光伏发电设计方案

光伏发电设计方案
光伏发电设计方案

家用光伏发电系统设计方案

一家用离式光伏发电系统原理及系统组成

在光照条件下,太阳电池根据光生伏特效应产生一定的电动势,通过组件的串并联形太阳能电池方阵,使得方阵电压达到系统输入电压的要求。再通过充放控制器对蓄电池进行充电,将由光能转换而来的电能贮存起来。晚上,蓄电池组为逆变器提供输入电,通过逆变器的作用,将直流电转换成交流电,输送到配电柜,由配电柜的切换作用进行供电。蓄电池组的放电情况由控制器进行控制,保证蓄电池的正常使用。光伏电站系统还应有限荷保护和防雷装置,以保护系统设备的过负载运行及免遭雷击,维护系统设备的安全使用。从而实现:太阳能→电能→化学能→电能的转换,满足我们的日常生活需求。

图1-1 家用光伏发电系统

二各部分的作用为:

(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。

(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项;

(三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(四)逆变器:太阳能的直接输出一般都是12VDC、24VDC、48VDC。为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。

三各参数计算与设计

1 农村一般家庭用电负荷统计

表1-1 用电量统计

2 根据表1-1设计蓄电池组

(1)蓄电池的先用: 能够和太阳能电池配套使用的蓄电池种类很多,目前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性镍镉蓄电池三种。国内目前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。普通铅酸蓄电池由于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。碱性镍镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。

(1)蓄电池容量计算:蓄电池的容量对保证连续供电是很重要的。在一年内,方阵发电量各月份有很大差别。方阵的发电量在不能满足用电需要的月份,要靠蓄电池的电能给以补足;在超过用电需要的月份,是靠蓄电池将多余的电能储存起来。所以方阵发电量的不足和过剩值,是确定蓄电池容量的依据之一。同样,连续阴雨天期间的负载用电也必须从蓄电池取得。所以,这期间的耗电量也是确定蓄电池容量的因素之一。

根据蓄电池容量计算公式:BC=A×QL×NL×TO/CC (AH)

BC=[1.2×(3000÷24)×5×1]÷0.75=1000(AH)

注式中:A为安全系数,取1.1~1.4之间;

QL为负载日平均耗电量,为工作电流乘以日工作小时数;

NL为最长连续阴雨天数;

TO为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃

以下取1.2;

CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取

0.85。

根据以上计算,需要4个250AH/12V的电池,两个串联成一组,共两组。

3太阳能电池方阵设计

(1)太阳能电池组件串联数Ns

将太阳能电池组件按一定数目串联起来,就可获得所需要的工作电压,但是,太阳能电池组件的串联数必须适当。串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。

计算方法如下:

Ns=UR/Uoc=(Uf+UD+Uc)/Uoc

=(5+0.7+0)/36=1

式中:UR为太阳能电池方阵输出最小电压;

Uoc为太阳能电池组件的最佳工作电压;

Uf为蓄电池浮充电压;

UD为二极管压降,一般取0.7V;

UC为其它因数引起的压降。

蓄电池的浮充电压和所选的蓄电池参数有关,应等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数。

(2)太阳能电池组件并联数Np

在确定NP之前,我们先确定其相关量的计算方法。

①将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H。设地点为成都,则斜面日均辐射量为:10304。

H=10304×2.778/10000h=2.862

式中:2.778/10000(h·m2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数。

②太阳能电池组件日发电量Qp

Qp=Ioc×H×Kop×Cz=5.0×2.862×0.885×0.8=10.13(AH)

式中:Ioc为太阳能电池组件最佳工作电流;

Kop为斜面修正系数;

Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,

一般取0.8。

③两组最长连续阴雨天之间的最短间隔天数NW=30,此数据为本设计之独

特之处,主要考虑要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb为:

Bcb=A×QL×NL=1.2×(3000/24)×5=750(AH) Qp=3000/24=125(AH)

④太阳能电池组件并联数Np的计算方法为:

Np=(Bcb+Nw×QL)/(Qp×Nw)=(750+30×125)/(10.13×30)=14.81

上式表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短

间隔天数内所发电量,不仅供负载使用,还需补足蓄电池

在最长连续阴雨天内所亏损电量。

(3)太阳能电池方阵的功率计算

根据太阳能电池组件的串并联数,即可得出所需太阳能电池方阵的功率P:P=Po×Ns×Np=180×1×14=2520W

式中:Po为太阳能电池组件的额定功率。

所以,需要180W/24V电池板14块。

四控制器的安装

目前,家用系统大部分使用12V、24V和48V的直流太阳能系统,计算出太阳能板的总电流。

公式如下:180W太阳能板14片/48V控制器=52.5A电流

那么,采用两个24V/30A太阳能充电控制器就可以满足了。

注意事项:如超过1000W的系统,尽量采用双控制器,以便于检测发电状况和使用维护。控制器因为太阳能板在发电时候并不是始终处于最大电压和电流,所以在选控制器是可以按40%~50%的电流,就可以满足了。五逆变器的安装

逆变器是连接负载和电池的最后一个关键组件,采用纯正弦波逆变器不会对任何电器电机的使用寿命造成影响。

逆变器的计算公式如下:

使用电器的功率之和×1.25=要使用的逆变器容量

逆变器容量=(100+150+300+200+1200)×1.25=2437.5(W)因此,需要一个24W/2500W输出220V/20HZ的逆变器。

六综合上述计算该家用光伏发电系统方案及报价如下表:

七方案分析及讨论

从整套家用独立光伏发电系统的大概成本看要3.5万元,成本较高按一般农村家庭来计算要十年后才能免费用电。

对于成本较高的原因分析为以下几点:

1.系统设计还不够科学严谨。我对各部件产品的市场价格及性能不够了解,

所以在产品采购上的规划还不是最优化的,从而导致成本较高。

2.从地点选择上看:我设计地点在成都,而成都的日照强度在全国看来是偏

低的为了理论上满足用户需求必然要增加成本特别是太阳能电池板上的

投入。

对于降低成本我提出以下两点假设:

1.为了降低太阳能电池板的投入成本,在风力资源较好的地区可以设计成光

-风发电系统,通过风力发电来解决一部分光伏发电功率不够的问题,不过风力发电存在不稳定的特点。

2.采用光伏发电系统与市电并网供电方式,通过控制电路形成并网供电。

光伏发电系统方案专业设计书

光伏发电工程 项 目 方 案 设 计 书

目录 一、概述 (4) 1.1项目概况 (4) 1.2编制依据 (4) 二、建设地址资源简述 (4) 2.1日照资源 (4) 2.2接入系统条件 (5) 三、总体方案设计 (6) 3.1光伏工艺部分 (6) 3.2太阳电池组件选型 (6) 3.3光伏阵列设计 (11) 3.4系统效率分析 (14) 四、电气部分 (15) 4.1概述 (15) 4.2系统方案设计选型 (15) 4.3电气主接线 (18) 4.4主要设备选型 (18) 4.5防雷及接地 (27) 4.6电气设备布置 (27) 4.7电缆敷设及电缆防火 (28) 五、工程案例........................................................................................... 错误!未定义书签。 六、系统配置以及报价 .......................................................................... 错误!未定义书签。

一、概述 1.1 项目概况 1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,石家庄地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室内。 1.2 编制依据 本初步设计说明书主要根据下列文件和资料进行编制的: 1)GB50054《低压配电设计规范》; 2)GB50057《建筑物防雷设计规范》; 3)GB31/T316—2004《城市环境照明规范》; 4)GBJl33—90《民用建筑照明设计标准》; 5)JGG/T16—921《民用建筑电气设计规范》; 6)GBJ16—87《建筑设计防火规范》; 7)《中华人民共和国可再生能源法》; 8)国家发展改革委《可再生能源发电有关管理规定》; 二、建设地址资源简述 2.1日照资源 我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。 我国的太阳能资源按日照时间和太阳能辐射量的大小,全国大致上可分为五类地区: 一类地区: 全年日照时数达到3200~3300小时的地区,主要包括青藏高原、甘肃省北部、宁夏北部和新疆南部等地。 二类地区: 全年日照时数达到3000~3200小时的地区,主要包括河北省西北部、

3KW屋顶分布式光伏电站设计方案解析

Xxx市XX镇xx村3.12KWp分布式电站 设 计 方 案 设计单位: xxxx有限公司 编制时间: 2016年月

目录 1、项目概况................................................ - 2 - 2、设计原则................................................ - 3 - 3、系统设计................................................ - 4 - (一)光伏发电系统简介.................................... - 4 - (二)项目所处地理位置..................................... - 5 - (三)项目地气象数据....................................... - 6 - (四)光伏系统设计......................................... - 8 - 4.1、光伏组件选型....................................... - 8 - 4.2、光伏并网逆变器选型................................. - 9 - 4.3、站址的选择......................................... - 9 - 4.4、光伏最佳方阵倾斜角与方位.......................... - 11 - 4.5、光伏方阵前后最佳间距设计.......................... - 12 - 4.6、光伏方阵串并联设计................................ - 13 - 4.7、电气系统设计...................................... - 13 - 4.8、防雷接地设计...................................... - 14 - 4、财务分析............................................... - 18 - 5、节能减排............................................... - 19 - 6、结论................................................... - 20 -

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

屋顶分布式光伏电站设计及施工方案范本

屋顶分布式光伏电站设计及施工方案

设 计 方 案 恒阳 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充分,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充分,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。

结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害 本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009- 中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心

