数值计算方法 练习题

数值计算方法 练习题
数值计算方法 练习题

数值计算方法练习题

习题一

1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝对误差限、相对误差限。

(1);(2);(3);

(4);(5);(6);

(7);

2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字?

3. 设均为第1题所给数据,估计下列各近似数的误差限。

(1);(2);(3)

4. 计算,取,利用下列等价表达式计算,哪一个的结果最好?为什么?

(1);(2);(3)

(4)

5. 序列满足递推关系式

若(三位有效数字),计算时误差有多大?这个计算过程稳定吗?

6. 求方程的两个根,使其至少具有四位有效数字(要求利用

7. 利用等式变换使下列表达式的计算结果比较精确。

(1);(2)

(3);(4)

8. 设,求证:

(1)

(2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。

9.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

10.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

11.下列公式如何才比较准确?

(1)

(2)

12.近似数x*=0.0310,

13.计算取

四个选项:

习题二

1. 已知,求的二次值多项式。

2. 令求的一次插值多项式,并估计插值误差。

3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。

4. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。

5. 已知,求及的值。

6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。

7. 已知函数的如下函数值表,解答下列问题

(1)试列出相应的差分表;

(2)分别写出牛顿向前插值公式和牛顿向后插值公式。

8. 下表为概率积分的数据表,试问:

(1)时,积分

(2)为何值时,积分?

9. 利用在各点的数据(取五位有效数字),求方

程在0.3和0.4之间的根的近似值。

10. 依据表10中数据,求三次埃尔米特插值多项式。

表10

11. 依据数表11

12. 在上给出的等距节点函数表,用分段线性插值求的近似值,要

使截断误差不超过,问函数表的步长h应怎样选取?

13. 将区间分成n等分,求在上的分段三次埃尔米特插值多项式,并估计截断误差。

14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限

15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?

16、若,求和

17、若互异,求

的值,这里p≤n+1.

18、求证

19、已知的函数表

求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.

20、给定f(x)=cosx的函数表

用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差.

21.求一个次数不高于四次的多项式p(x),使它满足

22.令称为第二类Chebyshev多项式,试求的表达式,并证

明是[-1,1]上带权的正交多项式序列.

23、用最小二乘法求一个形如的经验公式,使它拟合下列数据,并计算均方误差.

24、填空题

(1) 满足条件的插值多项式p(x)=().

(2) ,则f[1,2,3,4]=(),f[1,2,3,4,5]=().

(3) 设为互异节点,为对应的四次插值基函数,则=(),

=().

(4) 设是区间[0,1]上权函数为ρ(x)=x的最高项系数为1的正交多项式序列,其中,则=(),=()

习题三

1. 给出数据如下表所示,试用最小二乘法求一次和二次拟合多项式。

2. 用最小二乘法求下列不相容方程组的近似解。

(1)(2)

3. 用最小二乘法求一个形如的经验公式,使它与下表中的数据相拟合,并计算均方误差。

4. 在某次实验中,需要观察水份的渗透速度,测得时间t与水的重量W的数据见下表。

设已知t与W之间的关系为,试用最小二乘法确定参数a、s。

5. 试构造点集上的离散正交多项式系

。并利用所求的离散正交多项式系,对第二题中的数据求二次拟合多项式。

6. 现测量长度和米、米,为了提高测量的可靠性,又测量到

米。试合理地决定长度和的值。

习题四

1. 确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式具有的代数精度。

(1);

(2);

(3);

(4);

2. 用辛甫生公式求积分的值,并估计误差。

3. 分别用复化梯形法和复化辛甫生法计算下列积分:

(1),8等分积分区间;(2),4等分积分区间;

(3),8等分积分区间;(4),6等分积分区间。

4. 用复化梯形公式求积分,问将积分区间[ a, b ]分成多少等分,才能保证误差不超过e(不计舍入误差)?

5. 导出下列三种矩形公式的项

(1);(2);

(3)

提示:利用泰勒公式。

6. 用龙贝格公式计算下列积分,要求相邻两次龙贝格值的差不超过。

(1);(2);

7. 根据等式

以及当n=3,6,12时的三个值,利用外推算法求的近似值。

8. 分别用下列方法计算积分,并比较结果精度(积分准确值

(1)复化梯形法,n = 16;(2)复化辛甫生法,n = 8;

(3)龙贝格算法,求至R2;(4)三点高斯—勒让德公式;

(5)五点高斯—勒让德公式。

9. 试确定下面求积分式的待定参数,使其代数精度尽可能高。

10. 已知f ( x )的值见表6-13。用三点公式求函数在x = 1.0,1.1,1.2处的一阶导数值,并估计误差。

11. 用二阶三点公式求函数在x = 1.2处的二阶导数值(利用数表6-13)。

12. 用中点公式的外推算法求在x = 2处的一阶导数值,取h = 0.8开始,加速二次。

13、分别用复合梯形公式及复合Simpson公式计算下列积分.

