望远镜,读数时应由上而下进行。先估读毫米级读数,后报出全部读数。

注意,水准仪使用步骤一定要按上面顺序进行,不能颠倒,特别是读数前的符合水泡调整,一定要在读数前进行。

五、水准仪的测量

测定地面点高程的工作,称为高程测量。高程测量是测量的基本工作之一。高程测量按所使用的仪器和施测方法的不同,可以分为水准测量、三角高程测量、GPS高程测量和气压高程测量。水准测量是目前精度最高的一种高程测量方法,它广泛应用于国家高程控制测量、工程勘测和施工测量中。

水准测量的原理是利用水准仪提供的水平视线,读取竖立于两个点上的水准尺上的读数,来测定两点间的高差,再根据已知点高程计算待定点高程。

如下图所示,在地面上有A、B两点,已知A点的高程为HA、为求B点的高程HB,在A、B 两点之间安骨水准仪,A、B两点亡各竖立一把水准尺,通过水准仪的望远镜读取水平视线分别在A、B两点水准尺上截取的读数为a和b,可以求出A、B两点问的高差为:

设水准测量的前进方向为A点至B点,则称A点为后视点,其水准尺读数a为后视读数;称B点为前视点,其水准尺读数b为前视读数。因此,两点间的高差等于:

hAB=后视读数-前视读数

若后视读数大于前视读数,则高差为正,表示B点比A点高,hAB>0;若后视读数小于前视读数,则高差为负,表示B点比A点低,hAB<0。

如果A、B两点相距不远,且高差不大,则安置一次水准仪,就可以测得高差hAB。此时B

点高程为:

当架设一次水准仪需要测量多个前视点B1,B2,…,Bn的高程时,采用视线高程计算这些点的高程就非常方便。设水准仪对竖立在B1,B2,…,Bn点上的水准尺读数分别为b1,b2,…,bn时,则高程计算公式为:

如果A、B两点相距较远或高差较大,安置一次仪器无法测得其高差时,就需要在两点间增设若干个作为传递高程的临时立尺点,称为转点(简称TP点),如图中的TP1,TP 2,…点,并依次连续设站观测,设测得的各站高差为:

六、保养与维修

1.水准仪是精密的光学仪器,正确合理使用和保管对仪器精度和寿命有很大的作用;

2.避免阳光直晒,不许可证随便拆卸仪器;

3.每个微调都应轻轻转动,不要用力过大。镜片、光学片不准用手触片;

4.仪器有故障,由熟悉仪器结构者或修理部修理;

5.每次使用完后,应对仪器擦干净,保持干燥。

经纬仪的使用方法

一、经纬仪

经纬仪是测量工作中的主要测角仪器。由望远镜、水平度盘、竖直度盘、水准器、基座等组成。

测量时,将经纬仪安置在三脚架上,用垂球或光学对点器将仪器中心对准地面测站点上,用水准器将仪器定平,用望远镜瞄准测量目标,用水平度盘和竖直度盘测定水平角和竖直角。按精度分为精密经纬仪和普通经纬仪;按读数设备可分为光学经纬仪和游标经纬仪;按轴系构造分为复测经纬仪和方向经纬仪。此外,有可自动按编码穿孔记录度盘读数的编码度盘经纬仪;可连续自动瞄准空中目标的自动跟踪经纬仪;利用陀螺定向原理迅速独立测定地面点方位的陀螺经纬仪和激光经纬仪;具有经纬仪、子午仪和天顶仪三种作用的供天文观测的全能经纬仪;将摄影机与经纬仪结合一起供地面摄影测量用的摄影经纬仪等。

DJ6经纬仪是一种广泛使用在地形测量、工程及矿山测量中的光学经纬仪。主要由水平度盘、照准部和基座三大部分组成。

1、基座部分

用于支撑基照准部,上有三个脚螺旋,其作用是整平仪器

2、照准部

照准部是经纬仪的主要部件,照准部部分的部件有水准管、光学对点器、支架、横轴、竖直度盘、望远镜、度盘读数系统等。

3、度盘部分

DJ6光学经纬仪度盘有水平度盘和垂直度盘,均由光学玻璃制成。水平度盘沿着全圆从0°~360°顺时针刻画,最小格值一般为1°或30′。

二、经纬仪的安置方法

1)三脚架调成等长并适合操作者身高,将仪器固定在三脚架上,使仪器基座面与三脚架上顶面平行。

2)将仪器舞摆放在测站上,目估大致对中后,踩稳一条架脚,调好光学对中器目镜(看清十字丝)与物镜(看清测站点),用双手各提一条架脚前后、左右摆动,眼观对中器使十字丝交点与测站点重合,放稳并踩实架脚。

3)伸缩三脚架腿长整平圆水准器

4)将水准管平行两定平螺旋,整平水准管。

5)平转照准部90度,用第三个螺旋整平水准管。

6)检查光学对中,若有少量偏差,可打开连接螺旋平移基座,使其精确对中,旋紧连接螺旋,再检查水准气泡居中。

三、度盘读数方法

光学经纬仪的读数系统包括水平和垂直度盘、测微装置、读数显微镜等几个部分。水平度盘和垂直度盘上的度盘刻划的最小格值一般为1°或30′,在读取不足一个格值的角值时,必须借助测微装置,DJ6级光学经纬仪的读数测微器装置有测微尺和平行玻璃测微器两种。

(1)测微尺读数装置

目前新产DJ6级光学经纬仪均采用这种装置。

在读数显微镜的视场中设置一个带分划尺的分划板,度盘上的分划线经显微镜放大后成像于该分划板上,度盘最小格值(60′)的成像宽度正好等于分划板上分划尺1°分划间的长度,分划尺分60个小格,注记方向与度盘的相反,用这60个小格去量测度盘上不足一格的格值。量度时以零零分划线为指标线。

(2)单平行玻璃板测微器读数装置

单平行玻璃板测微器的主要部件有:单平行板玻璃、扇形分划尺和测微轮等。这种仪器度盘格值为30′,扇形分划尺上有90个小格,格值为30′/90=20″。

测角时,当目标瞄准后转动测微轮,用双指标线夹住度盘分划线影像后读数。整度数根据被夹住的度盘分划线读出,不足整度数部分从测微分划尺读出。

(3)读数显微镜

光学经纬仪读数显微镜的作用是将读数成像放大,便于将度盘读数读出。

(4)水准器

光学经纬仪上有2~3个水准器,其作用是使处于工作状态的经纬仪垂直轴铅垂、水平度盘水平,水准器分管水准器和园水准器两种。

*管水准器

管水准器安装在照准部上,其作用是仪器精确整平。

*圆水准器

圆水准器用于粗略整平仪器。它的灵敏度低,其格值为8″/ 2mm 。

四、经纬仪的角度测量原理

1. 水平角的测量原理

水平角是指过空间两条相交方向线所作的铅垂面间所夹的二面角,角值为0°~360°。空间两直线OA和OB相交于点O,将点A,O,B沿铅垂方向投影到水平面上,得相应的投影点A′,O′,B′,水平线O′A′和O′B′的夹角β就是过两方向线所作的铅垂面间的夹角,即水平角。