光伏发电设计方案

百度文库?让每个人平等地捉升自我 家用光伏发电系统设计方案

-家用离式光伏发电系统原理及系统组成 在光照条件下,太阳电池根据光生伏特效应产生一定的电动势,通过组件的串并联形太阳能电池方阵,使得方阵电压达到系统输入电压的要求。再通过充放控制器对蓄电池进行充电,将山光能转换而来的电能贮存起来。晚上,蓄电池组为逆变器提供输入电,通过逆变器的作用,将直流电转换成交流电,输送到配电柜,山配电柜的切换作用进行供电。蓄电池组的放电情况山控制器进行控制,保证蓄电池的正常使用。光伏电站系统还应有限荷保护和防雷装置,以保护系统设备的过负载运行及免遭雷击,维护系统设备的安全使用。从而实现:太阳能一电能一化学能f电能的转换,满足我们的日常生活需求。 图M家用光伏发电系统 二各部分的作用为: (-):太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用银氢电池、银镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(四)逆变器:太阳能的直接输出一般都是12UDC、24VDC、48VDC。为能向220VAC 的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。 三各参数汁算与设计 2根据表1-1设讣蓄电池组 (1)蓄电池的先用:能够和太阳能电池配套使用的蓄电池种类很多,□前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性银镉蓄电池三种。国内口前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。普通铅酸蓄电池山于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。碱性镰镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。 ⑴蓄电池容量计算:蓄电池的容量对保证连续供电是很重要的。在一年内,方阵发电量各月份有很大差别。方阵的发电量在不能满足用电需要的月份,要靠蓄电池的电能给以补足;在超过用电需要的月份,是靠蓄电池将多余的电能储存起来。所以方阵发电量的不足和过剩值,是确定蓄电池容量的依据之一。同样,连续阴雨天期间的负载用电也必须从蓄电池取得。所以,这期间的耗电量也是确定蓄电池容量的因素之一。 根据蓄电池容量计算公式:BC二AXQLXNLXTO/CC (AH) BC=[1.2X (3000-r24) X5X1J4-0. 75=1000(AH) 注式中:A为安全系数,取1.1?1.4之间; QL为负载日平均耗电量,为工作电流乘以日工作小时数; NL为最长连续阴雨天数;

5kWp光伏太阳能离网发电系统设计方案

5kWp光伏太阳能离网发电系统 设 计 方 案

目录 一、光伏太阳能离网发电系统简介 (2) 二、项目地参数 (2) 三、相关规范和标准 (5) 四、系统组成与原理 (6) 五、设计过程 (8) 1、方案简介 (8) 2、用户信息 (8) 3、蓄电池设计选型 (8) 4、组件设计选型 (12) 5、离网逆变器设计选型 (16) 6、控制器设计选型 (18) 7、交直流断路器 (21) 8、电缆设计选型 (23) 9、方阵支架 (23) 10、配电室设计 (23) 11、接地及防雷 (23) 12、数据采集检测系统 (24) 六、仿真软件模拟设计 (25) 七、设备配置清单及详细参数 (31) 八、系统建设及施工 (31) 九、系统安装及调试 (32) 十、工程预算投资分析报告 (36) 十二、运行及维护注意事项 (38) 十三、设计图纸 (41)

5kWp光伏太阳能离网发电系统配置方案 一、光伏太阳能离网发电系统简介 独立光伏电站是独立光伏系统中规模较大的应用。它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。用这种方式供电便于统一管理和维护。而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。 太阳能光伏建筑一体化(Building Integrated Photovoltaic——BIPV)是应用太阳能发电 的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。还可通过建筑物输电线路离网发电,向电网提供电能。太阳能光伏方阵与建筑的结合由于不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式,因而备受关注。 二、项目地参数 图片来自Google地球 1、项目地点:江苏省泰州市XX区XX镇; 2、经度:120°12’ ,纬度:32°23’; 3、平均海拔高度:7m;

光伏发电设计方案

1概述 1.1设计依据 1.1.2设计范围 本工程光伏并网发电系统,一期工程规模10MW,本工程设计范围为(1)新建110KV升压站一座 (2)相关电器计算分析,提出有关电器设备参数要求 (3)相关系统继电保护、通信及调度自动化设计 2.电力系统概述 3..1.电气主接线 本期工程建设容量为20MWp,本期光伏电站接入110KV系统,光伏电站设110KV、35KV集电线路回,经一台升压变电站接入电站内110KV变电站,SVG容量为10Mvar 3.1.3.1 110KV升压站主接线设计 本期110KV升压站设计采用1台20MWa/110KV升压变压器,1回110KV出线。 3.1.3.2 光伏方阵接线设计 1概述;1.1设计依据;1.1.11遵循的主要设计规范、规程、规定等:;1)《变电所总布置设计技术规程》(DL/T205;2)《35kV-110kV无人值班变电

所设计规程;3)《3kV~110kV高压配电装置设计规范》(;4)《35-110KV 变电站设计规范》(GB20;5)《继电保护和安全自动装置技术规范》(GB14; 6)《电力装置的继电保护和自动装置设计 1 概述 1.1设计依据 1.1.11遵循的主要设计规范、规程、规定等: 1)《变电所总布置设计技术规程》(DL/T2056-1996); 2)《35kV-110kV无人值班变电所设计规程》(DL/T5103-1999); 3)《3kV~110kV高压配电装置设计规范》(GB20060-92); 4)《35-110KV变电站设计规范》(GB20059-92); 5)《继电保护和安全自动装置技术规范》(GB14285-93); 6)《电力装置的继电保护和自动装置设计规范》(GB20062-92); 7)《交流电气装置过电压保护和绝缘配合》; 8)《微机线路保护装置通用技术规程》(GB/T15145-94); 9)《电测量仪表装置设计规程》(DJ9-87); 10) 其它相关的国家规程、规范及法律法规。