14、用Simpson公式求积分,并估计误差

15、确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.

(1)

(2)

(3)

16、计算积分,若用复合Simpson公式要使误差不超过,问区间

要分为多少等分?若改用复合梯形公式达到同样精确度,区间应分为多少等分?

17、用Romberg求积算法求积分,取.

18、用三点Gauss-Legendre求积公式计算积分.

19、用三点Gauss-Chebyshev求积公式计算积分.

习题五

1. 用列主元素法解下列方程组

(1);(2);(3)

对(1) (2)两题观察每步消元结果的系数矩阵有何特点,右下方矩阵是否对称,列主元在何处,消元过程是否符合上题结论。

2. 用追赶法解下列方程组

(1)

(2)

3. 求第1题及第2题中系数矩阵A的LU分解,并用此分解法解对应的线性方程组。

4. 给定,求及。

5、用Gauss消去法求解下列方程组.

6、用列主元消去法求解方程组并求出系数矩阵A的行列式detA的值.

7、用Doolittle分解法求习题5(1)方程组的解.

8、下述矩阵能否作Doolittle分解,若能分解,分解式是否唯一?

9、用追赶法解三对角方程组Ax=b,其中

10、用平方根法解方程组

11、设,证明

12、设计算A的行范数,列范数及F-范数和2范数.

13、设为上任一种范数,是非奇异的,定义,证明

14、求下面两个方程组的解,并利用矩阵的条件数估计.

,即

,即

15、是非题(若"是"在末尾()填+,"不是"填-):题目中

(1)若A对称正定,,则是上的一种向量范数()(2)定义是一种范数矩阵()

(3)定义是一种范数矩阵()

(4)只要,则A总可分解为A=LU,其中L为单位下三角阵,U为非奇上三角阵()

(5)只要,则总可用列主元消去法求得方程组的解()(6)若A对称正定,则A可分解为,其中L为对角元素为正的下三角阵()

(7)对任何都有()

(8)若A为正交矩阵,则()

习题六

1. 对下列方程组考察用雅可比迭代法与高斯—塞德尔迭代法是否收敛?若收敛,写出其迭代格式;若下收敛,能否将方程变形,使之用雅可比迭代法或高斯—塞德尔迭代法时收敛?

(1);(2);

(3);(4);

2. 试分析用雅可比迭代法和塞德尔迭代法连续迭代5次求线性方程组的解(取初值

3. 用雅可比迭代法解下列方程组。

(1)

(2)

取,并判别此迭代是否收敛?

4. 用塞德尔迭代法解方程组。

取,并判别此迭代是否收敛?

5.证明对于任意的矩阵A,序列收敛于零矩阵.

6.方程组

(1) 考查用Jacobi法和GS法解此方程组的收敛性.

(2) 写出用J法及GS法解此方程组的迭代公式并以计算到

为止.

7.设方程组

证明:解此方程的Jacobi迭代法与Gauss-Seidel迭代法同时收敛或发散.

8.下列两个方程组Ax=b,若分别用J法及GS法求解,是否收敛?

9.设,detA≠0,用,b表示解方程组Ax=f的J法及GS法收敛的充分必要条件.

10.用SOR方法解方程组(分别取ω=1.03,ω=1,ω=1.1)

精确解,要求当时迭代终止,并对每一个ω值确定迭代次数.

11.对上题求出SOR迭代法的最优松弛因子及渐近收敛速度,并求J法与GS法的渐近收敛速度.若要使那么J法GS法和SOR法各需迭代多少次?

12.填空题

(1)要使应满足().

(2) 已知方程组,则解此方程组的Jacobi迭代法是否收敛().它的渐近收敛速度R(B)=().

(3) 设方程组Ax=b,其中其J法的迭代矩阵是().GS法的迭代矩阵是().

(4) 用GS法解方程组,其中a为实数,方法收敛的充要条件是a满足().

(5) 给定方程组,a为实数.当a满足(),且0<ω<2时SOR迭代法收敛.

习题七

1. 判断下列方程有几个实根,并求出其隔根区间。

(1);(2)

(3);(4)

2. 方程在区间(3,4)中有一实根,若用二分法求此根,

使其误差不超过,问应将区间对分几次?并请用二分法求此根。

3. 下列方程各有一实根,判别能否直接将其写成迭代格式而后求解?如不能,将方程变形,给出一个收敛的迭代格式。

(1);(2)

4. 求方程的隔根区间,对方程的下列四种等价变形,判断各迭代格式的收敛性,选一种收敛最快的迭代格式,求出具有四位有效数字的近似根。

(1)(2)(3)

(4)

5. 考察方程有几个根,选择合适的迭代格式求这些根,允许误差

6. 用牛顿法求出的方程根的迭代结果见表2-6,试估计所求根的重数。

表2-6

7. 用二分法求方程的正根,使误差小于0.05.

