激光共聚焦显微镜在材料领域应用的初探

激光共聚焦显微镜在材料领域应用的初探
激光共聚焦显微镜在材料领域应用的初探

激光共聚焦显微镜在材料领域应用初探

夏仲琦,周向群(2010-07-02 18:35:09)

一、前言

作为一种微观形态学工具,光学显微镜在工业测试方面的应用,目前主要大家比较熟悉的主要是以下方面:

首先,单独作为形态学工具,进行材料组织分析和外观缺陷检查,其典型的产品是金相显微镜和立体显微镜。

第二、光栅量测结合,进行部件的精密尺寸测量,其典型的产品是工具显微镜,测量显微镜。

近年来,随着计算机软件技术的发展,显微镜与图象处理系统的结合,产生了定量金相软件、工显测量软件、一般几何测量软件等等,使其不仅可以定性分析,更能在定量化上发挥重大作用。

但光学显微镜的局限在于,它是一种二维的形态学工具,其极限有效分辨率是0.35微米,该分辨率下的景深在1微米以下。因此如果要在高倍率下观察表面的三维形态,特别是纵向方向的形态,通常一定需要使用SEM而不是OM。SEM是这一方面非常成熟有效的标准工具,但有些样品使用SEM会碰到以下困难:

1、样品本身比较大,且不能做分割的器件组,虽然被观察的部分是微小的局部,但整个样品难

以放入SEM中。

2、非金属样品,且不适合做导电性处理。特别是一些对微小处理很敏感的样品。

3、无法测量多种尺寸数据,比如体积,面积,粗糙度等等。

针对这些问题,SEM厂家在不断推出更新的技术。同时,光学显微镜开发者也在探索如何使光学显微镜成为一种三维的微观形态学工具。

这方面目前比较有成效的技术,是激光扫描共焦显微镜(CF-LSM)。

共聚焦激光扫描显微镜的发展在国外,主要为日本。是从80年代末期开始的,目前在日本,共聚焦激光扫描显微镜已经是一种被广泛采用的技术,既用来观察样品表面亚微米程度(0.12微米)的三维形态和形貌,又可以测量多种微小的尺寸,诸如体积、面积、晶粒、膜厚、深度、长宽、线粗糙度、面粗糙度等等。

另外,它还有以下特点:

1、使用方便,与一般光学相似,且全部采用计算机直观控制。

2、基本无须制样,不损伤样品。不需要做导电处理,也容许大尺寸样品直接观察,完全不破坏样品。

3、几十秒到一两分钟即完成全部的扫描,成像,测量采样工作。该设备目前已经为吉林大学,哈

尔滨工业大学用于材料和机械加工方面的研究。

最近,我们和国内的一些大学,研究所进一步合作,对共聚焦激光扫描显微镜及在材料表面表征领域的应用做了初步的尝试,以下是简单的总结,希望得到行业内更多专家的指导。

这些小结受拍照人影响较大,所以以下内容全部是个人观点。

二、金属材料

1、金相组织篇

珠光体片层

马氏体

索氏体

屈氏体

珠光体和铁素体

粒状贝氏体

说明:拍摄显微组织总体感觉效果都很不错,并且拍摄此类试样也最为快速方便,但是高档的可见光显微镜亦可以拍摄出类似效果的照片。

2、合金、不锈钢篇

镍基合金

钛合金

铝合金1

铝合金2

镁合金

高温合金

铝硅合金

碳化钛(硬质合金原料)