屋顶光伏发电施工方案

屋顶光伏发电施工方案 安装屋顶光伏发电屋顶类型: 一般情况下分为水平屋顶和斜屋顶,水平屋顶即屋顶是平面的,主要以水泥屋顶为主。斜屋顶包括彩钢斜屋顶和陶瓦屋顶。若以地区划分的话,南方一般以角度大的斜屋顶资源为主;中部地区兼有,而东北地区则大部分是陶瓦屋顶资源。 日常用电单位为千瓦时,安装洛阳智凯太阳能光伏发电系统通常以功率单位千瓦来计算。安装设备位置主要以向阳面为主,根据面积可测算安装的光伏发电系统大小,详细参考如下表: 各类屋顶光伏发电施工方案: 1)水平屋顶:在水平屋顶上,光伏阵列可以按最佳角度安装,从而获得最大发电量;并且可采用常规晶硅光伏组件,减少组件投资成本,往往经济性相对较好。但是这种安装方式的美观性一般。 2)倾斜屋顶:在北半球,向正南、东南、西南、正东或正西倾斜的屋顶均可以用于安装光伏阵列。在正南向的倾斜屋顶上,可以按照最佳角度或接近最佳角度安装,从而获得较大发电量;可以采用常规的晶体硅光伏组件,性能好、成本低,因此也有较好经济性。并且与建筑物功能不发生冲突,可与屋顶紧密结合,美观性较好。其它朝向(偏正南)屋顶的发电性能次之。 3)光伏采光顶:指以透明光伏电池作为采光顶的建筑构件,美观性很好,并且满足透光的需要。但是光伏采光顶需要透明组件,组件效率较低;除发电和透明外,采光顶构件要满足一定的力学、美学、结构连接等建筑方面要求,组件成本高;发电成本高;为建筑提升社会价值,带来绿色概念的效果。 立面安装、侧立面安装形式主要指在建筑物南墙、(针对北半球)东墙、西

墙上安装光伏组件的方式。对于多、高层建筑来说,墙体是与太阳光接触面积最大的外表面,光伏幕墙垂直光伏幕墙是使用的较为普遍的一种应用形式。根据设计需要,可以用透明、半透明和普通的透明玻璃结合使用,创造出不同的建筑立面和室内光影效果。 双层光伏幕墙、点支式光伏幕墙和单兀式光伏幕墙是目前光伏幕墙安装中比较普遍的形式。目前用于幕墙安装的组件成本较高,光伏系统工程进度受建筑总体进度制约,并且由于光伏阵列偏离最佳安装角度,输出功率偏低。除了光伏玻璃幕墙以外,光伏外墙、光伏遮阳蓬等也可以进行建筑立面安装。 因每一个用户住宅都是不一样的结构,需要通过专业的场地分析、设备选择和业主的需求设计一套符合业主的发电需求、资金预算、房屋结构的系统施工方案。

10MW光伏电站设计方案

10MW光伏电站设计方案 10兆瓦的太阳能并网发电系统,推荐采用分块发电、集中并网方案,将系统分成10个1兆瓦的光伏并网发电单元,分别经过0.4KV/35KV变压配电装置并入电网,最终实现将整个光伏并网系统接入35KV中压交流电网进行并网发电的方案。 本系统按照10个1兆瓦的光伏并网发电单元进行设计,并且每个1兆瓦发电单元采用4台250KW并网逆变器的方案。每个光伏并网发电单元的电池组件采用串并联的方式组成多个太阳能电池阵列,太阳能电池阵列输入光伏方阵防雷汇流箱后接入直流配电柜,然后经光伏并网逆变器和交流防雷配电柜并入0.4KV/35KV变压配电装置。 (一)太阳能电池阵列设计 1、太阳能光伏组件选型 (1)单晶硅光伏组件与多晶硅光伏组件的比较 单晶硅太阳能光伏组件具有电池转换效率高,商业化电池的转换效率在15%左右,其稳定性好,同等容量太阳能电池组件所占面积小,但是成本较高,每瓦售价约36-40元。 多晶硅太阳能光伏组件生产效率高,转换效率略低于单晶硅,商业化电池的转换效率在13%-15%,在寿命期内有一定的效率衰减,但成本较低,每瓦售价约34-36元。 两种组件使用寿命均能达到25年,其功率衰减均小于15%。 (2)根据性价比本方案推荐采用165WP太阳能光伏组件。 2、并网光伏系统效率计算 并网光伏发电系统的总效率由光伏阵列的效率、逆变器效率、交流并网等三部分组成。 (1)光伏阵列效率η1:光伏阵列在1000W/㎡太阳辐射强度下,实际的直流输出功率与

标称功率之比。光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、及直流线路损失等,取效率85%计算。 (2)逆变器转换效率η2:逆变器输出的交流电功率与直流输入功率之比,取逆变器效率95%计算。 (3)交流并网效率η3:从逆变器输出至高压电网的传输效率,其中主要是升压变压器的效率,取变压器效率95%计算。 (4)系统总效率为:η总=η1×η2×η3=85%×95%×95%=77% 3、倾斜面光伏阵列表面的太阳能辐射量计算 从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐射量才能进行发电量的计算。 对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为: Rβ=S×[sin(α+β)/sinα]+D 式中: Rβ--倾斜光伏阵列面上的太阳能总辐射量 S--水平面上太阳直接辐射量 D--散射辐射量 α--中午时分的太阳高度角 β--光伏阵列倾角 根据当地气象局提供的太阳能辐射数据,按上述公式计算不同倾斜面的太阳辐射量,具体数据见下表:

分布式光伏屋顶租赁协议

合同编号: 光伏发电项目 屋顶租赁合同甲方(屋顶业主): 乙方(项目单位): 签约时间:年月日 签约地点:

经甲乙双方友好协商一致,双方同意签订光伏发电项目屋顶租赁合同。 基于诚实守信和公平交易原则,合同双方签字盖章如下: 甲方: 地址: 邮编: 传真: 电话: 法定代表人: 授权代表:___________________________ 日期: 乙方: 地址: 传真: 电话: 法定代表人: 授权代表:___________________________ 日期:

目录 第1节总则 (4) 第2节项目主要内容 (4) 第3节项目实施期限 (5) 第4节项目方案设计实施和项目的验收 (5) 第5节节能效益分享方式 (5) 第6节甲方的权利和义务 (7) 第7节乙方的权利和义务 (8) 第8节项目的更改 (10) 第9节资产所有权以及风险责任 (11) 第10节违约责任 (11) 第11节不可抗力 (10) 第12节合同解除 (12) 第13节其它 (13) 第14节争议的解决 (13) 第15节保密条款 (13) 第16节合同的生效及其他 (15)

第1节总则 1.1 在真实充分地表达各自意愿的基础上,根据《中华人民共和国合同法》及其他相关法律法规的规定,就乙方在甲方屋顶建设光伏发电项目(以下简称“本项目”或“项目”)签订本合同。 1.2 鉴于本项目的实际情况,双方同意由乙方在甲方的厂房屋顶投资建设本项目,乙方向甲方租赁屋顶供项目使用。乙方支付租金给甲方作为甲方的收益。 第2节项目主要内容 2.1 项目名称:光伏发电项目。 2.2 甲方同意乙方在其厂房屋顶上建设本项目,乙方负责该项目的建设和运营,本项目所生产的电力由乙方负责与当地电力公司结算,收益归乙方所有。 2.3项目主要技术方案:乙方向甲方租赁屋顶面积约平方米作为项目建设场地。乙方在该屋顶上投资建设符合电力部门高压并网发电标准(详见附件:供电部门的《电网接入批复》),且符合屋顶荷载的(详见附件:设计院提供的《承载设计报告》),光伏电站建设规模以省市发改委签发《光伏电站备函文件》所示的实际装机容量为准。 2.4 项目建设方案 2.4.1 乙方负责该项目的所有投资,完成电站设计、施工、建设;负责项目的运营、管理、维护以及过程中发生的所有费用。 2.4.2鉴于此项目的投资建设单位为乙方,经甲乙双方同意,项目租赁期为自年月日至年月日终止。租赁期届满后甲乙双方同意自动续协5年,续协期间本协议其他条件不变。本项目所涉乙方采购并安装的设备、设施和仪器等固定资产(简称“项目

太阳能光伏照明控制系统的硬件电路项目设计方案

太阳能光伏照明控制系统的硬件电路项 目设计方案 1.1概述 传统的化石能源资源日益枯竭,严重的环境污染制约了世界经济的可持续发展。能 源的需求有增无减,能源资源已成为重要的战略物资,化石能源储量的有限性是发展可 再生能源的主要因素之一。根据世界能源权威机构的分析,按照目前已经探明的化石能 源储量以及开采速度来计算,全球石油剩余可采年限仅有 41年,其年占世界能源总消 耗量的40.5%,国内剩余可开采年限为15年;天然气剩余可采年限61.9年,其年占世 界能源总消耗量的24.1%,国内剩余可开采年限30年;煤炭剩余可采年限230年,其 年占世界能源总消耗量的25.2%,国内剩余可开采年限81年;铀剩余可采年限71年, 其年占世界能源总消耗量的 7.6%,国内剩余可开采年限为50年。 太阳能利用和光伏发电是最有发展前景的可再生能源,因此,世界各国都把太阳能 光伏发电的商业化开发和利用作为重要的发展方向,制定了相应的导向政策。在光伏发 电的历史上,最早规模化推广的是日本,而后是德国,再发展到现在大力推广的包括美 国、西班牙、意大利、挪威、澳大利亚、韩国、印度等超过 40个国家与地区,如日本 “新阳光计划”、欧盟“可再生能源白皮书”,以及美国国家光伏发展计划、百万太阳能 屋顶计划、光伏先锋计划等的相继推出,成为近年来推动太阳能光伏发电产业的主要动 力。根据欧盟的预测:到2030年太阳能发电将占总能耗10%以上,到2050年太阳能发 电将占总能耗20% 1.2光伏照明系统的结构 光伏照明系统主要由五大部分组成,即太阳能电池、蓄电池、控制器、照明电路、 负载,如下图1-1所示。 在系统中,控制器是整个系统的核心。它控制蓄电池的充电及蓄电池对负载的供电, 对蓄电池性能、使用寿命有非常大的影响。目前,光伏系统主要由于控制器控制蓄电池 充电方式不合理,降低了蓄电池寿命而导致整个系统可靠性不高,因此,在控制器的设 计中采用什么样的充电 图1- 1光伏系统组成框图