水平角的大小与地面点的高程无关。

测量角度的仪器在测量水平角时必须具备两个基本条件:

(1)能给出一个水平放置的,且其中心能方便地与方向线交点置于同一铅垂线上的刻度园盘——水

平度盘;

(2)要有一个能瞄准远方目标的望远镜,且要能在水平面和竖直面内作全圆旋转,以便通过望远镜

瞄准高低不同的目标A和B。图中水平角β为A和B两个方向读数之差:β=b-a

2. 垂直角的测量原理

垂直角是指在同一铅垂面内,某目标方向的视线与水平线间的夹角α,也称竖直角或高度角;垂直角的角值为0°~±90°。

视线与铅垂线的夹角称为天顶距,天顶距z的角值范围为0°~180°。

当视线在水平线以上时垂直角称为仰角,角值为正;视线在水平线以下时为俯角,角值为负,如图所示。

由此可知测角仪器经纬仪还必须装有一个能铅垂放置的度盘——垂直度盘,或称竖盘。

全站仪的使用方法

一、全站仪简介

全站仪,即全站型电子速测仪(Electronic Total Station)。是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。因其一次安置仪器就可完成该测站上全部测量工作,所以称之为全站仪。广泛用于地上大型建筑和地下隧道施工等精密工程测量或变形监测领域。

全站仪是一种集光、机、电为一体的新型测角仪器,与光学经纬仪比较电子经纬仪将光学度盘换为光电扫描度盘,将人工光学测微读数代之以自动记录和显示读数,使测角操作简单化,且可避免读数误差的产生。电子经纬仪的自动记录、储存、计算功能,以及数据通讯功能,进一步提高了测量作业的自动化程度。

全站仪与光学经纬仪区别在于度盘读数及显示系统,电子经纬仪的水平度盘和竖直度盘及其读数装置是分别采用两个相同的光栅度盘(或编码盘)和读数传感器进行角度测量的。根据测角精度可分为0.5″,1″,2″,3″,5″,10″等几个等级。

二、全站仪的组成

全站仪几乎可以用在所有的测量领域。电子全站仪由电源部分、测角系统、测距系统、数据处理部分、通讯接口、及显示屏、键盘等组成。

同电子经纬仪、光学经纬仪相比,全站仪增加了许多特殊部件,因此而使得全站仪具有比其它测角、测距仪器更多的功能,使用也更方便。这些特殊部件构成了全站仪在结构方面独树一帜的特点。

1.同轴望远镜

全站仪的望远镜实现了视准轴、测距光波的发射、接收光轴同轴化。同轴化的基本原理是:在望远物镜与调焦透镜间设置分光棱镜系统,通过该系统实现望远镜的多功能,即既可瞄准目标,使之成像于十字丝分划板,进行角度测量。同时其测距部分的外光路系统又能使测距部分的光敏二极管发射的调制红外光在经物镜射向反光棱镜后,经同一路径反射回来,再经分光棱镜作用使回光被光电二极管接收;为测距需要在仪器内部另设一内光路系统,通过分光棱镜系统中的光导纤维将由光敏二极管发射的调制红外光传也送给光电二极管接收,进行而由内、外光路调制光的相位差间接计算光的传播时间,计算实测距离。

同轴性使得望远镜一次瞄准即可实现同时测定水平角、垂直角和斜距等全部基本测量要素的测定功能。加之全站仪强大、便捷的数据处理功能,使全站仪使用极其方便。

2.双轴自动补偿

在仪器的检验校正中已介绍了双轴自动补偿原理,作业时若全站仪纵轴倾斜,会引起角度观测的误差,盘左、盘右观测值取中不能使之抵消。而全站仪特有的双轴(或单轴)倾斜自动补偿系统,可对纵轴的倾斜进行监测,并在度盘读数中对因纵轴倾斜造成的测角误差自

动加以改正(某些全站仪纵轴最大倾斜可允许至±6'),也可通过将由竖轴倾斜引起的角度误差,由微处理器自动按竖轴倾斜改正计算式计算,并加入度盘读数中加以改正,使度盘显示读数为正确值,即所谓纵轴倾斜自动补偿。

双轴自动补偿的所采用的构造(现有水平,包括Topcon,Trimble):使用一水泡(该水泡不是从外部可以看到的,与检验校正中所描述的不是一个水泡)来标定绝对水平面,该水泡是中间填充液体,两端是气体。在水泡的上部两侧各放置一发光二极管,而在水泡的下部两侧各放置一光电管,用一接收发光二极管透过水泡发出的光。而后,通过运算电路比较两二极管获得的光的强度。当在初始位置,即绝对水平时,将运算值置零。当作业中全站仪器倾斜时,运算电路实时计算出光强的差值,从而换算成倾斜的位移,将此信息传达给控制系统,以决定自动补偿的值。自动补偿的方式初由微处理器计算后修正输出外,还有一种方式即通过步进马达驱动微型丝杆,把此轴方向上的偏移进行补正,从而使轴时刻保证绝对水平。

3.键盘

键盘是全站仪在测量时输入操作指令或数据的硬件,全站型仪器的键盘和显示屏均为双面式,便于正、倒镜作业时操作。

4.存储器

全站仪存储器的作用是将实时采集的测量数据存储起来,再根据需要传送到其它设备如计算机等中,供进一步的处理或利用,全站仪的存储器有内存储器和存储卡两种。

全站仪内存储器相当于计算机的内存(RAM),存储卡是一种外存储媒体,又称PC卡,作用相当于计算机的磁盘。

5.通讯接口

全站仪可以通过BS—232C通讯接口和通讯电缆将内存中存储的数据输入计算机,或将计算机中的数据和信息经通讯电缆传输给全站仪,实现双向信息传输。

三、全站仪的使用

全站仪具有角度测量、距离(斜距、平距、高差)测量、三维坐标测量、导线测量、交会定点测量和放样测量等多种用途。内置专用软件后,功能还可进一步拓展。

全站仪的基本操作与使用方法:

1、水平角测量

(1)按角度测量键,使全站仪处于角度测量模式,照准第一个目标A。

(2)设置A方向的水平度盘读数为0°00′00〃。

(3)照准第二个目标B,此时显示的水平度盘读数即为两方向间的水平夹角。

2、距离测量

(1)设置棱镜常数

测距前须将棱镜常数输入仪器中,仪器会自动对所测距离进行改正。

(2)设置大气改正值或气温、气压值

光在大气中的传播速度会随大气的温度和气压而变化,15℃和760mmHg是仪器设置的一个标准值,此时的大气改正为0ppm。实测时,可输入温度和气压值,全站仪会自动计算大气改正值(也可直接输入大气改正值),并对测距结果进行改正。

