塑料剪切强度试验方法 穿孔法(标准状态:废止转行标)

塑料剪切强度试验方法 穿孔法(标准状态:废止转行标)
塑料剪切强度试验方法 穿孔法(标准状态:废止转行标)

剪切强度

第3章 剪切和挤压的实用计算 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 剪切和挤压的强度计算 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为

土的抗剪强度试验方法(经典)

土的抗剪强度试验方法 【中国地质大学(武汉)工程学院】 抗剪强度指标c、φ值,是土体的重要力学性质指标,正确地测定和选择土的抗剪强度指标是土工计算中十分重要的问题。 土体的抗剪强度指标是通过土工试验确定的。室内试验常用的方法有直接剪切试验、三轴剪切试验;现场原位测试的方法有十字板剪切试验和大型直剪试验。 一、直接剪切试验 (一)试验仪器与基本原理 直剪试验所使用的仪器称为直剪仪,按加荷方式的不同,直剪仪可分为应变控制式和应力控制式两种,前者是以等速水平推动试样产生位移并测定相应的剪应力;后者则是对试样分级施加水平剪应力,同时测定相应的位移。目前常用的是应变控制式直剪仪(示意图)。 试验时,垂直压力由杠杆系统通过加压活塞和透水石传给土样,水平剪应力则由轮轴推动活动的下盒施加给土样。土体的抗剪强度可由量力环测定,剪切变形由百分表测定。在施加每一级法向应力后,匀速增加剪切面上的剪应力,直至试件剪切破坏。 将试验结果绘制成剪应力τ和剪切变形S的关系曲线(见图5-9)。一般地, 。 将曲线的峰值作为该级法向应力下相应的抗剪强度τ f

变换几种法向应力σ的大小,测出相应的抗剪强度τ f 。在σ-τ坐标上,绘制曲线,即为土的抗剪强度曲线,也就是莫尔-库伦破坏包线,如图5-10所示。 (二)试验方法分类 为了在直剪试验中能尽量考虑实际工程中存在的不同固结排水条件,通常采用不同加荷速率的试验方法来近似模拟土体在受剪时的不同排水条件,由此产生了三种不同的直剪试验方法,即快剪、固结快剪和慢剪。 (1)快剪。快剪试验是在土样上下两面均贴以腊纸,在加法向压力后即施加水平剪力,使土样在3~5分钟内剪坏,由于剪切速率较快,得到的抗剪强度指标用 c q 、φ q 表示。 (2)固结快剪。固结快剪是在法向压力作用下使土样完全固结。然后很快施加 水平剪力,使土样在剪切过程中来不及排水,得到的抗剪强度指标用c cq 、φ cq 表示。 (3)慢剪。慢剪试样是先让土样在竖向压力下充分固结,然后再慢慢施加水平剪力,直至土样发生剪切破坏。使试样在受剪过程中一直充分排水和产生体积变 形,得到的抗剪强度指标用c s 、φ s 表示。

课程设计-弯曲与剪切强度分析及计算

弹底弯曲强度分析 1.弹底应力的计算 平底弹底的应力分析是将其简化为一周边夹持的圆板,受轴向有效载荷_ z p 的作用后,发生弯曲,板内各点的应力计算,可利用受均布载荷的圆板弯曲公式计算. 单独考虑弹底算板的应力状态,将弹底圆板与弹体壁分开,其相互作用可用一个力偶M 0和一个剪力F 来代替(图3-4),算板的应力状态可通过这些载荷来分析确定。 由弹性理论可知,受均布载荷的圆板其任一点N 的应力与变形的关系(图3-5)为: ??????+-=r dr d Ez r ?μ? μσ2 1 ?? ????+-= dr d r Ez t ?μ?μσ2 1 ( 3-2-48 ) 式中 σr ,σt 一为N 点的径向应力与切向应力; φ— N 点的角变形; Z —N 点的Z 坐标位置; r —N 点的r 坐标位置。 图3-4 弹底圆板的载荷 图3-5 圆板的弯曲变形 由图3-5可看出,圆板下表面受压缩变形,其上的应力为负;上表面受拉伸变形,它的应