激光共聚焦显微镜的原理与应用范围

激光共聚焦显微镜的原理与应用范围 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。把光学成像的分辨率提高了30%~40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代的研究工具。 1激光扫描共聚焦显微镜(LSCM)的原理 从基本原理上讲,共聚焦显微镜是一种现代化的光学显微镜,它对普通光镜从技术上作了以下几点改进: 1.1用激光做光源因为激光的单色性非常好,光源波束的波长相同,从根本上消除了色差。1.2采用共聚焦技术在物镜的焦平面上放置了一个当中带有小孔的挡板,将焦平面以外的杂散光挡住,消除了球差;并进一步消除了色差 1.3采用点扫描技术将样品分解成二维或三维空间上的无数点,用十分细小的激光束(点光源)逐点逐行扫描成像,再通过微机组合成一个整体平面的或立体的像。而传统的光镜是在场光源下一次成像的,标本上每一点的图像都会受到相邻点的衍射光和散射光的干扰。这两种图像的清晰度和精密度是无法相比的。 1.4用计算机采集和处理光信号,并利用光电倍增管放大信号图 在共聚焦显微镜中,计算机代替了人眼或照相机进行观察、摄像,得到的图像是数字化的,可以在电脑中进行处理,再一次提高图像的清晰度。而且利用了光电倍增管,可以将很微弱的信号放大,灵敏度大大提高。由于综合利用了以上技术。可以说LSCM是显微镜制作技术、光电技术、计算机技术的完美结合,是现代技术发展的必然产物。 2LSCM在生物医学研究中的应用 目前,一台配置完备的LSCM在功能上已经完全能够取代以往的任何一种光学显微镜,它相当于多种制作精良的常用光学显微镜的有机组合,如倒置光学显微镜、紫外线显微镜、荧光显微镜、暗视野显微镜、相差显微镜(PH)、微分干涉差显微镜(DIC)等,因此被称为万能显微镜,通过它所得到的精细图像可使其他的显微镜图像无比逊色。

德国Zeiss 激光共聚焦显微镜 快速操作手册

德国Zeiss 激光共聚焦显微镜快速操作手册德国 Zeiss 激光扫描共聚焦显微镜快速操作手册制作: 光学仪器(上海)制作:Zeiss 光学仪器(上海)国际贸易有限公司孙凯 2009 年 6 月目录:目录:1 系统的组成系统组成及光路示意图实物照片说明实物照片说明2 系统的使用2.1 开机顺序软件的快速使用说明2.2 软件的快速使用说明快速使用显微镜的2.3 显微镜的触摸屏控制2.4 关机顺序3 系统的维护1 系统的组成激光扫描共聚焦显微镜系统主要由:电动荧光显微镜、扫描检测单元、激光器、电脑工作站及各相关附件组成。激光扫描共聚焦显微镜系统主要由:电动荧光显微镜、扫描检测单元、激光器、电脑工作站及各相关附件组成。系统组成及光路示意图:系统组成及光路示意图: 组成及光路示意图电动荧光显微镜扫描检测单元激光器电脑工作站实物照片说明:实物照片说明: 电动荧光显微镜扫描检测单元CO2 培养系统控制器激光器电脑工作站2 系统的使用2.1 开机顺序 )打开稳压电源(绿色按钮)(1)打开稳压电源(绿色按钮) 等待 2 分钟(电压稳定)后,再开其它开关) “ ”(2)主开关 MAIN SWITC H “ON” “ ”电脑系统SYSTEMS/PC “ON” “ ”扫描硬件系统COMPONENTS “ON” )(3)打开电动显微镜开关打开荧光灯开关 (注:具有 5 档光强调节旋钮) ) 离子激光器主开关”(4)Ar 离子激光器主开关“ON”顺时针旋转钥匙至“—”预热等待约分钟,预热等待约 15 分钟,”将激光器扳钮由“Standby”扳至”状态,“Laser run”状态,即可正常使用 ) ,(5)打开电脑开关,进入操作系统注:键盘上也具有电脑开关 2.2 软件的快速使用说明(1)电脑开机进入操作系统界面后,双击桌面共聚焦软件 ZEN 图标(2)进入 ZEN 界面,弹出对话框: ”——“Start System”——初始化整个系统,用于激光扫描取图、分析等。“Image Processing”——不启动共聚焦扫描硬件,用于已”存图像数据的处理、分析。(3)软件界面: 功能界面切换:扫描取图( ) 图像处理( 、图像处

激光扫描共聚焦显微镜的原理和应用

激光扫描共聚焦显微镜的原理和应用 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM)采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图 二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地

进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 (一)细胞的三维重建 普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。(二)静态结构检测 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡 检测细胞凋亡不同时期细胞形态、细胞凋亡相关蛋白

激光测距的方法及原理

激光测距的方法及原理 激光测距技术与一般光学测距技术相比具有操作方便、系统简单及白天和夜晚都可以工作的优点。与雷达测距相比,激光测距具有良好的抗干扰性和很高的精度,而且激光具有良好的抵抗电磁波干扰的能力。其在探测距离较长时,激光测距的优越性更为明显。光测距技术是指利用射向目标的激光脉冲或连续波激光束测量目标距离的距离测量技术。较常用的激光测距方法有三角法、脉冲法和相位法激光测距。 1.三角法激光测距 激光位移传感器的测量方法称为激光三角反射法,激光测距仪的精度是一定的,同样的测距仪测10米与100米的精度是一样的。而激光三角反射法测量精度是跟量程相关的,量程越大,精度越低。 采用激光三角原理和回波分析原理进行非接触位置、位移测量的精密传感器。广泛应用于位置、位移、厚度、半径、形状、振动、距离等几何量的工业测量。半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 图1. 激光三角测量原理图 激光发射器通过镜头将可见红色激光射向物体表面,经物体反射的激光通过接受器镜头,被内部的CCD线性相机接受,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度即知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物之间的距离。 同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可设置独立检测窗口。常用在铁轨、产品厚度、平整度、尺寸等方面。