(3)量仪器高、棱镜高并输入全站仪。

(4)距离测量

照准目标棱镜中心,按测距键,距离测量开始,测距完成时显示斜距、平距、高差。

全站仪的测距模式有精测模式、跟踪模式、粗测模式三种。精测模式是最常用的测距模式,测量时间约2.5S,最小显示单位1mm;跟踪模式,常用于跟踪移动目标或放样时连续测距,最小显示一般为1cm,每次测距时间约0.3S;粗测模式,测量时间约0.7S,最小显示单位1cm或1mm。在距离测量或坐标测量时,可按测距模式(MODE)键选择不同的测距模式。

应注意,有些型号的全站仪在距离测量时不能设定仪器高和棱镜高,显示的高差值是全站仪横轴中心与棱镜中心的高差。

3、坐标测量

(1)设定测站点的三维坐标。

(2)设定后视点的坐标或设定后视方向的水平度盘读数为其方位角。当设定后视点的坐标时,全站仪会自动计算后视方向的方位角,并设定后视方向的水平度盘读数为其方位角。

(3)设置棱镜常数。

(4)设置大气改正值或气温、气压值。

(5)量仪器高、棱镜高并输入全站仪。

(6)照准目标棱镜,按坐标测量键,全站仪开始测距并计算显示测点的三维坐标。

四、全站仪的数据通讯

全站仪的的数据通讯是指全站仪与电子计算机之间进行的双向数据交换。全站仪与计算机之间的数据通讯的方式主要有两种,一种是利用全站仪配置的PCMCIA(personal computer memory card internation association),个人计算机存储卡国际协会,简称PC卡,也称存储卡)卡进行数字通讯,特点是通用性强,各种电子产品间均可互换使用;另一种是利用全站仪的通讯接口,通过电缆进行数据传输。

公路测量坐标计算公式

高速公路的一些线路计算 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: y y ⑼y x x ⑻x αSsin y ⑺αScos x ⑹90 ααα⑸y x ⑷S 180n x y arctg α⑶l 3456R l l 40R l l y ⑵)K R 336l l 6Rl l (x ⑴Z 1Z 11111012 0200 040 49202503307 03 0+=+===-+=+=?+=+-=-= 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: ?? ? ??=<?? ? ??=>>1n 0y 0x 1n 0y 0x 2n 0y 0x 0n 0y 0x 00000000 当计算第二缓和曲线上的点坐标时,则: l 为到点HZ 的长度 α为过点HZ 的切线方位角再加上180° K 值与计算第一缓和曲线时相反 x Z ,y Z 为点HZ 的坐标 切线角计算公式:2Rl l β0 2 =

二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: y y ⑿y x x ⑾x αSsin y ⑽αScos x ⑼90α αα⑻y x ⑺S 180n x y arctg α⑹m Rsinα'y ⑸p]K )cosα'[R(1x ⑷34560R l 240R l 2l ⑶m 2688R l 24R l ⑵p Rπ)l -90(2l ⑴α'Z 1Z 11111012 0200 0004 5 23003 40 200+=+===-+=+=?+=+=+-=+ -=- == 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: ?? ? ??=<?? ? ??=>>1n 0y 0x 1n 0y 0x 2n 0y 0x 0n 0y 0x 00000000 当只知道HZ 点的坐标时,则: l 为到点HZ 的长度 α为过点HZ 的切线方位角再加上180° K 值与知道ZH 点坐标时相反 x Z ,y Z 为点HZ 的坐标

道路放样坐标计算

全站仪道路放样、方位角及左右偏移坐标计算(直线、缓和曲线<南方NTS-362R6L>) 一、根据直线、曲线要素表 列1:JD5—x=4340430.518 JD6—x=4339782.179 y=441418.4621 y=441651.8123 方位角计算=POl(4339782.179-4340430.518,441651.8123-441418.4621 r=689.0543 Θ=160.2051794 转160°12″18.65′ ∴JD5—JD6直线段长689.0543m,方位角=160°12″18.65′,已知JD5半径=1500,曲线长度248.7908;(JD5桩号K3+328.548,JD6桩号K4+017.030) 利用全站仪进行道路放样:选择程序——道路——水平定线——(新建水平 定线文件)——起始点(输入桩号3328.548,坐标JD5)——水平定线(1、直线-方位角160°12′19″ 2、圆弧—半径1500,弧长497.58 3、缓和曲线-半径1500,弧长497.58)——道路放样——选择文件(水平定线)——设置放样点(依次输入起始桩号-桩间距-左偏差-右偏差)——放样《DHR角度值,HD水平距离》(编辑可以桩号可放样任意一点坐标,编辑偏差左右偏移“左负右正”)见附图 二、道路坐标计算(列1) JD5——JD6坐标计算{x+Cos(方位角)*距离} {y+Sin(方位角)*距离 JD6X=4340430.518+Cos(160.2052)*689.0543=4339782.179 JD6Y=441418.4621+Sin(160.2052)*689.0543=441651.8121 三、坐标距离计算2(列1) JD5—JD6其之间的距离计算【根号下{(JD6Y-JD5Y)2+(JD6X-JD5X)2}】如下: (441651.8123-441418.4621)+(4339782.179 -4340430.518 ) =233.3502 =-648.339 = (233.35022+648.3392)

道路坐标计算公式

曲线坐标计算 1、曲线要素计算 (1)缓和曲线常数计算 内移距R l 24/p 2 s = 切垂距 23 s 240/2/m R l l s -= 缓和曲线角R l R l s s πβ/902/0??== (2)曲线要素计算 切线长 m R T ++=2/tan )p (α 曲线长 ?+=?-+=180/]180/)2([20απβαπR l R l L s s 外矢距 R R E -+=)]2/cos(/)p [(0α 切曲差 L T q -=2 2、主要点的里程推算

s s s S l YH HZ )/22l -(L QZ YH )/22l -(L HY QZ l +=+=+=+=-=ZH HY T JD ZH 检核: HZ T JD =-+q 3、方位角计算 根据已知JD1和JD2的坐标计算出 21JD JD -α 偏角βαα±=--211JD JD JD ZH ?±-=-18011JD ZH ZH JD αα 4、计算直线中桩坐标 (1)计算ZH 点坐标: ZH JD JD ZH ZH JD JD ZH T y y T x x --?+=?+=1111sin cos αα (2)计算HZ 点坐标: 2 11211cos cos JD JD JD HZ JD JD JD HZ T y y T x x --?+=?+=αα (3)计算直线上任意点中桩坐标 待求点到JD1的距离为i L 2 112 11sin cos -JD JD i JD i JD JD i JD i i L y y L x x HZ T L --?+=?+=+=αα里程 待求点里程 5、计算缓和曲线中桩坐标 (1)第一缓和曲线上任意点中桩坐标 在切线坐标系中的坐标为: s i s i Rl l y Rl l l x 6/)(40/3 25=-= ZH 到所求点方位角:

公路测量卡西欧5800万能程序

一、前言本程序是《CASIO fx-5800P计算与道路坐标放样计算》中道路坐标放样计算程序的升级改进版本。原道路坐标放样计算程序只基于道路的单个基本型曲线,有效计算范围仅包括平曲线部分和前后的两条直线段,使用时需要输入平曲线设计参数,无坐标反算桩号功能。改进后的程序名称为:道路中边桩坐标放样正反算程序(全线贯通),增加了可实现全线贯通的数据库功能和坐标反算桩号功能,主要是: 1.使用道路平面数据库子程序,可将一段或若干段道路的交点法格式平面参数(可容易从直线、曲线及转角表中获得)以数据库子程序形式输入计算器,程序在计算时省却了输入原始数据的麻烦; 2.坐标正算方面,输入桩号即可进行道路的中、边桩坐标计算,若输入了测站坐标,还可同时计算全站仪极坐标放样数据(拨角和平距); 3.坐标反算方面,输入平面坐标,即可计算对应的桩号和距中距离(含左右信息); 4.对于存在断链的道路,可分段分别编写数据库子程序,然后在主程序中添加一个路段选择的功能即可实现(可参照立交匝道程序中匝道的选择)。程序的特点: 1.可进行中桩坐标的正、反算,程序代码简洁,便于阅读和改写; 2.主程序通过调用数据库子程序,省却了使用时输入平面参数的繁琐; 3.使用数据库子程序,换项目只需改写数据库子程序,程序通用性强。二、道路示例项目基本资料基本资料同《CASIO fx-5800P计算与道路坐标放样计算》第6章HY高速公路第2合同段(合同段起止桩号: K4+800~K9+600)。这里摘取直线、曲线及转角表资料如下.

.

. 三、程序代码 .

. .

. .

5800简单全线坐标计算程序

5800全线任意坐标计算程序 1. 正算主程序(ZHCX) (不运行) 8→DimZ 1÷P→Z[4 ]:(P-R)÷(2HPR)→D: 180÷π→E “Z=”?Z:”YJJ=”?A:Abs(S-O)→W 0.26→Z[1 ]: 0.74→B: 0.02→K: 0.82→Z[3 ]: 1-Z[3 ]→F:1-K→Z[2 ] U+W(Z[1 ]cos(G+QEKW(Z[4 ]+KWD))+Bcos(G+Z[3 ]QEW(Z[4 ]+ Z[3 ]WD))+Bcos(G+QEFW (Z[4 ]+FWD))+ Z[1 ]cos(G+ Z[2 ]QEW(Z[4 ]+ Z[2 ]WD)))→X: V+W(Z[1 ] sin (G+QEKW(Z[4 ]+KWD))+B sin(G+ Z[3 ]QEW(Z[4 ]+ Z[3 ]WD))+B sin(G+QEFW (Z[4 ]+FWD))+ Z[1 ] sin(G+ Z[2 ]QEW(Z[4 ]+ Z[2 ]WD)))→Y: G+QEW(Z[4 ]+WD)→F:X+Zcos(F+A)→X:Y+Zsin(F+A)→Y:If F≧360:Then F-360→F:IfEnd ”X=”:X→X◢ ”Y=”:Y→Y◢ If F﹤0:Then F+360→F:IfEnd ”QX FWJ=”:F▼DMS◢ “C=1=>XX: C=2=>XZ”: ”C=”?C: ”QHJU=”?L: If C=1:Then Goto 1:Else Goto 2: IfEnd 可以计算斜交斜做或斜交正做的桥涵坐标 Lbi 1 X+L cos(F)→X:Y+Lsin(F)→Y: Goto 3 Lbi 2 X+L cos(F+A-90)→X:Y+Lsin(F+A-90)→Y: Goto 3 Lbi 3 “QH-X=”: X →X◢ “QH-Y=”: Y →Y◢ Prog “FY” 2 . 参数子程序(直接运行) M(主线) 一条线路一个名称 “S=”?S If S≦线元终点:Then 线元起点X值→U: 线元起点Y值→V:线元起点切线方位角→G:线元起点桩号→O:线元长度→H:线元起点半径→P:线元终点半径→R:(左偏-1,或右偏 1)→Q:Goto 1:IfEnd … … If S≦线元终点:Then 线元起点X值→U: 线元起点Y值→V:线元起点切线方位角→G:线元起点桩号→O:线元长度→H:线元起点半径→P:线元终点半径→R:(左偏-1,或右偏 1)→Q:Goto 1:IfEnd Lbi 1 Prog “ZBJS” 3. 放样程序(FY)(不运行) “X0=”?M:“Y0=”?N Pol((X-M, Y-N)

道路施工测量公路边线桩点的坐标计算及放样方法

公路边线桩点的坐标计算及放样方法 中建四局一公司 (贵阳市云岩区松柏巷1号550003) 【摘要】本文主要讨论了在高等级公路施工放样过程中,公路边桩的坐标计算和放样方法。一、引言 公路施工放样测量是按照设计和施工要求将图纸上的路线设计方案放样到实地上去的一项工作,对新建的高等级公路而言,各方面的质量要求都很高,为确保路基在施工过程中路基宽度、坡比符合设计要求,笔者在此主要探讨了利用全站仪对公路边桩放样时的坐标计算方法 二、曲线上任一点的中桩坐标的计算 以直缓(TS)或缓直(ST)点为原点,以直缓点(或缓直点)的缓和曲线的切线为X轴,过直缓点(或缓直点)且垂直于X轴为Y轴,建立切线直角坐标系如图1,用切线支距法计算出曲线上每一点切线坐标。 1、曲线上任一点的中桩坐标的计算: 1.1、缓和曲线上任一点i的切线坐标计算: xi=l i - l5i/(40R2l02) 参考文献(1) yi=l3i/(6Rl0) 式中:x i、y i:缓和曲线上任一点的切线坐标。 l i :缓和曲线上任一点到直缓点(或缓直点)的距离。 l0:缓和曲线长度。 R:圆曲线半径。

1.2、带有缓和曲线的圆曲线上任一点的坐标计算 x i=Rsin αi +m y i =R(1-cos αi )+P 式中:xi、y i : 带有缓和曲的圆曲线上任一点的坐标。 m :增加缓和曲线后,切线增值长度。 m= l 0/2 - l 02/(240R2) p :增加缓和曲线后,圆曲线相对切线的内移量 p=l02/(24R) αi: i 点至缓和曲线起点弧长所对应的圆心角 αi =l i/R?180°/π+β0 式中:li :圆曲线上任一点到圆曲线起点的长度。 β0:缓和曲线角度。 β0= l 0/(2R)? 180°/π l o : 缓和曲线长度 1.3、利用坐标系变换,将切线直角坐标系变换为测量坐标系: 图1 1)、第一段缓和曲线上的点,即从TS 点SC 点之间: 参考文献(1)