力为正。 故弹底圆板的角变形可由下述公式得出 ()μμμ?+-??? ? ??-++= 11316022_ D r M r r D r p d z d ( 3-2-49 ) 式中 D —圆板的抗弯刚度,由下式表示 ()2112μ-=d Et D ( 3-2-50 ) r d 一弹底圆板外半径; t d 一弹底圆板厚度。 从式中可见,圆板中心处r=0,角变形φ=0,所以仍为对称变形。将(3-2-49 )式代入(3-2-50)式中.即可求出σr 与σt 。但在代入求解以前,应先求出弹底与弹体的相互作用力偶Mo 。 为了求出Mo ,需要分析弹体的变形,将弹尾部看成端部受Mo 力偶作用的空圆筒(图3-6),并分析其角变形。 图3-6 弹尾部的角变形 然后再将弹体壁简化为弹性基础梁,受力偶M 。的作用, 按弹性理论,离底面距离为之的任一点的角变形为: z e D M z b b ββ ?βcos 0-= ( 3-2-51 ) 式中D 一圆筒的抗弯刚度, ()2 3112μ-= b b Et D ( 3-2-52 ) t b ——圆筒壁厚;

剪切计算及常用材料强度

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 [] s F A ττ =≤ (5-6) 这里[τ]为许用剪应力,单价为Pa或MPa。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n,得许用剪应力[τ]。 [] n τ τ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: []0.60.8[] τσ = 对脆性材料: []0.8 1.0[] τσ = (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa,直径d=20mm。挂钩及被连接板件的厚度分别为t=8mm和t1=12mm。牵引力F=15kN。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m和n-n两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 2 s F F= 销钉横截面上的剪应力为: 3 32 1510 23.9MPa<[] 2(2010) 4 s F A ττ π - ? === ?? 故销钉满足剪切强度要求。 例5-2如图5-13所示冲床,F max=400KN,冲头[σ]=400MPa,冲剪钢板的极限剪应力τb=360 MPa。试设计冲头的最小直径及钢板最大厚度。

抗剪强度得试验方法

第三节抗剪强度得试验方法 一、直接剪切试验 适用范围:室内测定土的抗剪强度,是最常用和最简便的方法 仪器:直剪仪 直剪仪分类:分应变控制式和应力控制式两种 应变控制式直剪仪的试验方法简介:通过杠杆对土样施加垂直压力p后,由推动座匀速推进对下盒施加剪应力,使试样沿上下盒水平接触面产生剪切变形,直至剪破。通常取四个试样,分别在不同σ下进行剪切,求得相应的τf。绘制τf -σ曲线。 【讨论】直剪试验为何要取四个原状土样? 破坏强度τf的判定: 较密实的粘土及密砂土的τ-△l曲线具有明显峰值,如图中曲线1,其峰值即为破坏强度τf;对软粘土和松砂,其τ-△l曲线常不出现峰值,如图中曲线2,此时可按以剪切位移相对稳定值b点的剪应力作为抗剪强度τf。 按排水条件分: 快剪(不排水剪) 固结快剪(固结不排水剪) 慢剪(排水剪) 1、快剪(不排水剪) 这种试验方法要求在剪切过程中土的含水量不变,因此,无论加垂直压力或水平剪力,都必须迅速进行,不让孔隙水排出。 适用范围:加荷速率快,排水条件差,如斜坡的稳定性、厚度很大的饱和粘土地基等。

2、固结快剪(固结不排水剪) 试样在垂直压力下排水固结稳定后,迅速施加水平剪力,以保持土样的含水量在剪切前后基本不变。 试用范围:一般建筑物地基的稳定性,施工期间具有一定的固结作用。 3、慢剪(排水剪) 土样的上、下两面均为透水石,以利排水,土样在垂直压力作用下,待充分排水固结达稳定后,再缓慢施加水平剪力,使剪力作用也充分排水固结,直至土样破坏。 适用范围:加荷速率慢,排水条件好,施工期长,如透水性较好的低塑性土以及再软弱饱和土层上的高填方分层控制填筑等等。 直剪仪特点:构造简单,试样的制备和安装方便,且操作容易掌握,至今仍被工程单 位广泛采用,。 【讨论】直剪仪的不足: ①剪切破坏面固定为上下盒之间的水平面不符合实际情况,也即剪切面不一定是试样抗剪能力最弱的面; ②试验中不能严格控制排水条件,不能量测土样的孔隙水压力的变化; ③由于上下盒的错动,剪切面上的剪应力分布不均匀,而且受剪切面面积愈来愈小。 ④试验时上下盒之间的缝隙中易嵌入砂粒,使试验结果偏大。 ***以下为试验过程 1、取样要求:用环刀取,环刀面积不小于30cm 2,环刀高度不小于2cm ,同一土样至少切取4个试样。 2、试验方法 (1)快剪(q ):试样在垂直压力施加后立即进行快速剪切,试验全过程都不许有排水现象产生。 (2)固结快剪(cq ):试样在垂直压力下经过一定程度的排水固结后,再进行快速剪切。 (3)慢剪(s ):试样在垂直压力排水固结后慢慢的进行剪切,剪切过程中孔隙水可自由排出。 试验结果:一般情况下,快剪所得的?值最小,慢剪所得的?值最大,固结快剪居中。 3、指标计算 直接剪切试验的结果用总应力法按库仑公式?στtg c f +=,计算抗剪强度指标。