激光扫描共聚焦显微镜_图文讲解

激光扫描共聚焦显微镜 吴旭 2008.10.14 高级显微镜原理 正置、倒置显微镜 细胞遗传工作站 活细胞工作站 激光显微分离系统激光共聚焦显微镜 概述 激光扫描共聚焦显微镜 (Laser scanning confocalmicroscope ,LSCM )生物医学领域的主要应用 通过一种或者多种荧光探针标记后,可对固定的组织或活体样本进行亚细胞水平结构功能研究 高空间分辨率、非介入无损伤连续光学切片、三维图像、实时动态等细胞结构和功能的分析检测……

Conventional fluorescence microscope Confocal microscope 历史

1957年,Marvin Minsky提出了共聚焦显微镜技术的某些基本原理,获得了美国的专利。 1967年,Egger 和Petran 成功地应用共聚焦显微镜产生了一个光学横断面。 1977年,Sheppard 和Wilson 首次描述了光与被照明物体的原子之间的非线性关系和激光扫描器的拉曼光谱学。 1984年,Biorad 为公司推出了世界第一台商品化的共聚焦显微镜,型号为SOM-100,扫描方式为台阶式扫描。 1986年MRC-500型改进为光束扫描,用作生物荧光显微镜的共聚焦系统。 Confocal microscopy comes of ageJG White & WB Amos. Nature 328, 183 -184 (09 July 1987 Zeiss 、Leica 、Meridian 、Olympus

Zeiss LSM510 激光扫描共聚焦显微镜

激光雷达测距原理与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12)

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

Zeiss 激光扫描共聚焦显微镜 操作手册

Zeiss 激光扫描共聚焦显微镜操作手册 目录: 1 系统得组成 系统组成及光路示意图 实物照片说明 2 系统得使用 2、1 开机顺序 2、2 软件得快速使用说明 2、3 显微镜得触摸屏控制 2、4 关机顺序 3 系统得维护 1 系统得组成 激光扫描共聚焦显微镜系统主要由:电动荧光显微镜、扫描检测单元、激光器、电脑工作站及各相关附件组成。 系统组成及光路示意图: 电脑工作站 激光器 电动荧光显微镜扫描检测单元 实物照片说明: 电动荧光显微镜 扫描检测单元 CO2 培养系统控制器 激光器 电脑工作站 2 系统得使用 2、1 开机顺序 (1)打开稳压电源(绿色按钮) 等待2 分钟(电压稳定)后,再开其它开关 (2)主开关[ MAIN SWITCH ]“ON” 电脑系统[ SYSTEMS/PC ]“ON” 扫描硬件系统[ PONENTS ]“ON” (3)打开[ 电动显微镜开关] 打开[ 荧光灯开关] (注:具有5 档光强调节旋钮) (4)Ar 离子激光器主开关“ON” 顺时针旋转钥匙至“—” 预热等待约15分钟, 将激光器[ 扳钮] 由“Standby”扳至 “Laser run”状态,即可正常使用 (5)打开[ 电脑开关],进入操作系统