线元法万能坐标计算程序

线元法万能坐标计算程序(适用于CASIO fx-9750GⅡ计算器) 论文https://www.360docs.net/doc/824225301.html,/:本论文仅供学习交流使用,本站仅作合理转载,原作者可来邮要求删除论 文。 摘要:我国公路建设事业正处于一个高速发展的时期,在公路工程施工过程中,施工技术人员经常要使用全站仪、水准仪进行施工放样、高程测量,在测量过程中,手工计算速度慢,失误率高,工作效率极低。利用CASIO fx-9750GⅡ编程函数计算器强大的内存(可诸存63000个字符)和编程功能,编写各种计算程序,能够在2秒钟内计算出施工放样、桩点坐标等施工过程中的各项数据资料,同时也使我们有更多的时间去挑战更富有创造性的工作。 关键词:坐标放线线元测量程序 1、前言 本程序采用Gauss-Legendre(高斯-勒让德)五节点公式作内核,计算速度(太约2秒)适中,计算精度很高。在此之前,本人曾用过以下公式作内核:①积分公式simpson法②双重循环复化高斯2节点③高斯-勒让德3节点④求和公式复化simpson法⑤双重循环复化simpson法⑥高斯-勒让德4节点,⑦高斯-勒让德5节点,经过测试③计算最快,⑦代码稍长但计算速度只比③⑥稍慢,精度最高,可满足线元长小于1/2πD 的所有线形的精度要求。⑦作内核分别计算圆曲线长1/4πD、1/2πD、3/4πD、πD处的精度,1/4πD时偏差为0.001mm,1/2πD时偏差为0.55m m,3/4πD时偏差为31.63mm,πD时偏差为968mm,偏差按半径倍数增大,如线元长大于1/2πD(1/2圆周长)时,可将其拆分二个或多个线元单位,以确计算保精度。 2、程序特点 事先将所有的平曲线交点的线元要素诸存到计算器内,测量时只输桩号、边距等程序会自动寻找各类要素,一气呵成地完成施工测量任务,中途不需人工转换各类要素数据,本程序可诸存几百条线路的要素数据,计算时可按需选择线路编号进行测量。测量时不需查阅及携带图纸,仅一台CASIO fx-9750GⅡ编程函数计算器即可。 本程序含一个主程序:3XYF,五个子程序:GL(公式内核)、QD(线路选择)、XL(线路要素判断)、GF(坐标反算)、File 1 (要素存放的串列工作簿)。可以根据曲线段——直线、圆曲线、缓和曲线(完整或非完整型)的线元要素(起点坐标、起点里程、起点切线方位角、终点里程、起点曲率半径、止点曲率半径)及里程边距或坐标,对该线元段范围内任意里程中边桩坐标进行正反算。 3、计算公式及原理 如图:BC 间为一曲线元,曲线元上任一点的曲率随至B 点的弧长作线性变化。设起点B 的曲率为KA ,终点C 的曲率为KB ,R 为曲线半径。±表示曲线元的偏向,当曲线元左偏时取负号,当曲线元右偏时取正号,直线段以1的45次方代替(即半径无穷大)。 式中:αΑ=起始方位角l =p 点到B的距离lS=曲线总长αp=p 点切线方位角 R1=R5=0.118463442528095 ,R2 = R4 = 0.239314335249683 , R3 = 0.28444444444444 V1=1-V5= 0.046910070 ,V 2= 1-V4 = 1 0.2307653449 V3= 0.5 利用上面公式及CASIO fx-9750GⅡ编程函数计算器可编写下列计算程序。 4、程序清单 (1)、3XYF(主程序) "1→XY2→FS"?→V:V=1=>Goto 1:V=2=>Goto 2↙(选择计算功能) Lbl 1:File 1:”XLn”?→S:Prog “QD”↙(选择线路)

计算坐标与坐标方位角的基本公式(1)

计算坐标与坐标方位角的基本公式 控制测量的主要目的是通过测量和计算求出控制点的坐 标,控制点的坐标是根据边长及方位角计算出来的。下面介 绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量 工中最基本最常用的公式。 一、坐标正算和坐标反算公式 1.坐标正算 根据已知点的坐标和已知点到待定点的坐标方位角、 边长 计算待定点的坐标,这种计算在测量中称为坐标正算。 如图5 — 5所示,已知A 点的坐标为X A 、%, A 到B 的 边长和坐标方位角分别为 S AB 和〉AB ,则待定点 B 的坐标为 X B 二 X A R X AB } y B = y A * (5 — 1) 式中 B AB 、十——坐标增量。 由图5— 5可知 」y AB = S AB sin -J AB (5—2) 式中 S AB ——水平边长; =AB —— 坐标方位角 将式(5-2)代入式(5-1 ),则有 X B = X A ' S AB COS ^AB y^ - y A S AB sin -::AB ' :X AB =S AB COS AB

(5 —3) 当A点的坐标X、y A和边长S A B及其坐标方位角:-AB为已知时,就可以用上述公式计算出待定点B的坐标。式(5—2) 是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。 从图5 —5可以看出.〔X AB是边长S AB在X轴上的投影长度, ■7AB是边长S AB在y轴上的投影长度,边长是有向线段,是在实地由A量到B得到的正值。而公式中的坐标方位角可以从0。至到360 °变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5 —6所示。从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表 5 —3。

卡西欧FX5800线路曲线坐标计算程序

卡西欧FX5800---辛普森公式(万能公式) 复化辛普森公式 1.Lbl 0:“XA=”?A:“YA=”?B: “CA=”?C:“1/RA=”?D:“1/RB=”?E:“DKA=”?F:“DKB=”?G 2.Lbl 1:“DKI=”?H:“DL=”?O:“DR=”?R:IF H>G:THEN Goto0 IFEND 3.(E-D)/Abs(G-F)→P:Abs(H-F) →Q: P×Q→I:D+I→T 4.C+(I+2D)×Q×90/π→J 5. C+(I/4+2D)Q×45/(2π) →M: C+(3I/4+2D)Q×135/(2π) →N 6. C+(I/2+2D)Q×45/π→K 7. A+Q(cosC+4(cosM+cosN)+2cosK+cosJ)/12 →X 8.B+Q(sinC+4(sinM+sinN)+2sinK+sinJ)/12 →Y 9.”FW=”:J▲DMS ▲ 10. “X=”:X▲ 11. “Y=”:Y▲ 12.“XL=”: X+Ocos(J-90) →U ▲ 13.“YL=”: Y+Osin(J-90) →V▲