剪切力地计算方法-剪力强度公式

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部力,而只是给出了主要的受力和力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

压敏胶粘带剪切强度试验方法

中华人民共和国国家标准 UDC 678.4-41.061:620.176 GB 7754-87 压敏胶粘带剪切强度试验方法(胶面对背面) Test method for shear strength of pressure sensitve adhesive tapes(adhesive layer to baCk side of the tape) 1 适用范围 本标准适用于压敏胶粘带(胶面对背面)剪切强度的试验。 2 原理 本方法借助试验板,测定试样单位面积上所承受的最大剪切应力。 3 装置 3.1 试验机 3.1.1 应使试样的破坏载荷在试验机满标负荷的15%~85%范围内。试验机力值的示值误差不应大于1%。 3.1.2 试验机夹持器移动速度为300±30 mm/min。 3.2 辊压装置 辊压装置应符合GB 2792—81《压敏胶粘带180°剥离强度测定方法(金属对金属)》中3.1的要求。 3.3 量具 量具采用符合GB 1214—85《游标卡尺》读数值为0.02 mm的游标卡尺。 3.4 试验板、垫板 3.4.1 试验板形状和尺寸如图1所示。 3.4.2 垫板形状和尺寸如图2所示。 试验板、垫板可采用金属材料制造。其表面应光滑、平整,边缘无毛疵,并保持直角 4 试样 4.1 试样宽度应大于20 mm,长度约300 mm,应无明显变形和损伤。 4.2 试样数量不应少于5个。 5 试验条件 除另有规定外,应符合下列要求: 5.1 标准试验室温度为23±2 ℃;相对湿度为45%~55%。 5.2 胶粘带应除去包装材料在5.1条件下放置2h以上。 6 试样制备 6.1 在试验板、垫板上平整地贴合一层涂以有机硅防粘层的牛皮纸胶粘带。 6.2 用清洗剂和纱布把试验板的粘合面擦拭干净。 6.3 除去胶粘带最外的3—5层,用切割刀切取宽度为20 mm,以约300 mm/min的速度解开胶粘带长度约300 mm,取样间隔约200 mm。 6.4 按图3所示,把胶粘带分别贴合在两块试验板上,试样粘合长度为20 mm和100 mm,用辊压 装置来回辊压数次,然后再重选贴合一层胶粘带,切取多余的部分,将辊压装置以300 mm/min的速度来回辊压三次,取下垫板。

弯曲应力和强度.

第六章 弯曲应力和强度 1、 纯弯曲时的正应力 横力弯曲时, 0≠=Q dx dM 。 ,纯弯曲时,梁的横截面上只有弯曲正应力,没有弯曲剪应力。 根据上述实验观察到的纯弯曲的变形现象,经过判断、综合和推理,可作出如下假设: (1)梁的横截面在纯弯曲变形后仍保持为平面,并垂直于梁弯曲后的轴线。横截面只是绕其面内的某一轴线刚性地转了一个角度。这就是弯曲变形的平面假设。 (2)梁的纵向纤维间无挤压,只是发生了简单的轴向拉伸或压缩。 (2)物理关系 根据梁的纵向纤维间无挤压,而只是发生简单拉伸或压缩的假设。当横截面上的正应力不超过材料的比例极限P ρ时,可由虎克定律得到横截面上坐标为y 处各点的正应力为 y E E ρ εσ= = 该式表明,横截面上各点的正应力σ与点的坐标y 成正比,由于截面上 ρ E 为常数,说 明弯曲正应力沿截面高度按线性规律分布,如图所示。中性轴z 上各点的正应力均为零,中 性轴上部横截面的各点均为压应力,而下部各点则均为拉应力。 (3)静力关系 截面上的最大正应力为 z I My max max = σ 如引入符号 m a x y I W z z = 则截面上最大弯曲正应力可以表达为