注:键盘上也具有[ 电脑开关] 2、2 软件得快速使用说明 (1)电脑开机进入操作系统界面后,双击桌面共聚焦软件ZEN 图标 (2)进入ZEN 界面,弹出对话框: “Start System”——初始化整个系统,用于激光扫描取图、 分析等。 “Image Processing”——不启动共聚焦扫描硬件,用于已 存图像数据得处理、分析。 (3)软件界面: 1 功能界面切换:扫描取图(Acquisition)、图像处理(Processing)、维护(Maintain) (注:Maintain仅供Zeiss专业工程师使用) 2 动作按钮; 3 工具组(多维扫描控制); 4 工具详细界面; 5 状态栏; 6 视窗切换按钮; 7 图像切换按钮;8 图像浏览/预扫描窗口;9 文档浏览/处理区域;10 视窗中图像处理模块 动作按钮: Single ——扫描单张图片、并在图像预览窗口显示。 Start ——开始扫描单张图片或一个实验流程(1组图片,如XYZ、XYT 等)。 Stop ——暂停/结束扫描。 New ——建立一个新图像扫描窗口/文档。 激光连接状况检查 眼睛观察/相机/共聚焦LSM 光路切换(ZEN软件界面右上角): Ocular ——通过观察筒用眼睛观察。(激光安全保护装置自动阻断激光、保护眼睛。) Camera ——光路切换至相机。 LSM ——共聚焦扫描成像光路。 显微镜设置: “Ocular”——> “Light Path”——> 点击物镜图标,选择物镜——> 样品聚焦。 透射光控制(Transmitted Light Control) 反射光光闸控制(Reflected Light Shutter) 荧光激发块选择(Reflector) 共聚焦LSM 扫描设置 点击“LSM”(ZEN软件界面右上角),系统切换至共聚焦扫描光路: 光路设置: Smart Setup ——自动预设光路 选取“荧光探针”、“颜色”、扫描方法, 应用“Apply”。 (注:Fastest 为最快速扫描,多条激光谱线同时扫 描。Best signal 为最佳信号扫描,多条激光谱线顺 序扫描。Best promise 为兼顾速度与信号得折

激光扫描共聚焦显微镜的原理和应用-17954讲解

激光扫描共聚焦显微镜的原理和应用 Tina(2007-10-23 09:40:17 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图

二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 一)细胞的三维重建

普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM 能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM 的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。 二)静态结构检测:原位鉴定细胞或组织内生物大分子、观察细胞及亚细胞形态结构 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡

激光传感器的工作原理及其应用

激光传感器的工作原理 及其应用 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

激光传感器由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。常见的是激光测距传感器,它通过记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。激光传感器的应用 利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。 激光测长 精密测量长度是精密机械制造工业和光学加工工业的关键技术之一。现代长度计量多是利用光波的干涉现象来进行的,其精度主要取决于光的单色性的好坏。激光是最理想的光源,它比以往最好的单色光源(氪-86灯)还纯10万倍。因此激光测长的量程大、精度高。 激光测距 它的原理与无线电雷达相同,将激光对准目标发射出去后,测量它的往返时间,再乘以光速即得到往返距离。由于激光具有高方向性、高单色性和高功率等优点,这些对于测远距离、判定目标方位、提高接收系统的信噪比、保证测量精度等都是很关键的,因此激光测距仪日益受到重视。在激光测距仪基础上发展起来的激光雷达不仅能测距,而且还可以测目标方位、运运速度和加速度等,已成功地用于人造卫星的测距和跟踪。 激光测振 它基于多普勒原理测量物体的振动速度。多普勒原理是指:若波源或接收波的观察者相对

德国Zeiss激光扫描共聚焦显微镜快速操作手册

德国Zeiss 激光扫描共聚焦显微镜 快速操作手册 制作制作::Zeiss 光学仪器光学仪器((上海上海))国际贸易有限公司 孙 凯 2009年6月

目录目录:: 1 系统的组成 系统组成及光路示意图 实物照片实物照片说明说明 2 系统的使用 2.1 开机顺序 2.2 软件的软件的快速快速快速使用使用使用说明说明 2.3 显微镜显微镜的的触摸屏控制 2.4 关机顺序 3 系统的维护

1 系统的组成 激光扫描共聚焦显微镜系统主要由激光扫描共聚焦显微镜系统主要由::电动荧光显微镜电动荧光显微镜、、扫描检测单元扫描检测单元、、激光器激光器、、电脑工作站及各相关附件组成电脑工作站及各相关附件组成。。 系统系统组成及光路组成及光路组成及光路示意图示意图示意图:: 电脑工作站 激光器 扫描检测单元 电动荧光显微镜

实物照片说明实物照片说明:: 电动荧光显微镜 扫描检测单元 CO 2培养系统控制器 激光器 电脑工作站

2 系统的使用 2.1 开机顺序 (1)打开稳压电源打开稳压电源((绿色按钮绿色按钮)) 等待2分钟(电压稳定)后,再开其它开关 (2)主开关 [ MAIN SWITCH ]“ON ” 电脑系统 [ SYSTEMS/PC ]“ON ” 扫描硬件系统 [ COMPONENTS ]“ON ” (3)打开 [ 电动显微镜开关 ] 打开 [ 荧光灯开关 ] (注:具有5档光强调节旋钮) (4)Ar 离子激光器离子激光器主开关主开关 “ON ” 顺时针旋转钥匙 至 “—” 预热预热等待约等待约15分钟分钟,, 将激光器 [ 扳钮 ] 由“Standby ”扳至 “Laser run ”状态状态,,即可正常使用 (5)打开 [ 电脑开关 ],进入操作系统 注:键盘上也具有 [ 电脑开关 ]