14.“XR=”:X+Rcos(J+90)→ W▲ 15.“YR=”:Y+Rsin(J+90)→ Z▲ 16.Goto 1 程序结束 程序说明: A- 曲线元起点A的坐标; B- 曲线元起点B的坐标; C- 曲线元起点A的切线坐标方位角; F- 曲线元起点A的里程; G- 曲线元起点B的里程; H- 曲线上待求点i的里程; D- 曲线元起点A的曲率; E- 曲线元终点B的曲率; XL-左边线点位X坐标; YL-左边线点位Y坐标; XR-右边线点位X坐标; YR-右边线点位Y坐标; X- 中线点位纵坐标; Y- 中线点位横坐标; DL-左边线距中线平距; DR-右边线距中线平距; 该程序需要输入的数据为: (1).曲线元起点A的坐标及切线坐标方位角,计算器上用“XA”,“YA”,“CA”显示; (2).曲线元起点A和B的曲率,计算器上用I÷RA,I÷RB显示(曲线左偏时取“-”); (3).曲线元起点A和终点B的里程,计算器上用“DKA”,“DKB”显示;(4).输入待求点里程和该点距左右的水平距离,计算器上用“DKI”,“DL”,“DR”显示; 每算完一个待求点的中线及边线坐标,程序又让输入下一点的“DKI”,“DL”,“DR” 当输入的“DKI”大于“DKB”时,此时输入下一个曲线元起点的曲率和里程,即可计算下一个曲线中线及边线点位坐标。 使用该程序应注意事项; 该程序以前进方向为有意识,不可倒退计算;缓和段和圆曲线段应分开计算在计算圆曲线时应记下缓和 曲线尾的坐标方位角即“J”的角度;在计算第一段缓和曲线时曲率“1÷RA”输入0;在计算第二段缓和曲 线时“1÷RB” 输入0 。 (5)第一个0为零。

公路坐标计算公式

一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:x Z,y Z 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度

α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反 x Z,y Z为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:x Z,y Z 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 x Z,y Z为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径

P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:S Z ④变坡点高程:H Z ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程: 五、超高缓和过渡段的横坡计算

部分道路坐标计算公式

如果桩号满足线性规律,我们来求桩号m+n (比如m=5,n=10,则:桩号005+010) 它的坐标应满足: (X+k*m,Y+k*n), 其中k为常数 当n=20,Y轴坐标为:Y+20k,而按所给条件,此坐标应为:Z 则:Y+20k=Z k=(Z-Y)/20 所以:桩号m+n 的坐标: (X+(Z-Y)*m/20, Y+(Z-Y)*n/20) 所以,0+010处的坐标:(X,(Z-Y)/2) 要是曲线关系,要看满足什么曲线关系,具体求解,方法与上面差不多 X0=X1+dcos(a) Y0=Y1+dsin(a) Z0=Z1+Dtan(B) 其中d为水平距离,D为倾斜距离,a为方位角,B为天顶距(视线与水平线的夹角,注意正切正负值) 圆曲线中边桩坐标计算公式: L=F-H; 注:L---所求点曲线长;F---所求点里程;H---圆曲线起点(ZY点桩号里程) X=XZY+2×R×SIN(L÷2R)×COS{α±(L÷2R)}+S×COS{α±(L÷R)+M}; Y =YZY+2×R×SIN(L÷2R)×SIN{α±(L÷2R)}+S×SIN{α±(L÷R)+M}. 注: α---线路方位角; M---所求边桩与路线的夹角; S---所求边桩至中桩的距离; "±"---曲线左偏取“-”右偏取“+”; 当S=0时为中桩坐标。

经高速公路施工一线使用效果很好。 记住在公式中加入Excel的Radians()函数将度转为弧度即可轻松方便地使用, 从ZY点坐标准确快速推算地计算出整条圆曲线。 注意要分清左偏右偏两种情况。 第一条缓和曲线部分:X=L- L 5/(40×R2×L 02) Y=L3/(6×R×L 0) 这是以ZH点为坐标原点测设到YH点的计算公式 圆曲线部分X=R×sina+m Y=R×(1-cosa)+p a=( L i- L)×1800/(R×π)+β0 m = L 0/2- L 03/(240×R2) P= L 02/(24×R)- L 04/(2688×R3) δ0= L 0×1800/(6×R×π) β0= L 0×1800/(2×R×π) T=(R+P)×tg(a/2)+m L= R×(a-2β0)×π/1800+2L 0 切线角的计算β= L2×1800/(2×R×L0 ×π) 缓和切线角的弧度计算:β= L2/(2×R×L0) 圆曲线切线角的弧度计算:a=( L i- L 0) /R+ L 0/(2×R) 上式中:m表示切垂距。P表示圆曲线移动量。β0表示缓和曲线的切线角。δ0 为缓和曲线的总偏角。T表示切线长。L表示曲线长。β表示缓和曲线上的切线 角。a表示圆曲线的切线角。 第二条缓和曲线部分:X= L - L 5/(40×R2×L 02) Y=L3/(6×R×L 0) 第二条缓和曲线部分是以HZ点为坐标原点计算到YH点的计算公式。 坐标转化:X=XHZ-X cosa-Y sina Y= YHZ- X sina+ Y cosa XHZ=T×(1+ cosa) YHZ= T×sina Li 为曲线点i的曲线长,T为切线长,a为转向角 全站仪坐标放样的有关计算 发布时间:[返回] .................................................................................................................................................................

线路任意点坐标计算、及任意点对应桩号,左右偏距计算程序.tmp

线路任意点坐标计算、及任意点对应桩号,左右偏距计算程序卡西欧4800、4850系列计算器测量计算程序 一、字母含义; K: 表示拟计算位置的线路桩号; H: 表示计算位置距路线中心线的偏距,左偏为正,右偏为负。 T: 各段线路上作为起算点处的切线方位角。 S: 拟计算点到起算点的曲线长。 L: 在圆曲线上表示曲线长,在缓和曲线上表示缓和段长度,在直线上为零。 R: 表示曲线半径,左偏为正,右偏为负 E、F: 起算点的坐标值。 M”X1”N”Y1”: 已知点坐标,求其对应位置桩号及左右偏距。 二、程序 1、坐标计算(COORD) {K,H}:KH“L+,R-”:Prog “DATA”:”(X,Y)=”: X=X+HSinW :Pause 1:Y=Y-HcosW: 2、坐标反算线路桩号(FS ZH) Fix 4:M”X1”N”Y1”:LbI 1:Prog “DATA”:PoI (M-X,N-Y):Fixm:J<0=>J=J+360:≠>J=J⊿ Abs(Sin(W-J ))=1=>”K=”:K: Pause 1 : “L+,R- =”: H=ISin(W-J):≠>K=K+Icos(W-J): Goto 1 3、子程序Prog “DATA” K<(第1段与第2段线路分界处的路线桩号)=> T=(第1段起算点处的切线方位角值):S=K-(第1段起算点处的路线桩号):L=(在圆曲线上等于S;在缓和曲线上等于缓和段长度;在直线上为零。):R=(曲线半径):E=(第1段起算点的X坐标值):F=(第1段起算点的Y 坐标值) ≠ >K<(第2段与第3段线路分界处的路线桩号):=>T=(第2段起算点处的切线方向角值):S=K-(第2段起算点处的路线桩号):L=(在圆曲线上等于S;在缓和曲线上等于缓和段长度;在直线上为零。):R=(曲线半径):E=(第2段起算点的X坐标值)F=(第2段起算点的Y坐标值)≠ >K<(第3段与第4段线路分界处的路线桩号):=>T=(第3段起算点处的切线方向角值):S=K-(第3段起算点处的路线桩号):L=(在圆曲线上等于S;在缓和曲线上等于缓和段长度;在直线上为零。):R=(曲线半径):E=(第3段起算点的X坐标值)F=(第3段起算点的Y坐标值)…… ≠ >K<(第n-1段与第n段线路分界处的路线桩号):=>T=(第n-1段起算点处的切线方向角值):S=K-(第n-1段起算点处的路线桩号):L=(在圆曲线上等于S;在缓和曲线上等于缓和段长度;在直线上为零。):R=(曲线半径):E=(第n-1段起算点的X坐标值)F=(第n-1段起算点的Y坐标值) ≠>T=(第n段起算点处的切线方向角值):S=K-(第n段起算点处的路线桩号):L=(在圆曲线上等于S;在缓和曲线上等于缓和段长度;在直线上为零。):R=(曲线半径):E=(第n段起算点的X坐标值)F=(第n段起算点的Y坐标值)⊿⊿⊿⊿⊿⊿⊿⊿(⊿共n-1个) L ≠ 0 = > C =90S^2/ЛRL :≠> C=0:⊿ L=S => V=2RsinC : Q=T-C : W=T-2C ≠> L=0 =>V=S : Q=T : W=T :≠> Pol(S-S^5/40R^2L^2+S^9/3456R^4L^4,S^3/6RL-S^7/336R^3L^3+S^11/42240R^5L^5):Fixm: V=I:Q=T-J:W=T-CΔΔ X=E+VcosQ:

5800计算器公路坐标计算程序(全线)直缓和圆曲线程序

5800计算器公路坐标计算程序(全线) 原4850程序改编 Lb1 1 ”K”?K:”W”?W:”O”?O:”I”?I IF K<41490.879:Then 40776.825→A: 41490.879→ B: 3761346.715→ M: 505279.147→N:166°45′36.3″→F: 1/1045→D:1/1045→E :Goto 0 :Return:Ifend IF K<41690.879:Then 41490.879→A: 41690.879→ B: 3760651.641→ M: 505442.686→N:166°45′36.3″→F: 1/1045→D:1/1000→E :Goto 0 :Return:Ifend IF K<42242.154:Then 41690.879→A: 42242.154→ B: 3760455.626→ M: 505481.961→N:172°29′22.78″→F: 1000→ R:Goto 2: Return:Ifend IF K<42442.154:Then 42242.154→A: 42442.154→ B: 3759916.982→ M: 505403.549→N:204°04′31.62″→F: 1/1000→D: 1/1045→E: Goto 0 : Return:Ifend IF K<42673.884:Then 42442.154→A: 42673.884→ B: 3759740.299→ M: 505310.019→N :209°48′18.1″→F: 1/1045→D: =1/1045→E :Goto 0 : Return:Ifend IF K<42863.884:Then 42673.884→A: 42863.884→ B:3759539.223→ M:505194.838→N:209°48′18.1″→F:-1/1045→D:-1/800→E:Goto 0 : Return:Ifend IF K<43636.692:Then 42863.884→A: 43636.692→ B:3759370.853→ M:505107.051→N:203°00′04.15″→F:R=-800:Goto2 : Return:Ifend IF K<43826.692:Then 43636.692→A: 43826.692→ B:3758630.216→ M: 505167.591→N:147°39′10.35″→F: -1/800→D:E=-1/1045→E :Goto 0 : Return:Ifend IF K<44825.092:Then 43826.692→A: 44825.092→ B:3758478.338→ M: 505281.555→N:140°50′56.4″→F:-1/1045→D:-1/1045→E: Goto 0 : Return:Ifend IF K<45025.092:Then 44825.092→A: 45025.092→ B:3757704.093→ M: 505911.911→N:140°50′56.4″→F: 1/1045→D:1/1000→E:Goto 0 : Return:Ifend IF K<45300.109:Then 45025.092→A: 45300.109→ B:3757544.945→ M: 506032.892→N:146°34′42.88″→F:R=1000:Goto 2 : Return:Ifend IF K<45500.109:Then 45300.109→A: 45500.109→ B:3757297.588→ M: 506151.102→N:162°20′09.32″→F: 1/1000→D: 1/1045→E :Goto 0 : Return:Ifend IF K<45805.835:Then 45500.109→A: 45805.835→ B:3757103.485→ M: 506198.937→N:168°03′55.8″→F: 1/1045→D:1/1045→E: Goto 0 : Return:Ifend IF K<45980.835:Then 45805.835→A: 45980.835→ B:3756804.367→ M: 506262.160→N:168°03′55.8″→F: -1/1045→D: -1/1000→E:Goto 0 : Return:Ifend IF K<46136.333:Then 45980.835→A: 46136.333→ B:3756634.336→ M: 506303.312→N:163°03′07.63″→F:R=-1000:Goto 2 : Return:Ifend Lb1 0 (E-D)÷(Abs(B-A)) →P: Abs(K-A) →Q: F+(PQ+2D)Q×90÷∏→J F+(PQ÷4+2D)Q×45÷(2∏) →G F+(3PQ÷4+2D)Q×135÷(2∏) →H F+(PQ÷2+2D)Q×45÷∏→S:

道路中边桩坐标计算

道路中边桩坐标计算 道路工程放样的主要工作包括:线路中线放样、路基施工放样、路面施工测量等内容。而线路线路中线是由直线与曲线组成的,直线的测设相对容易,故曲线测设是工程建筑物放样的重要组成部分之一。就线路而言,由于受地形、地物及社会经济发展的要求限制,线路总是不断从一个方向转到另一个方向。这时,为了使车辆平稳、安全地运行,必须使用曲线连接。这种在平面内连接不同线路方向的曲线,称为平面曲线,简称平曲线。 平面曲线按其半径的不同分为圆曲线和缓和曲线。圆曲线上任意一点的曲率半径处处相等。缓和曲线是在直线与圆曲线,圆曲线与圆曲线之前设置的曲率半径连续渐变的一段过渡曲线;缓和曲线上任意一点曲率半径处处在变化。当缓和曲线作为直线与圆曲线之间的介曲线时,其半径变化范围自无穷大至圆曲线半径R,若用以连接半径为R1和R2的圆曲线时,缓和曲线的半径便自R1向R2过渡。 按曲线的连接方式不同,可分为: a、单圆曲线,亦称为单曲线,即具有单一半径的曲线 b、复曲线,由两个或两个以上的单曲线连接而成的曲线 c、反向曲线,由两个不同方向的曲线连接而成的曲线 d、回头曲线,由于山区线路工程展现需要,其转向角接近或超过180度的曲线 e、螺旋线,线路转向角达360度曲线 f、竖曲线,连接不同坡度的曲线,竖曲线有凹形和凸形两种,顶点在曲线之上的为凸形竖曲线,反之为凹形竖曲线。