z W M = max σ 式中,z W 称为截面图形的抗截面模量。它只与截面图形的几何性质有关,其量纲为[] 3 长度。矩形截面和圆截面的抗弯截面模量分别为: 高为h ,宽为b 的矩形截面: 62 1223 max bh h bh y I W z z === 直径为d 的圆截面: 322 6433 max d d d y I W z z ∏=∏== 至于各种型钢的抗弯截面模量,可从附录Ⅱ的型钢表中查找。 若梁的横截面对中性轴不对称,则其截面上的最大拉应力和最大压应力并不相等,例如 T 形截面。这时,应把1y 和2y 分别代入正应力公式,计算截面上的最大正应力。 最大拉应力为: z t I My 1 )(= σ 最大压应力为: z e I My 2 )(= σ 2、横力弯曲时的正应力 z I My = σ 对横力弯曲时的细长梁,可以用纯弯曲时梁横截面上的正应力计算公式计算梁的横截面上的弯曲正应力。

剪切计算及常用材料强度

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 []s F A ττ= ≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: []0.60.8[]τσ= 对脆性材料: []0.8 1.0[]τσ= (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm 。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 2s F F = 销钉横截面上的剪应力为: 332151023.9MPa<[] 2(2010)4s F A ττπ-?===?? 故销钉满足剪切强度要求。 例5-2 如图5-13所示冲床,F max =400KN ,冲头[σ]=400MPa ,冲剪钢板的极限剪应力τb =360 MPa 。试设计冲头的最小直径及钢板最大厚度。

ASTM~D3330剥离强度测试标准中文版

压敏胶带剥离强度测试标准 1. 范围 1.1这些测试方法主要用于压敏胶带剥离强度的测试。 1.1.1 方法 A:单面胶从标准钢板或其他类似表面的平板上180° 剥离的测试方法。 1.1.2 方法B:单面背衬胶粘性的测试方法。 1.1.3 方法C:双面胶与标准钢板粘性的测试方法。 1.1.4 方法D:单面胶或双面胶与离型纸的粘性的测试方法。 1.1.5 方法E:无基材胶带与标准钢板的粘性的测试方法。 1.1.6 方法F:单面胶与标准钢板90°剥离的测试方法。 1.2这些测试方法是给定压敏胶带粘性测试的统一评定方法,这评定可 以针对一卷,两卷之间或一批。 1.3不同的基材和(或)胶质都会影响测定结果,因此,这些方法不适 用不统一的胶质。 1.4这些测试方法不适用于一些相对硬质的基材、衬里或在低强度下高粘性背胶的测试。这些特性对测试结果有很大的影响,因而不能真正代表粘力。 1.5 测试数值用 IS或英寸—磅做为单位,在每个单位系统中数值的规定都是不同的,因此,每个系统必须使用自己的单位。 1.6这些标准没用强调在操作过程中可能会发生的所有安全隐患。标准 使用者有义务去建立一个安全健康的操纵规则。 4.测试方法概要 4.1 方法 A——单面胶180°剥离——用可控压力把胶带粘贴到标准测 试板上。测试时,以恒定的速度180°角从测试板上剥离。 4.2 方法B——单面背衬胶的粘性——胶带式样一粘贴到测试钢板上, 取另一式样粘贴到式样以的背面,然后按方法A进行测试。 4.3 方法C——双面胶 4.3.1 表面粘性——把双面胶的正面贴到不锈钢板上,衬里面朝外。 撕去衬纸,贴一层0.025mm(0.001in)的聚酯薄膜,接下来按方法A 进行

ASM剥离强度测试标准中文

压敏胶带剥离强度测试 标准 1. 范围 这些测试方法主要用于压敏胶带剥离强度的测试。 方法 A:单面胶从标准钢板或其他类似表面的平板上180°剥离的测试方法。 方法B:单面背衬胶粘性的测试方法。 方法C:双面胶与标准钢板粘性的测试方法。 方法D:单面胶或双面胶与离型纸的粘性的测试方法。 方法E:无基材胶带与标准钢板的粘性的测试方法。 方法F:单面胶与标准钢板90°剥离的测试方法。 这些测试方法是给定压敏胶带粘性测试的统一评定方法,这评 定可以针对一卷,两卷之间或一批。 不同的基材和(或)胶质都会影响测定结果,因此,这些方法 不适用不统一的胶质。 这些测试方法不适用于一些相对硬质的基材、衬里或在低强度 下高粘性背胶的测试。这些特性对测试结果有很大的影响,因而不 能真正代表粘力。 测试数值用 IS 或英寸—磅做为单位,在每个单位系统中数值 的规定都是不同的,因此,每个系统必须使用自己的单位。 这些标准没用强调在操作过程中可能会发生的所有安全隐患。 标准使用者有义务去建立一个安全健康的操纵规则。 4. 测试方法概要 方法 A——单面胶 180°剥离——用可控压力把胶带粘贴到标 准测试板上。测试时,以恒定的速度180°角从测试板上剥离。 方法 B——单面背衬胶的粘性——胶带式样一粘贴到测试钢板 上,取另一式样粘贴到式样以的背面,然后按方法A 进行测试。 方法C——双面胶 表面粘性——把双面胶的正面贴到不锈钢板上,衬里面朝外。撕去衬纸,贴一层()的聚酯薄膜,接下来按方法A 进行测 试。 衬里粘力——在双面胶的正面贴上的聚酯薄膜,然