激光共聚焦显微镜技术1讲解

激光共聚焦显微镜技术 The techniques and applications of Confocal Laser Scanning Microscopy 激光共聚焦显微镜(LSCM)的发展简史 1957年,Marvin Minsky提出了共聚焦显微镜技术的某些基本原理,获得了美国的专利。1978年,阿姆斯特丹大学的G.J.Brakenhoff首次展示了改善了分辨率的共焦显微镜。 1985年,Wijnaendtsvan Resandt推出了第一台对荧光标记的材料进行光切的共焦显微镜 激光共聚焦显微镜(LSCM)的发展简史 ?80年代末,各家公司都推出了商品化的共焦显微镜,英国的Bio-Rad公司的MRC系列,德国Leica公司的TCS系列,Zeiss公司的LSM系列等。 ?近二十年来,从滤片型到光谱型,人们对共焦高分辨率,采集图像快速,技术的改进及应用开发不断进行,出现了很多新的技术。如双光子,FCS,FLIM ,STED等。 共焦显微镜的优点 人眼分辨率:0.2mm 光学显微镜分辨率:0.25μm 电子显微镜分辨率:0.2nm 共焦显微镜分辨率:μm 共焦显微镜的优点 ?电子显微镜的缺陷: 1.只能观察固定样品 2.样品制备过程(固定、包埋、切片)造成的假象 ?荧光显微镜的缺陷: 1.可以观察活细胞或组织,但细胞或组织内结构高度重叠。 2.荧光具有强散射性,造成图像实际清晰度的大大下降。 3.荧光漂白很快,使荧光图像的拍照有困难。 4.如果荧光滤片选配不当,多荧光标记样品图像的采集很困难,且很难抑制光谱交叉。 共焦显微镜的优点 ?共焦显微镜与传统显微镜的区别 1.抑制图像的模糊,获得清晰的图像 激光扫描共焦显微镜技术 ?共焦显微镜与传统显微镜的区别

激光共聚焦显微镜

激光共聚焦显微镜 1.激光器: 1.1系统激光器覆盖可见光及紫外光: 1.1.1蓝光固体激光器488nm20mW; 1.1.2绿光固体激光器552nm20mW; 1.1.3红光固体激光器638nm,20mW 1.1.4紫外固体激光器405nm50mW; 1.2激光器的开闭和电压调节完全由软件控制,无需另设单根激光器的开关。并具有激光寿命保护装置。 1.3具有激光强度回馈稳定电路设计,在动态记录中激光强度不会受环境的影响而改变。 2.共聚焦扫描系统: 2.1激光扫描系统直接与共聚焦机身连接 2.2检测器数量 ①三个荧光扫描检测器+一个透射光DIC(明场/相差/微分干涉)扫描检测器; ②扫描检测器包括2个光电倍增管(PMT)和一个磷砷化镓混合型检测器HyD。*③可以升级为五个以上独立连续光谱荧光检测器。 2.3连续分光设计系统(或其它光谱分离系统) *①三个通道,一个透射光DIC通道;二个荧光通道均为可做连续全光谱检测的荧光通道; ②光谱型荧光通道可自由更换荧光通道检测的波长范围,二个荧光通道和一个透射光DIC通道可同时进行快速扫描; ③多通道荧光图像即时叠加、荧光图像与透射光DIC图像即时叠加,精确对光谱进行分析; ④荧光通道具有高精度的共聚焦针孔,具有宽波谱范围内的色差校正功能,保证在多重荧光标记的同时检测过程中每个通道扫描光切平面和厚度的一致性和荧光精确定位。 2.4光谱扫描功能 ①高速多通道光谱分析和扫描,可获得透射光谱图像; ②光谱分辨率2nm,可连续以1nm波长调节; ③光谱扫描范围:400-800nm;光谱扫描步进:1nm; ④高速棱镜分光,线性光谱拆分,可区分光谱大量重叠的染料; ⑤光谱数据来源:用户指定/用户自建/厂家预设(可调节)。 2.5扫描速度及速度调节 *①扫描视野22mm下扫描速度7幅/秒(512×512pixels);70幅/秒(512×16pixels); ②双向扫描速度3600线/秒;扫描速度可精确调节。 2.6共聚焦针孔1个,全自动调节型,孔径50-300微米,调节步进0.5微米。

