基于 aspnet 的网站设计大学论文

基于 aspnet 的网站设计大学论文
基于 aspnet 的网站设计大学论文

宁波大红鹰学院

毕业设计(论文)外文翻译

所在学院:机电学院

班级:

姓名:

学号:

指导教师:

合作导师:

年月日

原文:

题目 Robot's mechanical and control systems

1、the general structure of the robot hand

A robot hand can be divided into two main subsystems: mechanical systems and control systems.

Mechanical systems can be divided into structural design, drive systems and sensor systems, we will further introduce in the third part. In the fourth section describes the control system at least by the control hardware and control software.

These two subsystems we will make some basic introduction to the problem, then use the Karlsruhe Dexterous Hand Ⅱ show you.

2、the mechanical system

Mechanical systems will describe how this looks, and by what hand components. It determines the structural design, the number of fingers and the use of materials. In addition, to determine the drive (such as motors), sensors (such as position encoder) position.

2.1 Structural Design

Structural design of flexible robot will play a large role, that it can capture and what type of object can be grasped object what to do. Design of a robot hand, it must identify three basic elements: the number of fingers, finger joints and the number of dimensions and placement of the finger.

To be able to work in the context of robot crawling and safe operation of the object, at least three fingers. To be able to be grasped object operations get six degrees of freedom (three translational and three rotational degrees of freedom), each finger must have three separate joints. In this way the first generation of Karlsruhe Dexterous hands are used too. However, in order to re-grasp an object without releasing it first, then pick up again, at least four fingers.

2.2 Drive System

Knuckle drive the opponent's flexibility also have a great impact, because it determines the potential strength, accuracy and speed of joint movement. Mechanical movement of the two areas which need to be considered: sources and movement direction of motion. In this regard, the literature describes several different methods, such as in [3] that by hydraulic cylinders or pneumatic cylinder in motion, or, as in most cases use the same motor. In most cases, the motion drive (such as a motor) is too large and not directly with the corresponding finger joints together, therefore, this movement must drive (usually located on the arm at the end of the connection point) transferred. There are several different ways to achieve this movement pattern, such as the use of keys, belt and the active axis. Using this method of indirect drive refers to the joint, reducing overall system more or less strength and accuracy, while the control

system more complicated, because the different joints of each finger is often mechanically linked together, but in control system software to actually control them independently. Due to these shortcomings, so the movement of small knuckle drive with a direct integration becomes very necessary.

2.3 Sensor Systems

Robot's sensor system can pass on the feedback information from the hardware control software. Fingers or grasp objects of a closed-loop control is necessary. Machines used in the hands of three types of sensors:

1) gripper status sensor to determine the location of the knuckles and fingers and finger force situation. Know the exact location will allow precise fingertip control becomes possible. In addition, knowing the role of the finger force on the grasped object, you can grab the fragile objects without breaking it.

2) fingers and crawl status sensors provide the contact between the grasped object state information. This tactile information in a timely manner during the extraction process can determine the location of the object point of first contact, but also to avoid incorrect capture, such as the edges of objects and cutting-edge catch. In addition to the already grasped object can detect whether the fall, so as to avoid falling objects due to damage.

3) the object state or attitude sensor used to determine the shape of the object within the fingers, position and direction. If you grab objects such information before the case is not clear, this sensor is very necessary. If this sensor can also act on the objects have been caught, then it can control the attitude object (position and orientation) in order to monitor whether the fall.

Depending on the drive system, the location of the finger joints in the geometrical information campaign drive or directly in the joints of measure. For example, if the motor and refers to a rigid coupling between the joints, then you can use a motor shaft angle encoder (before or in gear after gear) to measure the joint position. But if this is not enough or the coupling stiffness to obtain high accuracy, then this method can not be used.

2.4 Karlsruhe Dexterous Hand Ⅱ of mechanical systems

In order to obtain such re-grasp the other more complex operations, Karlsruhe Dexterous Hand Ⅱ (KDH Ⅱ) formed by the four fingers and each finger consists of three independent joints form. Design of the hand to be able to apply in industrial environments (Figure 3) and the control box, cylinder and screw nut and other objects. Therefore, we use the same four fingers, to make them symmetrical, non-anthropomorphic configuration, and each finger can be rotated 90 °.

View from the first generation design of the Karlsruhe Dexterous Hand experience gained, such as the belt caused by mechanical problems and

larger control problems caused by the friction factor, Karlsruhe Dexterous Hand Ⅱ with a number of different design decisions. Each finger joint 2 and joint 3 between the DC motor is integrated into the fingers in front of the body. This arrangement can be very hard ball with the motion transmission shaft gear to the finger joints. At the motor shaft angle encoder (in gear before) this time as a state of high precision position sensor.

3、Conclusion

To make accurate and flexible robot to complete the operation, a suitable mechanical system and control system is required. The introduction of standards is necessary to be considered, as the article said. Karlsruhe Dexterous Hand Ⅱ performance was very successful. This robot can capture a wide range of different shapes, size and weight of objects. Grasped object posture can be controlled reliably, even in the case of external interference. In addition, this system, a complex of fine operations (such as heavy grasping) can be achieved. Robots in the human line of special research areas, based on a concept called the fluid of a different (Figure 2), based on a small robot also has anthropomorphic and mechanization. This concept was introduced by the Karlsruhe Research Center IAI suggested. However, the main structure of the control software can be modified through appropriate and for such small robot use.