离网光伏系统设计方案

太阳光伏系统设计方案

南京格瑞能源科技有限公司. 总体方案描述一 在能源供应方面必须走可持续发面对化石燃料的逐渐枯竭和人类生态环境的日益恶化, 展的道路,逐渐改变能源消费结构,大力开发利用以太阳能为代表的可再生能源,已逐步成为人们的共识。由于太阳能发电具有节能、环保,安装使用方便,一次投资,长期受益等特点,目前广泛应用在别墅群、旅游渡假村、草原牧区、偏远山村、高山海岛等。太阳太阳能阵列把光能转换为电能,210W单晶太阳电池组件组成太阳电池阵列,采用充电控制器作过充、灯控电池阵列通过防雷汇流箱后,进线通过防雷处理进入光伏控制器,交流电且和市电形成互2%)AC220V频率(50Hz±制进入蓄电池组,逆变器把蓄电池逆变为LED等照明灯使用。共462盏,补,通过AC220V交流配电柜输出配电和后级防雷保护处理后可分别安装在屋顶相应的朝南位120平方米左右,太阳能电池板总共需安装占地面积约(东经)置,电池板支架采用全铝结构,具体方案在图纸深化设计中体现。万泽大厦位于:E °48′光伏组件安装倾角确定为3258°′N(北纬)31°119发电系统包括太阳能电池板、组件支架、防雷汇流箱、蓄电池组,控制器,逆变器及配电箱其附件。系统介绍二 灯后地下车库照明负载总功率采用LED本系统的主要目的是给照明设备供 电, 灯管的LED462盏 12W车道、为5544W,车位共采用,220V,负载需要电压为交流11340,方阵支8小时。根据电量平衡原理,需要太阳电池方阵功率为:Wp负载每天工作㎡。系统设计列。太阳能电池方阵占地面积:9120架的倾角为32°,组件排列方式为6行。蓄电池,控制器,逆变器,以180Ah/DC220V2个阴雨能正常工作,蓄电池配置容量为:及输出控制柜安装在空置房内。 本图供示意参考系统核心配置2.1 名称型号参数备注 单晶210Wp/DC96V 太阳电池组件. 180Ah/DC220V 蓄电池 智能自动控制GESM60/220 控制器DC220V/60A 汇流箱汇流箱6进一出GEHL10-S6 带市DC220V/10KW 逆变器GEII10K/220 正弦波逆变器() 电互补太阳电池组件支架 负载用电(2.2 AC220V)数量工作时间用电功率项目名称总功率

屋顶分布式光伏电站设计及施工方案

设计方案 恒阳2017年 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充足,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充足,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。 结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害

本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp 屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V 交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009-2012中,对于屋顶活荷载的要求,方阵基础采用 C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心间距0.5m 。每横排之间间距为0.5m,便于组件后期的安装和维护。方便根据实际需要设计安装角度。

分布式光伏发电系统设计方案(专业)

某学校 512K分布式光伏发电系统设计方案2013年10月10日 项目编号:XXX

目录 1工程概述 (3) 1.1工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 3.4.1电池组件 (6)

3.4.2 组件结构图 (7) 3.4.3 并网逆变器 (8) 3.4.4 并网逆变器规格 (9) 4发电量估算 (10) 5系统的社会效益 (10) 5.1社会效益(25年) (10) 6设备材料清单及造价一览表(此报价含税不含物流费用) (11) 7工程业绩表及典型工程 (11) 8合利欧斯优势 (16) 8.1 与保利协鑫(GCL)的合作 (16) 8.2 与河北**的的合作 (17) 1工程概述 1.1工程名称 河南**外国语学校512kW户用分布式光伏发电项目。

1.2 地理简介 郑州位于东经112°42'-114°13' ,北纬34°16'-34°58',东西宽166公里,南北长75公里,总面积约为7446.2平方公里,其中市区面积约1010.3平方公里,山地面积约2377平方公里,水面面积约11.4平方公里。郑州市属北温带大陆性季风气候,冷暖适中、四季分明,春季干旱少雨,夏季炎热多雨,秋季晴朗日照长,冬季寒冷少雨。郑州市冬季最长,夏季次之,春季较短。统计资料表明郑州市的平原和丘陵地区春季开始的时间大致在3月27日,终止于5月20日,历时55天;夏季开始于5月21日,终止于9月7日,历时110天;秋季开始于9月8日,终止于11月9日,历时63天;11月10日至次年的3月26日为冬季,长达137天。处于西部浅山丘陵区的荥阳、巩义、新密和登封四市,年平均气温在14~14.3℃之间。郑州年平均降雨量640.9毫米,无霜期220天,全年日照时间约2400小时。 1.3 气象资料 气象资料以NASA数据库中郑州气象数据为参考。 表1 气象资料表