平面曲线放样数据计算基本公式 缓和曲线基本公式 1、缓和曲线具有的特征是曲线上任意点的曲率半径与该点至起 点的曲线长成反比。如图所示,设缓和曲线上任一点P 的半径为ρ, 该点至起点的曲线长为l ,则回旋线的基本公式为: h L R l A l A l C ?=?===ρρ22 (2-1) 式中,2A 为常数,ρ为缓和曲线参数,表示缓和曲线半径的变化率。 图 带缓和曲线的圆曲线 2、切线角公式,如图所示,可知切线角公式为:

坐标计算公式

坐标计算公式-CAL-FENGHAI.-(YICAI)-Company One1

坐标计算公式 1.坐标正算 用坐标正算计算测点X、Y坐标值(注意,全站仪测得的边长分水平距与斜距,坐标正算公式用的是水平距) 测点高程=测站高程+高差 坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。 编辑本段计算实例 实例1,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为: XB=XA+ΔXAB YB=YA+ΔYAB 式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。 根据三角函数,可写出坐标增量的计算公式为: ΔXAB=DAB·cosαAB ΔYAB=DAB·sinαAB 式中ΔX、ΔY的符号取决于方位角α所在的象限。 实例2. 已知直线B1的边长为,坐标方位角为211°07′53〃,其中一个端点B的坐标为(,),求直线另一个端点1的坐标X1,Y1。 解: 先代入公式()、(),求出直线B1的坐标增量: ΔXB1=DB1·CosαB1=×cos211°07′53〃=-ΔYB1=DB1·sinαB1=×sin211°07′53〃〃=-然后代入公式()、(),求出直线另一端点1的坐标: X1=XB+ΔXB1=-= Y1=YB+ΔYB1=-= 坐标增量计算也常使用小型计算器计算,而且非常简单。如使用fx140等类型的计算器,可使用功能转换键INV和极坐标与直角坐标换算键P→R以及x←→y键。按键顺序为: D INV P→R α =显示ΔX X←→y 显示ΔY。

如上例,按INV P→R 211°07′53〃=显示-107.31(ΔXB1); 按x←→y 显示-(ΔYB1) 追问 能不能再来一个简单的实例全数字的,不用公式代替, 参考资料:根据直线起点的坐标、直线长度及其坐标方位角计算直线终点的坐标,称为坐标正算。如图6-10所示,已知直线AB起点A的坐标为(x A,yA),AB边的边长及坐标方位角分别为DAB和αAB,需计算直线终点B的坐标。附:导线的载流量对照表。 直线两端点A、B的坐标值之差,称为坐标增量,用ΔxAB、Δy AB表示。由图6-10可看出坐标增量的计算公式为: 根据式(6-1)计算坐标增量时,sin和cos函数值随着α角所在象限而有正负之分,因此算得的坐标增量同样具有正、负号。坐标增量正、负号的规律如表6-5所示。

CASIO_fx-5800P计算与道路坐标放样计算

一、前言 本程序是《CASIO fx-5800P计算与道路坐标放样计算》中道路坐标放样计算程序的升级改进版本。原道路坐标放样计算程序只基于道路的单个基本型曲线,有效计算范围仅包括平曲线部分和前后的两条直线段,使用时需要输入平曲线设计参数,无坐标反算桩号功能。 改进后的程序名称为:道路中边桩坐标放样正反算程序(全线贯通),增加了可实现全线贯通的数据库功能和坐标反算桩号功能,主要是: 1.使用道路平面数据库子程序,可将一段或若干段道路的交点法格式平面参数(可容易从直线、曲线及转角表中获得)以数据库子程序形式输入计算器,程序在计算时省却了输入原始数据的麻烦; 2.坐标正算方面,输入桩号即可进行道路的中、边桩坐标计算,若输入了测站坐标,还可同时计算全站仪极坐标放样数据(拨角和平距); 3.坐标反算方面,输入平面坐标,即可计算对应的桩号和距中距离(含左右信息); 4.对于存在断链的道路,可分段分别编写数据库子程序,然后在主程序中添加一个路段选择的功能即可实现(可参照立交匝道程序中匝道的选择)。 程序的特点: 1.可进行中桩坐标的正、反算,程序代码简洁,便于阅读和改写; 2.主程序通过调用数据库子程序,省却了使用时输入平面参数的繁琐; 3.使用数据库子程序,换项目只需改写数据库子程序,程序通用性强。 二、道路示例项目基本资料 基本资料同《CASIO fx-5800P计算与道路坐标放样计算》第6章HY高速公路第2合同段(合同段起止桩号:K4+800~K9+600)。这里摘取直线、曲线及转角表资料如下(若图片不清晰,请参见参见教材P161附录1): . .

. 三、程序代码 .

曲线坐标计算程序

曲线坐标计算程序

曲线坐标计算程序 关键词: 曲线坐标计算 EXCEL编程坐标曲线坐标实例 摘要: 利用EXCEL强大的函数功能通过曲线坐标计算的知识编制成曲线计算坐标的计算程序。简单的输入曲线的里程桩号,通过坐标旋转、平移结合可以快速的计算完成与线路成任意角度的曲线上各中桩、边桩以及任意点坐标的计算。 1、概述 一般计算圆曲线可用坐标正算直接进行计算,具体思路和求解步骤,这里不再阐述。若计算带有缓和曲线的圆曲线时,将测量中所学的支距法与坐标旋转、平移结合在一起,利用EXCEL表中强大的函数自动计算功能,准确快速的完成对缓和曲线的坐标计算。比一般的手工计算快10~20倍,比CAD绘图计算快5~10倍。并可以应用来指导工程施工、施工放样、审核图纸等工作。 2、计算过程分段 在计算带有缓和曲线的圆曲线或圆曲线时,只要输入待求点的里程,程序将会自动会计算线路中桩的坐标、与中桩有一定夹角、距离的边桩坐标,与边桩中心线任意夹角的垂直桩基坐标。若要计算其他的距离和夹角的坐标,相应的修改待求点里程、夹角和距离。 2.1、程序初始化:

输入每个曲线所对应交点的半径、缓和曲线长、线路转角、连续三交点的里程和坐标、交点连线的坐标方位角,顺便计算出各个曲线要素以及曲线各主点的里程。 2.2、初直线H Z i-1~ZH i段: (1)X ZHi-1和Y ZHi-1的计算 X ZHi-1= X JDi-1+T i-1×cos(A i-1,i) Y ZHi-1= Y JDi-1+ T i-1×sin(A i-1,i) 其中:T i-1——JD i-1曲线的切线长; A i-1,i——JD i-1与JD i直线的坐标方位角; X JDi-1、Y JDi-1——JD i-1的坐标; X ZHi-1、Y ZHi-1——JD i-1对应的ZH点坐标。 (2)中桩计算公式: X中=L A×cos(A i-1,i)+ X ZHi-1 Y中= L A× sin(A i-1,i)+ Y ZHi-1 其中:L A——待求点与ZH i的里程差; A i-1,i——JD i-1与JD i直线的坐标方位角; X中、Y中——待求点里程的中桩坐标; 其余符号同上。 (3)边桩计算公式: X边=L A’×cosα’+ X中 Y边= L A’×sinα’+ Y中

相关文档
最新文档