后撕去衬纸贴到不锈钢板上。接下来的测试同方法A。 方法 D——测试离型纸胶带(单面或者双面)的粘性——把胶带粘贴到测试钢板上,衬里面朝外。同方法 A 中单面胶从钢板上剥离类似,用同 样的方法测试衬纸与胶粘剂的剥离强度。 方法E——无基材胶带的粘力测试 正面——把胶带贴到标准测试钢板上。除去衬纸,贴上厚度为的聚酯薄膜形成一个背衬薄膜胶带试样。按照方法 A 进行剥离力的测试。 衬里面——把胶带正面贴上厚度为的聚酯薄膜,撕去衬纸贴后贴到钢板上按方法A进行测试。 方法F——单面胶90°剥离——在可控的压力下把胶贴到标准钢板上,以恒定的速度从钢板上90°角进行剥离测试,计算剥离过程的力。 5. 意义和应用 这些测试方法是为保证质量使用的。给定的压敏胶在特定条件下测定其最大和最小剥离力,其数值用作验收标准。 方法A、B、C、E、F还可以用来测定给定胶带与其他一种或多种不同材料和材质的表面的相对粘力。有代表性的材料式样足以作为标准钢板试验使用。 方法A, B, C, E or F 不能被用来对比测试同类但不同粘着力的胶带。这是因为测试的剥离力并没有规范为一定压力范围。压力会因为单面背 衬的硬度和黏着力度而有所不同。两种不同胶带极少有相同此类属性。 方法 D 可以测试在特定剥离速度下剥离掉黏胶带的离型纸所需要的不同力值。 不同的剥离速度剥离力值不同。 这几种测试方法没有提供设计信息,原因在于通常粘着力和功能要求之间没有直接关联。 6. 设备 取样器—取样器应使用两边平行的单刃刀片,精确的分开距离,这样可以剪切出宽度精确的试样。两种剪切12 和24-mm[ 1-in.]剪切宽度都是 可用的。为了不引起试样边缘破损,取样器也可以选择适合的。注意1— 这些宽度是根据Guide D 5750/D5750M 的公制计量单位为参照的。 除了欧洲外,所谓的组合公制单位世界通用,如果测试的宽度不同,计算的方法也相应 的不同。 注意2—12mm取样刀规格是12mm宽,220mm长的铝制刀柄。。。。。。。。。。。。。。

胶黏剂拉伸剪切强度测试标准

胶黏剂拉伸剪切强度的测定方法 一实验原理 试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为MPa 二实验装置及试样 1)试验机。使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1 %试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。 试验机应保证试样夹持器的移动速度在(5 ± 1) mm/min内保持稳定。 2)量具。测量试样搭接面长度和宽度的量具精度不低于0.05 mm。 3)夹具。胶接试样的夹具应能保证胶接的试样符合要求。在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法。但不能用于仲裁试验。 4)试样标准试样的搭接长度是(土)mm金属片的厚度是土mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。 5)建议使用LY12-CZ铝合金、1Cr18Ni9Ti不锈钢、45碳钢、T2铜等金属材料。 6)常规试验,试样数量不应少于5个。仲裁试验试样数量不应少于10个。 对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度。两者中选择前者较好。 测试时金属片所受的应力不要超过其屈服强度 d s,金属片的厚度S可按式(11-12 )计算: 3=(L ? T)/ d S(11- 12 ) 式中:3――金属片厚度; L ――试样搭接长度; T——胶粘剂拉伸剪切强度; d S――金属材料屈服强度(MPa。