分布式光伏发电系统设计方案

分布式光伏发电系统 设 计 方 案 编制人: 审核人: 批准人: 20 年月

目录 1 工程概述 (3) 1.1 工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2 太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3 方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 4 发电量估算 (11) 5 系统的经济和社会效益 (11) 5.1 经济效益 (11) 6 设备材料清单 (12) 7 工程业绩表及典型工程照片 (12) 8 英利介绍............................................................................................... 错误!未定义书签。 9 附图1 .................................................................................................... 错误!未定义书签。

1 工程概述 1.1 工程名称 河北省分布式光伏发电项目。 1.2 地理简介 项目地点位于河北省保定市,保定市地处太行山东麓,冀中平原西部。北纬38°10′-40°00′,东经113°40′-116°20′之间。北邻北京市和张家口市,东接廊坊市和沧州市,南与石家庄市和衡水市相连,西部与山西省接壤。保定年平均气温12℃,年降水量550毫米,属于温带季风性气候。这里四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,来此旅游一般以夏秋季为宜。 1.3 气象资料 气象资料以NASA数据库中保定市气象数据为参考。 表1 气象资料表

家庭分布式光伏典型设计方案

家庭分布式光伏典型设计方案 家庭屋顶一般采用瓦片结构和水泥结构,安装方在推销光伏或者接到用户申请时,要去现场考察,因为并不是每家屋顶都适合安装光伏。 1、选择合适的安装场地 首先要确定屋顶的承载量能不能达到要求,太阳能电站设备对屋顶的承载要求大于30kg/平米,一般近5年建的水泥结构的房屋都可以满足要求,而有10年以上的砖瓦结构的房屋就要仔细考察了;其次要看周边有没有阴影遮挡,即使是很少的阴影也会影响发电量,如热水器,电线杆,高大树木等,公路旁边以及房屋周边工厂有排放灰尘的,组件会脏污,影响发电量;最后要看屋顶朝向和倾斜角度,组件朝南并在最佳倾斜角度时发电量最高,如果朝北则会损失很多发电量。遇到不适合装光伏的要果断拒绝,遇到影响发电量的需要和业主实事求是讲清楚,以免后续有纠份。 2、选择合适的光伏组件 光伏组件有多晶硅,单晶硅,薄膜三种技术路线,各种技术都有优点和缺点,在同等条件下,光伏系统的效率只和组件的标称功率有关,和组件的效率没有直接关系,组件技术成熟,国内一线和二线品牌的组件生产厂家质量都比较可靠,客户需要选择从可靠的渠道去购买。光伏组件有60片电池和72片电池两种,分布式光伏一般规模小,安装难度大,所以推荐用60片电池的组件,尺寸小重量轻安装方便。

按照市场规律,每一年都会有一种功率的组件出货量特别大,业内称为主流组件,组件的效率每一年都在增加,2017年是多晶265W,单晶275W,这种型号性价比最高,也比较容易买到,到2018年预计是多晶270W,单晶280W性价比最高。 3、选择合适的支架 根据屋顶的情况,可以选择铝支架,C型钢,不锈钢等支架,另考虑到光伏支架强度、系统成本、屋顶面积利用率等因素。在保证系统发电量降低不明显的情况下(降低不超过1%)尽可能降低光伏方阵倾斜角度,以减少受风面,做到增加支架强度,减少支架成本、提高有限场地面积的利用率。 漏雨是安装光伏电站过程中需要注意的问题,防水工作做好了,光伏电站才安全。光伏支架安装在屋顶支撑着组件,连接着屋顶。它的设计多采用顶上顶的方式,不会对屋面原有防水进行穿孔、破坏;压块采用预制构件,不用现场浇注,可以避免了太阳能支架安装对屋面防水层的硬性破坏。 4、光伏方阵串并联设计 分布式光伏发电系统中,太阳能电池组件电路相互串联组成串联支路。串联接线用于提升直流电压至逆变器电压输入范围,应保证太阳能电池组件在各种太阳辐射照度和各种环境温度工况下都不超出逆变器电压输入范围。 工作电压在逆变器的额定工作电压左右,效率最高,单相220V逆变器,逆变器输入额定电压为360V,三相380V逆变器,逆变器输入额定电压为650V。如3kW逆变器,配260W组件,工作电压30.5V,配12块工作电压366V,功率为3.12kW 为最佳。10KW逆变器配260W组件,接40块组件,每一路20串,电压为610V,总功率为10.4kW为最佳。

光伏发电系统支架设计

新能源科学与工程学院 光伏系统设计与施工课程设计 学院:新能源科学与工程学院 专业班级: 11级光伏发电2班 学生姓名: 学号: 1103030239 指导教师: 实施时间:2013.11.18—2013.11.22 项目课程成绩:

一、课程设计目的: 课程设计是《光伏系统设计与施工》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。在整个教学计划中,它也起着培养学生独立工作能力的重要作用。 课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出设计和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力的有益实践。 通过课程设计,学生应该注重以下几个能力的训练和培养: 1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力; 2. 树立既考虑技术上的先进性又考虑经济上的合理性正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; 3. 用简洁的文字或清晰的图表来表达自己设计思想的能力; 4.综合运用了以前所学的各门课程的知识(高数、CAD制图、机械制图、计算机等等)使相关学科的知识有机地联系起来; 5.运用太阳能光伏发电系统设计与施工中的知识解决工程中的实际问题。 二、课程设计日程安排: 实施时间实习内容安排地点 2013年11月18日讲解任务、设计原理及要求主附西多媒体5 2013年11月19日学生选定实验室电池组件对其长度 及质量进行测量,讲解参观学习实 验室屋顶及学习地面电站支架,对 关键部位的连接进行深入观测。 主A210教室 2013年11月20日针对新余地区的光伏并网电站,对 给定的电池组件进行荷载计算,包 括风压荷载计算,下载相关支架图 片手绘制图纸 主A210教室 2013年11月21日出具图纸(用CAD制图),打印报 告,请指导教师批阅并给出评语 主A210教室 2013年11月22日提交设计书、答辩报告书、分组交 叉答辩 主A210教室 三|、课程设计任务: 1、光伏发电系统支架设计书 2、光伏发电系统支架设计图纸:支架整体及侧面的CAD制图 3、课程设计答辩 四、课程设计成绩 本课程设计成绩的评定为百分制,其中支架设计书/满分40、支架CAD制

太阳能光伏发电项目设计方案

太阳能光伏发电项目设计方案梦之园太阳能光伏发电项目 设 计 方 案

编制单位:光宏照明有限公司 编制日期:2013年7月12日 1.综合说明 1.1.编制依据 光伏发电是节约能源利国利民的新型产业,本着从科学的角度展示他的价值作为主导思想为依据。根据国家现行的法规和规范编制: 1)IEC61215 晶体硅光伏组件设计鉴定和定型 2)IEC6173O.l 光伏组件的安全性构造要求 3)IEC6173O.2 光伏组件的安全性测试要求 4)GB/T18479-2001《地面用光伏(PV)发电系统概述和导则》 5)SJ/T11127-1997《光伏(PV)发电系统过电压保护—导则》 6)GB/T 19939-2005《光伏系统并网技术要求》 7)EN 61701-1999 光伏组件盐雾腐蚀试验 8)EN 61829-1998 晶体硅光伏方阵I-V特性现场测量 9)EN 61721-1999 光伏组件对意外碰撞的承受能力(抗撞击试验) 10)EN 61345-1998 光伏组件紫外试验 11)GB 6495.1-1996 光伏器件第1部分: 光伏电流-电压特性的测量 12)GB 6495.2-1996 光伏器件第2部分: 标准太阳电池的要求 13)GB 6495.3-1996 光伏器件第3部分: 地面用光伏器件的测量原理及标准光谱辐照度数据 14)GB 6495.4-1996 晶体硅光伏器件的I-V实测特性的温度和辐照度修正方法 GB 6495.5-1997 光伏器件第5部分: 用开路电压法确定光伏(PV)器件的等效电池温度(ECT) 16)GB 6495.7-2006 《光伏器件第7部分:光伏器件测量过程中引起的

4000W屋顶光伏发电系统方案设计说明书

4000W屋顶光伏发电系统方案说明书一、系统方案 (一)光伏发电简介 光伏发电是根据光生伏特效应原理,利用太阳电池将太阳光能直接转化为电能。不论是独立使用还是并网发电,光伏发电系统主要由太阳电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件。 光伏发电系统分为独立光伏发电系统、并网光伏发电系统 (1)独立光伏发电系统

独立光伏发电也叫离网光伏发电。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。独立光伏电站包括边远地区的村庄供电系统,太阳能户用电源系统,通信信号电源、阴极保护、太阳能路灯等各种带有蓄电池的可以独立运行的光伏发电系统 (2)并网光伏发电系统 并网光伏发电就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。可以分为带蓄电池的和不带蓄电池的并网发电系统。 (二)背景与系统介绍 (1)背景 一南宁市家庭用户,屋面类型为水泥屋面。主要电器设备为一盏功率为60W普通照明灯和一台功率为300W电视机。 (2)用电量分析 电灯和电视机每天平均使用5小时,每天用电量为:(60W+300W)x 5h=1800Wh(即1.8度),考虑到特殊情况的每天最大用电量为2.5度电。 (3)装机容量的确定 据南宁气象数据统计,南宁最大连续阴雨天气为3天,光伏发电在阴雨天连续提供的电量应达到:(3+1)X 2.5=10(度),因此本光

伏发电系统的装机容量设定为4000W,4000W的光伏发电系统日均发电量约11.2度,用户电器按每天运行5小时计算,可满足其正常使用4天。 (4)系统介绍 根据用户用电情况本工程选用离网光伏发电系统。 离网光伏发电系统构成:由太阳能电池组件、光伏控制逆变一体机、蓄电池组、交流配电柜、接地系统、电缆等组成。 电池组件方阵 在有光照情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,即“光生伏特效应”。在光生伏特效应的作用下,太阳能电池的两端产生电动势,将光能转换成电能,。太阳能电池一般为分为单晶硅太阳能电池,多晶硅太阳能电池和非晶硅太阳能电池三种。 蓄电池组

相关文档
最新文档