LeicaSP8激光扫描共聚焦显微镜快速操作手册2013-5-13

Leica激光扫描共聚焦显微镜 快速操作手册 制作:徕卡显微系统(上海)贸易有限公司 2013年3月

目录: 1 系统的组成 系统组成 (3) 光路示意图 (4) 2 系统的使用 2.1 开机顺序 (5) 2.2 软件界面简介 (7) 2.3 在显微镜下观察样品 (8) 2.4 采集共聚焦图像 (9) 2.5 XYZ三维扫描(Z-Stack) (11) 2.6 时间序列扫描(Timeseries or xyt Scan) (15) 2.7 波长扫描(xyλScan) (16) 2.8 HyD检测器 (17) 2.9 图像的保存及输出 (18) 2.10 关机 (20) 3 系统的维护 (21)

Leica SP8 系统组成图

1可见波长激光或白激光15UVIS, HIVIS或VISIR的光路镀膜 2声光调制器(AOTF)16扫描视场旋转镜(Abbe-Konig 旋转)* 3红外激光(IR)* 17在NND位置上的反射光检测器(RLD)* 4电光调制器18物镜(可提供各种选择)* 5紫外激光* 19在NND位置上的透射光检测器(TLD)* 6 AOTF或直接调制器(DMOD)20正方型针孔 7STED 激光* 21Fluorifier盘* 8Setlight监控二极管22X1出口接口* 9AOBS, 及其他选配件23外置检测器* 10用于FRAP的光束增强镜* 24色散棱镜 11红外激光耦合25分开的荧光光谱 12与CS2紫外光路耦合的紫外激光26最多5个光电倍增管或4个HyD检测器 13STED激光耦合*选配组件 14全视野扫描镜及串行高速扫描镜选件

激光测距应用

激光测距应用 应用领域: 电力、水利、通讯、环境、建筑、地质、警务、消防、爆破、航海、铁路、农业、林业、房地产、休闲/户外、反恐/军事 主要应用方向: 在钢铁厂和轧钢厂用于过程监控 料位、液位的测量 行车定位系统、装卸处理设备的定位系统 对人力所不能到达部位的测量,如罐装物、管道、集装箱等 车辆、船舶的定位监控系统 起重安装设备位置控制 不宜接近的物体测量 距离、位置、液位、料位、生产线料坯传送定位 行吊XY定位 电梯运行测量 大型工件装配定位 运动物体位置监控 大型货架库存管理 超大物体几何计量 靶距自动控制 电气化铁路接触网测量 铁路建筑物限界测量以及江河湖海等的水位测量。 测距发展路线: 民用,手持式 工业用,高可靠性 市场开拓方式: 大客户 代理商,借助代理商的客户群

具体应用示例: 1. 汽车防撞探测器 一般来说,大多数现有汽车碰撞预防系统的激光测距传感器使用激光光束以不接触方式用于识别汽车在前或者在后形势的目标汽车之间的距离,当汽车间距小于预定安全距离时,汽车防碰撞系统对汽车进行紧急刹车,或者对司机发出报警,或者综合目标汽车速度、车距、汽车制动距离、响应时间等对汽车行驶进行即时的判断和响应,可以大量的减少行车事故。在高速公路上使用,其优点更加明显。 2. 车流量监控及车轮廓描画 这种使用方式一般固定到高速或者重要路口的龙门架上,激光发射和接收垂直地面向下,对准一条车道的中间位置,当有车辆通行时,激光测距传感器能实时输出所测得的距离值的改变,进而描绘出所测车的轮廓。这种测量方式一般使用的激光束发散角度较小,测距范围一般小于30米即可,且要求激光测距速率比较高,一般要求达到几百赫兹就可以了。这对于在重要路段监控可以达到很好的效果,能够区分各种车型,对车身扫描的采样率可以达到10厘米一个点,且对车流限高,限长等都能实时输出结果。如图3。