三、试样制备 1)试样可用不带槽或带槽的平板制备,也可单片制备。 2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。 3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。 4 )制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。 5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。 四、试验条件 试样的停放时间和试验环境应符合下列要求: 1)试样制备后到试验的最短时间为16 h,最长时间为30 d。 2)试验应在温度为(23± 2)C、相对湿度为(45~55)%的环境中进行。 3)对仅有温度要求的测试,测试前试样在试验温度下停放时间不应少于h ;对有温度、湿度要求的测试,测试前试样在试验温度下停放时间一般不应少于16 h。 五、实验步骤 1)用量具测量试样搭接面的长度和宽度,精确到0.05 mm。 2)把试样对称地夹在上下夹持器中,夹持处到搭接端的距离为(50 ± 1)mm 3)开动试验机,在(5 ± 1) mm/min内,以稳定速度加载。记录试样剪切破坏的最大负荷,记录胶接破坏的类型(内聚破坏、粘附破坏、金属破坏)。 六、试验结果 对金属搭接的胶粘剂拉伸剪切强度T按式(11-13 )计算,单位为MPa> T = F / (b ? l )(11- 13) 式中:F――试样剪切破坏的最大负荷;

剪切计算及常用材料强度

2、剪切强度计算 (1) 剪切强度条件 剪切强度条件就就是使构件得实际剪应力不超过材料得许用剪应力。 ????(5—6)这里[τ]为许用剪应力,单价为Pa或MPa. 由于剪应力并非均匀分布,式(5—2)、(5-6)算出得只就是剪切面上得平均剪应力,所以在使用实验得方式建立强度条件时,应使试件受力尽可能地接近实际联接件得情况,以确定试样失效时得极限载荷τ0,再除以安全系数n,得许用剪应力[τ]。 ?????(5—7) 各种材料得剪切许用应力应尽量从相关规范中查取。 一般来说,材料得剪切许用应力[τ]与材料得许用拉应力[σ]之间,存在如下关系: 对塑性材料: 对脆性材料: (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切与双剪切。下面通过几个简单得例题来说明.例5—1图5—12(a)所示电瓶车挂钩中得销钉材料为20号钢,[τ]=30MPa,直径d=20mm。挂钩及被连接板件得厚度分别为t=8mm与t1=12mm。牵引力F=15kN。试校核销钉得剪切强度. 图5-12电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m与n—n两个面向左错动。所以有两个剪切面,就是一个双剪切问题。由平衡方程容易求出: 销钉横截面上得剪应力为: 故销钉满足剪切强度要求. 例5—2如图5-13所示冲床,F max=400KN,冲头[σ]=400MPa,冲剪钢板得极限剪应力τb=360 MPa。试设计冲头得最小直径及钢板最大厚度。 图5-13冲床冲剪钢板及冲剪部分受力示意图 解:(1)按冲头压缩强度计算d

土的抗剪强度试验

实验一 土的抗剪强度试验 一、实验目的 本试验的目的在于测定土的内摩擦角及内聚力,以供计算承载力、评价地基稳定性及计算土侧压力等用。 二、土的抗剪强度 土的抗剪强度是指土体抵抗剪切破坏的极限能力,土内某一面上的抗剪强度就是抵抗该面两侧土体发生滑动的最大阻力,这阻力由土的内摩擦力和内聚力所组成,可近似地用库仑公式表示如下: 粘土性 c tg a f +=?στ (a kp ) 砂土 ?στtg a f = (a kp ) 式中f τ——土的抗剪强度 (a kp ) a σ——剪切面上土所承受的垂直压力,?——土的内摩擦角(度) c ——土的内聚力 (a kp ) 测定土的抗剪强度试验设备可分成两类:一类是具有能控制剪切面的仪器、其中广泛应用的是单剪切面应变控制式直接剪切仪和应力控制式直接剪切仪;另一类是三轴剪切仪。 就土样剪切过程中孔隙水变化情况的不同,采用直剪仪的试验方法有: (1)慢剪法 加垂直压力使土样压缩达到稳定,然后以小于0.02 mm /min 的剪切速度慢慢施加水平剪力,固结渗出的水能及时排出。 (2)快剪法 加垂直压力后,以0.8mm /min 的剪切速度迅速施加剪力,在3~5分钟内剪断为止,整个试验过程中土样的含水量基本保持不变。 (3)固结快剪 先加垂直压力使土样完全固结,然后迅速施加剪力至剪断为止,在剪切过程中土样的含水量基本保持不变。 选定剪切方法时,应尽量与土在工程中的情况相符。 本试验采用应变控制式直接剪切仪作固结快剪。 三、设备及仪器 1、ZJ-2型等应变直剪仪主要部分为:(1) 剪切推动座部分;(2)剪切盒部分;(3)