译文:

题目机械手的机械和控制系统

1、机器人手的一般结构

一个机器人手可以分成两大主要子系统:机械系统和控制系统。

机械系统又可分为结构设计、驱动系统和传感系统,我们将在第三部分作进一步介绍。在第四部分介绍的控制系统至少由控制硬件和控制软件组成。

我们将对这两大子系统的问题作一番基本介绍,然后用卡尔斯鲁厄灵巧手Ⅱ演示一下。

2、机械系统

机械系统将描述这个手看起来如何以及由什么元件组成。它决定结构设计、手指的数量及使用的材料。此外,还确定驱动器(如电动机)、传感器(如位置编码器)的位置。

2.1 结构设计

结构设计将对机械手的灵活度起很大的作用,即它能抓取何种类型的物体以及能对被抓物体进行何种操作。设计一个机器人手的时候,必须确定三个基本要素:手指的数量、手指的关节数量以及手指的尺寸和安置位置。

为了能够在机械手的工作范围内安全的抓取和操作物件,至少需要三根手指。为了能够对被抓物体的操作获得6个自由度(3个平移和3个旋转自由度),每个手指必须具备3个独立的关节。这种方法在第一代卡尔斯鲁厄灵巧手上被采用过。但是,为了能够重抓一个物件而无需将它先释放再拾取的话,至少需要4根手指。

要确定手指的尺寸和安置位置,可以采用两种方法:拟人化和非拟人化。然后将取决与被操作的物体以及选择何种期望的操作类型。拟人化的安置方式很容易从人手到机器人手转移抓取意图。但是每个手指不同的尺寸和不对称的安置位置将增加加工费用,并且是其控制系统变得更加复杂,因为每个手指都必须分别加以控制。对于相同手指的对称布置,常采用非拟人化方法。因为只需加工和构建单一的“手指模块”,因此可减少加工费用,同时也可是控制系统简化。

2.2 驱动系统

指关节的驱动器对手的灵活度也有很大的影响,因为它决定潜在的力量、精度及关节运动的速度。机械运动的两个方面需加以考虑:运动来源和运动方向。在这方面,文献里描述了有几种不同的方法,如文献[3]中说可由液压缸或气压缸产生运动,或者,正如大部分情况一样使用电动机。在多数情况下,运动驱动器(如电机)太大而不能直接与相应的指关节结合在一起,因此,这个运动必须由驱动器(一般位于机器臂最后的连接点处)转移过来。有几种不同的方法可实现这种运动方式,如使用键、传动带以及活动轴。使用这种间接驱动指关节的方法,或多或少地降低了整个系统的强度和精度,同时也使控制系统复杂化,因为每根手指的不同关节常常是机械地连在一起,但是在控制系统的软件里却要将它们分别独立控制。由于具有这些缺点,因此小型化的运动驱动器与指关节的直接融合就显得相当必要。

2.3 传感系统

机器手的传感系统可将反馈信息从硬件传给控制软件。对手指或被抓物体建立一个闭环控制是很必要的。在机器手中使用了3种类型的传感器:1). 手爪状态传感器确定指关节和指尖的位置以及手指上的作用力情况。知道了指尖的精确位置将使精确控制变得可能。另外,知道手指作用在被抓物体上的力,就可以抓取易碎物件而不会打破它。

2). 抓取状态传感器提供手指与被抓物体之间的接触状态信息。这种触觉信息可在抓取过程中及时确定与物体第一次接触的位置点,同时也可避免不正确的抓取,如抓到物体的边缘和尖端。另外还能察觉到已抓物体是否滑落,从而避免物体因跌落而损坏。

3). 物体状态或姿态传感器用于确定手指内物体的形状、位置和方向。如果在抓取物体之前并不清楚这些信息的情况下,这种传感器是非常必要的。如果此传感器还能作用于已抓物体上的话,它也能控制物体的姿态(位置和方向),从而监测是否滑落。

根据不同的驱动系统,有关指关节位置的几何信息可以在运动驱动器或直接在关节处出测量。例如,如在电动机和指关节之间有一刚性联轴器,那么就可以用电机轴上的一个角度编码器(在齿轮前或齿轮后)来测量关节的位置。但是如果此联轴器刚度不够或着要获得很高的精度的话,就不能用这种方法。

2.4卡尔斯鲁厄灵巧手Ⅱ的机械系统

为了能够获得如重抓等更加复杂的操作,卡尔斯鲁厄灵巧手Ⅱ(KDHⅡ)由4根手指组成,且每根手指由3个相互独立的关节组成。设计该手是为了能够在工业环境中应用(图3所示)和操纵箱、缸及螺钉螺帽等物体。因此,我们选用四个相同手指,将它们作对称、非拟人化配置,且每个手指都能旋转90°。

鉴于从第一代卡尔斯鲁厄灵巧手设计中得到的经验,比如因传动带而导致的机械问题以及较大摩擦因数导致的控制问题,卡尔斯鲁厄灵巧手Ⅱ采用了一些不同的设计决策。每根手指的关节2和关节3之间的直流电机被整合到手指前部肢

体中。这种布置可使用很硬的球轴齿轮将运动传递到手指的关节处。处在电机轴上的角度编码器(在齿轮前)此时可作为一个精度很高的位置状态传感器。

3、结论

为了使机械手能够完成灵活精确的操作,一合适的机械系统和控制系统是必需的。这些介绍的标准是必需加以考虑的,正如文中所说。卡尔斯鲁厄灵巧手Ⅱ表现的非常成功。这种机械手能够抓取很大范围的不同形状、尺寸和重量的物体。被抓物体的姿态也能可靠地加以控制,即使在外部干扰的情况下。此外,由于此系统,复杂的精细操作(如重抓)也能实现。在人行机器人的特殊研究领域,基于一个不同的概念叫做流体化(图2所示)的基础上,小型机械手也具有拟人化和机械化。这概念是由卡尔斯鲁厄研究中心的IAI所提出的。但是,这个控制软件的主要结构可经过相应修改而为此种小型机械手所用。

相关主题
相关文档
最新文档