激光共聚焦显微镜原理

激光共聚焦显微镜原理 激光共聚焦扫描显微技术(Confocal laser scanning microscopy)是一种高分辨率的显微成像技术。普通的荧光光学显微镜在对较厚的标本(例如细胞)进行观察时,来自观察点邻近区域的荧光会对结构的分辨率形成较大的干扰。共聚焦显微技术的关键点在于,每次只对空间上的一个点(焦点)进行成像,再通过计算机控制的一点一点的扫描形成标本的二维或者三维图象。在此过程中,来自焦点以外的光信号不会对图像形成干扰,从而大大提高了显微图象的清晰度和细节分辨能力。 图1. 共聚焦显微镜简化原理图 图1是一般共聚焦显微镜的工作原理示意图。用于激发荧光的激光束(Laser)透过入射小孔(light source pinhole)被二向色镜(Dichroic mirror)反射,通过显微物镜(Objective lens)汇聚后入射于待观察的标本(specimen)内部焦点(focal point)处。激光照射所产生的荧光(fluorescence light)和少量反射激光一起,被物镜重新收集后送往二向色镜。其中携带图像信息的荧光由于波长比较长,直接通过二向色镜并透过出射小孔(Detection pinhole)到达光电探测器(Detector)(通常是光电倍增管(PMT)或是雪崩光电二极管(APD)),变成电信号后送入计算机。而由于二向色镜的分光作用,残余的激光则被二向色镜反射,不会被探测到。

图2. 探测针孔的作用示意图 图2解释了出射小孔所起到的作用:只有焦平面上的点所发出的光才能透过出射小孔;焦平面以外的点所发出的光线在出射小孔平面是离焦的,绝大部分无法通过中心的小孔。因此,焦平面上的观察目标点呈现亮色,而非观察点则作为背景呈现黑色,反差增加,图像清晰。在成像过程中,出射小孔的位置始终与显微物镜的焦点(focal point)是一一对应的关系(共轭conjugate),因而被称为共聚焦(con-focal)显微技术。共聚焦显微技术是由美国科学家马文?闵斯基(Marvin Minsky)发明的;他于1957年就为该技术申请了专利。但是直到八十年代后期,由于激光研究的长足进步,才使得激光共聚焦扫描显微技术(CLSM)成为了一种成熟的技术。 图3. 激光共聚焦显微镜原理框图 当今的激光共聚焦显微镜已经发展为一种结合了激光技术,显微光学,自动控制和图像处理等多种尖端科研成果的高技术工具。是现代微观研究领域不可缺少的利器之一。Nikon秉承“信赖与创造”的一贯企业理念,正在为业界提供世界领先水平的共聚焦显微镜系统产品。

激光测距仪原理

激光测距仪激光测距基本原理 激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光往返A、B 一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。 相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω

在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具。

激光共聚焦显微镜操作规程

激光共聚焦显微镜操作规程 一、准备工作 a)打开计算机。依次打开激光器电源、钥匙开关。多线氩离子(458 nm, 488 nm, 514 nm) ON、氦氖绿(543 nm) ON、 氦氖红(633 nm) ON。打开汞灯电源开关。 b)登陆Windows XP系统。双击快捷方式:FV10-ASW 1.1。User ID: Administrator ; Passeword: Administrator。注 意区分大小写。 二、显微镜镜下观察 1.微分干涉差观察 a)使用手控面板选择物镜。插入起偏镜。插入微分干涉滑块。 b)点击FV10-ASW软件中的图标。标本聚焦. 2.荧光观察: c)使用手控面板选择物镜。 d)打开汞灯的机械快门,拉出DIC滑块,点击FV10-ASW软件中的图标 e)使用手控面板选择荧光滤色片。标本聚焦。 3.获取单张荧光图像 a)点击FV10-ASW软件中的按钮。 b)关闭汞灯快门,点击按钮,关闭卤素灯快门。 c)点击染料选择按钮,在染料列表中,双击用于观察的荧光染料。点击Apply按钮。 d)点击XY Repeat按钮开始扫描。调节图像。点击Stop按钮停止扫描。 e)选择AutoHV,,并选择扫描速度。 f)点击XY按钮取得一幅图像。 g)点击SeriesDone按钮,“2D View-LiveImage(x)”2D界面就出现。 h)保存该幅图像:右图像管理器中显示的图像图标,选择另存为保存该幅图像。(保存为“xml”类型是击FV10-ASW 软件专用的图像格式。) 4.获得单张(荧光+微分干涉)图像 a)点击FV10-ASW软件中的按钮,关闭汞灯快门。点击按钮,关闭卤素灯快门。 b)点击染料选择按钮,在染料列表中,双击用于观察的荧光染料。点击Apply按钮。 c)选择TD1。 d)点击XY Repeat按钮开始扫描。调节绿色(FITC)图像和微分干涉差的图像。点击Stop按钮停止扫描。 e)选择AutoHV, 并选择扫描速度。 f)点击XY按钮取得一幅图像。 g)点击SeriesDone按钮, “2D View-LiveImage(x)”2D界面就出现。 h)保存该幅图像。 5.获取3D图像 例: 绿色荧光(FITC)和红色荧光(Rhodamine)双标(这里介绍线序列扫描取图的过程.)