测力环部分;(4)竖向加荷部分.主要技术指标如表: 表 ZJ-型直剪仪主要技术指标 2、百分表(精度0.01mm)两只; 3、停表一只。 四、仪器操作说明 1、仪器试用前,先校准杠杆水平(调节件16平衡锤),杠杆水平时,杠杆下沿应平齐立柱件(14)的中间红线。 2、将限位板10钢珠在导轨上放好,放上件18滑动框,按土工试验要求,放入土样,透水石,盖上传压板,放好钢珠(12),调节件5传压螺钉与钢珠接触,使杠杆下沿抬至立柱的上红线左右(若试样未经预压,可略抬高些),杠杆下沿处于上下红线之间,出力都有在精度范围内。 3、调整量力环、百分表对零。若需测下沉量,则安装垂直百分表、并对零。 kp)重复试验或连续试验中,无需 4、按试验需施加垂直载荷,吊盘为一级荷重(50 a 每次将砝码、吊盘取下,加荷时可左旋手轮乙,使支起的杠杆慢慢放下,卸荷时右旋手轮乙,使传压螺钉脱离钢珠,容器部件能自由取放为止。 5、待土样达到固结要求时,拧出螺丝插销,以均匀速率转动手轮甲,进行剪切,若量力环中的百分表指针不再前进,或有显著后退,表示土样已剪坏,记下所需数据。 6、退回时,反方向旋转手轮甲,推动座上附有插销,以便每次试验结束后,拔出插销,手旋推进杆,可快速退至原位。 7、卸荷 8、试验结束后,应注意:(1)将砝码、吊盘取下,以保护刀口。(2)应将仪器全部擦拭干净,金属表面涂薄油脂,以防锈蚀,还要定期打开面板,在齿面、回转等处加适量黄油。 五、试验步骤

2020年剪切力的计算方法-剪力强度公式

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 第3章剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面m-面)发生相对错动(图3-1b)。 (n 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m-假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力 F(图3-1c)的作用。Q F称为剪力, Q 根据平衡方程∑=0 F Q=。 Y,可求得F 剪切破坏时,构件将沿剪切面(如图3-la所示的n m-面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。

3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2F F Q = 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中,假设应力在剪切面内是均匀分布的。若以A 表示销钉横截面面积,则应力为 A F Q =τ (3-1) τ与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到b F 时的切应力称剪切极限应力,记为b τ。对于上述剪切试验,剪切极限应力为