激光共聚焦技术讲解

模块九激光共聚焦技术 1. 实验目的 让学生了解激光共聚焦显微镜硬件组成,掌握激光共聚焦显微镜常用的基本操作及注意事项,能够熟练、准确地设计光路,重点掌握激光共聚焦显微镜测定细胞荧光信号动态变化的方法以及钙指示剂(fluo-3/AM)标记Ca2+的基本原理与方法,了解激光共聚焦显微镜在生物学上的应用。 2. 实验原理 激光扫描共聚焦显微镜是采用激光为光源,在传统荧光显微镜成像的基础上,附加了激光扫描装置和共轭聚焦装置,通过计算机控制来进行数字化图像采集和处理的系统。激光扫描共聚焦显微镜系统主要包括扫描模块、激光光源、荧光显微镜、数字信号处理器、计算机以及图像输出设备等。 激光扫描共聚焦显微镜基本结构 (1)扫描模块 扫描模块主要由针孔光栏(控制光学切片的厚度)、分光镜(按波长改变光线传播方向)、发射荧光分色器(选择一定波长范围的光进行检测)、检测器(光电倍增管)组成。 荧光样品中的混合荧光进入扫描器,经过检测针孔光栏、分光镜和分色器选择后,被分成各单色荧光,分别在不同的荧光通道进行检测并形成相应的共焦图象,同时在计算机屏幕上可以显示几个并列的单色荧光图象及其合成图象。 (2)荧光显微镜系统 激光扫描共聚焦显微镜所用的荧光显微镜大体与常规荧光显微镜相同,但又有其特点:需与扫描器连接,使激光能进入显微镜物镜照射样品,并使样品发射的荧光到达检测器;需有光路转换装置,即汞灯与激光转换,同时汞灯光线强度可调。 (3)常用激光器 激光扫描共聚焦显微镜使用的激光光源有单激光和多激光系统,常用的激光器包括以下三种类型: 多谱线Ar离子激光器(氩离子激光器):发射波长为458 nm、477 nm、488 nm、514 nm的蓝绿光;He-Ne激光器(氦氖激光器):发射波长为543 nm的绿光和633 nm的红光;UV激光器(紫外激光器):发射波长为351 nm、364 nm的紫外光。 (4)辅助设备 风冷、水冷冷却系统及稳压电源。 激光扫描共聚焦显微镜的基本工作原理:激光扫描共聚焦显微镜的基本工作原理是首先由激光器发射的一定波长的激发光,光线经放大后通过扫描器内的照明针孔光栏形成点光源,由物镜聚焦于样品的焦平面上,样品上相应的被照射点受激发而发射出的荧光,通过检测孔光栏后,到达检测器,并成像于计算机监视屏上。这样由焦平面上样品的的每一点的荧光图像组成了一幅完整的共焦图像,称为光切片。

激光扫描共聚焦显微镜及其应用讲解

激光扫描共聚焦显微镜及其应用 激光扫描共聚焦显微镜(Laserscanningconfocalmicroscope,LSCM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察和检测。目前,激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像 激光扫描共聚焦显微镜(Laser scanning confocal microscope, LSCM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察和检测。目前,激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像分析等实用研究手段,结合其他相关生物技术,在形态学、生理学、免疫学、遗传学等分子细胞生物学领域得到广泛应用。 激光共聚焦显微镜的原理 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。 主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。 通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具。 主要功能 1、图像处理功能 2、细胞生物学功能应用范围:(1)定量荧光测定;(2)定量共焦图像分析;(3)光学切片及三维重组;(4)动态观察;(5)荧光漂白恢复研究;(6)质膜流动性研究;(7)蛋白质相互作用研究;(8)激光显微外科及“光陷阱”研究;(9)光活化技术研究。 (编辑:文静)

相关文档
最新文档