剪切法检测混凝土强度技术_朱跃武

剪切法检测混凝土强度技术 朱跃武,邱 平,石 永,朱丽颖 (中国建筑科学研究院深圳分院,广东深圳 518057) 【摘要】剪切法包括:原位单剪法、分段单剪切法和抗剪法(芯样双剪法)等,它是利用混凝土自身的剪切强度换算混凝土抗压强度,可以用于泵送混凝土、早龄期混凝土以及既有结构混凝土强度检测,是目前唯一一个不受构件形状、表面平整度、粗糙度影响、不需要对试件进行二次加工,既可以原位,也可以体外检测的技术,它可检测受损混凝土构件强度,可作为超声波探伤的一种补充,预计该方法是具有一定推广价值的检测新技术。 【关键词】原位单剪法;分段单剪法;抗剪法(芯样双剪);原位剪切仪;芯样双剪装置 【中图分类号】 TU755 【文献标志码】 A 【文章编号】 1671-3702(2016)12-0051-06 0 引 言 混凝土强度检测技术广泛用于混凝土施工质量控制、验收、鉴定、评估等方面。目前,我国常用的结构混凝土强度检测技术和强度检测方法有:无损检测和微破损检测。无损检测又分为回弹法、综合法、超声法等,破损检测又分为钻芯法、拔出法、贯入法等。无损检测操作方便,但检测结果误差较大。破损检测结果虽精度较高,但存在工序多、损伤大、操作不便等缺点,例如钻芯法,芯样的钻取、加工、抗压等过程,一般会导致试件的抗压强度低于实际强度 25 %,即存在较大负偏差。 剪切法是通过在结构上钻制直径44m m,长度 44 mm 或 80~100 mm 芯样试件,在原位或试验室内将芯样试件剪断,利用剪切强度换算混凝土抗压强度, 作者简介:朱跃武 男,高级工程师,研究方向为工程质量检测。因为剪切法是利用混凝土自身力学特征值剪切强度换算混凝土抗压强度,所以不受龄期、位置、表面状态的影响,因此精度较高;其次剪切法钻制的试件直径小,不会损伤构件中的钢筋;另外剪切法操作简单、快捷,避免了对试件的二次加工过程,提高了功效,减少了劳动强度。 1 剪切法基本原理 剪切法是在圆形试件的径向位置,施加一对大小相等,方向相反,位置相错的剪切力将试件剪断,通过仪器中的拉力或压力传感器采集剪断试件后的最大剪切峰值,剪断过程可在原位,也可以在实验室,将剪断试件的最大峰值(N)除以试件的截面积,求出试件的剪切强度,利用该强度作为特征值,将剪切强度与抗压强度进行拟合,建立拟合测强曲线。 混凝土质量的评估一般以混凝土抗压强度作为评 Testing Concrete Strength Technology with Shearing Method ZHU Yuewu,QIU Ping,SHI Yong,ZHU Liying (China Academy of Building Research Branch of Shenzhen,Shenzhen Guangdong 518057,China) Abstract:The shearing method including single cut in situ method,segments of single shearing and shear method(dual core samples cut method),it utilizes concrete in terms of their shear strength of concrete in compression can be used pumping concrete,early age concrete and concrete strength of existing structures,is currently the only one shape,the surface flatness,roughness of components from,does not require secondary processing specimens,both in situ and to be in vitro testing technology that can detect damage to the strength of concrete structures can be used as a complement to ultrasonic flaw detection,the process is expected to detect new technologies to promote a certain value. Keywords:in situ single shear method;segmented single shear method;shear method(double cut core sample);in situ shear apparatus;double shear device for core samples - 51 -

剪切力的计算方法

第3章剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件 m-面)发生相对错动(图3-1b)。的变形主要表现为沿着与外力作用线平行的剪切面(n 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m-假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F(图3-1c)的作用。Q F称为剪力,根据平衡方程∑=0 F Q=。 Y,可求得F 剪切破坏时,构件将沿剪切面(如图3-la所示的n m-面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算

剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q = 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中,假设应力在剪切面内是均匀分布的。若以A 表示销钉横截面面积,则应力为 A F Q =τ (3-1) τ与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到b F 时的切应力称剪切极限应力,记为b τ。对于上述剪切试验,剪切极限应力为 A F b b 2= τ

剪力、剪应力与剪切强度条件.

第二节剪力、剪应力与剪切强度条件 1.剪力 构件承受剪切作用时,如上节螺栓受力图,在两个外力作用线之间的各个截面上,也将产生内力。内力Q的计算仍采用截面法,即假想用截面m-n将螺栓切开、分成上下两部分,考虑上部(或下部)平衡,由平衡条件得: , 内力Q平行于横截面,称为剪力。 2.剪应力 计算出受剪面上的剪力Q后,还需研究该截面上的剪应力才能进行剪切强度计算。承受剪切变形的构件实际上受力和变形都是比较复杂的:在剪切的同时往往伴有挤压或弯曲;而一般受剪构件体积小,受力情况又比较复杂,故工程上常假定剪应力在受剪切截面上是均匀分布的,其方向与剪力Q相同,这种与截面平行的应力称为剪应力,用τ表示。按剪应力在受剪切截面上是均匀分布的假设,剪应力的计算公式为: ,(1-32) 式中,τ--剪应力,常用单位为MP a;A--受剪切的面积,mm2;Q-受剪面上的剪力。 3.剪切强度条件 为了使受剪切构件能安全可靠地工作,必需保证剪应力不超过材料的许用剪应力,其强度条件为: ,(1-33)

实验证明,对于一般钢材,材料的许用剪应力与许用拉应力有如下关系: 塑性材料;脆性材料。 利用强度条件,同样可以解决强度校核、截面选择和求许可载荷等三类问题。 下面给出一道例题,供读者参照。 例1-20.如图a所示,某一起重吊钩起吊重物 P=20000N,销钉的材料是16M n,其 。试求销钉的直径d是多少才能 保证安全起吊。 解析: 1.对销钉进行受力分析 根据此销钉受剪的实际工作情况可以看出有两个受剪面A-A与B-B(受双剪作用),见图b。 利用截面法求出剪力Q,可取左侧或右侧部分为研究对象: , 2.计算销钉直径d , 选取

相关文档
最新文档