8.求方程在=1.5附近的一个根,将方程改写成下列等价形式,并建立相应迭代公式.

(1) ,迭代公式.

(2) ,迭代公式.

(3),迭代公式.

试分析每种迭代公式的收敛性,并选取一种收敛最快的方法求具有4位有效数字的近似根.

9.设方程的迭代法

(1) 证明对,均有,其中为方程的根.

(2) 取=4,求此迭代法的近似根,使误差不超过,并列出各次迭代值.

(3) 此迭代法收敛阶是多少?证明你的结论.

10.给定函数,设对一切x,存在,而且.证明对

的任意常数,迭代法均收敛于方程的根.

11.用Steffensen方法计算第12题中(2)、(3)的近似根,精确到

12用Newton法求下列方程的根,计算准确到4位有效数字.

(1)在=2附近的根.

(2)在=1附近的根.

13.应用Newton法于方程,求立方根的迭代公式,并讨论其收敛性.

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值计算方法思考题

数值计算方法思考题 第一章 预篇 1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣? 3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。 4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系? 5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确: (1)一个问题的病态性如何,与求解它的算法有关系。 (2)无论问题是否病态,好的算法都会得到好的近似解。 (3)解对数据的微小变化高度敏感是病态的。 (4)高精度运算可以改善问题的病态性。 (5)用一个稳定的算法计算良态问题一定会得到好的近似值。 (6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。 (7)两个相近数相减必然会使有效数字损失。 (8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。 7.考虑二次代数方程的求解问题 ax 2 + bx + c = 0. 下面的公式是熟知的 a ac b b x 242-±-=. 与之等价地有 ac b b c x 422--= . 对于 a = 1, b = -100 000 000 , c = 1 应当如何选择算法? 8.指数函数有著名的级数展开 ++++=!3!213 2x x x e x 如果对x < 0用上述的级数近似计算指数函数的值,这样的算法结果是否会好?为什么? 9.考虑数列x i , i = 1,…, n , 它的统计平均值定义为 ∑==n i i x x x 1 1 它的标准差

1 12)(11??????--=∑-n i i x x n σ 数学上它等价于 1 12211???????????? ??--=∑=n i i x n x n σ 作为标准差的两种算法,你如何评价它们的得与失? 第二章 非线性方程求根 1.判断如下命题是否正确: (a) 非线性方程的解通常不是唯一的; (b) Newton 法的收敛阶高于割线法; (c) 任何方法的收敛阶都不可能高于Newton 法; (d) Newton 法总是比割线法更节省计算时间; (e) 如果函数的导数难于计算,则应当考虑选择割线法; (f) Newton 法是有可能不收敛; (g) 考虑简单迭代法x k +1 = g (x k ),其中x * = g (x *)。如果| g '(x *) | <1,则对任意的初 始值,上述迭代都收敛。 2.什么叫做一个迭代法是二阶收敛的?Newton 法收敛时,它的收敛阶是否总是二阶 的? 3.求解单变量非线性方程的单根,下面的3种方法,它们的收敛阶由高到低次序如何? (a) 二分法 (b) Newton 方法 (c) 割线方法 4.求解单变量非线性方程的解,Newton 法和割线方法,它们每步迭代分别需要计算几 次函数值和导数值? 5.求解某个单变量非线性方程,如果计算函数值和计算导数值的代价相当,Newton 法和割线方法它的优劣应如何评价? 第三章 解线性方程组的直接法 1.用高斯消去法为什么要选主元?哪些方程组可以不选主元? 2.高斯消去法与LU 分解有什么关系?用它们解线性方程组Ax = b 有何不同?A 要满足什么条件? 3.乔列斯基分解与LU 分解相比,有什么优点? 4.哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 5.什么样的线性方程组可用追赶法求解并能保证计算稳定? 6.何谓向量范数?给出三种常用的向量范数。 7.何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A = (a i j )的三种范数|| A ||1,|| A ||2,|| A ||∞,|| A ||1与|| A ||2哪个更容易计算?为什么? 8.什么是矩阵的条件数?如何判断线性方程组是病态的? 9.满足下面哪个条件可判定矩阵接近奇异? (1)矩阵行列式的值很小。 (2)矩阵的范数小。

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

数值计算方法试题

数值计算方法试题 重庆邮电大学数理学院 一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收 敛 2、迭代过程(k=1,2,…)收敛的充要条件是 2、已知y=f(x)的数据如下 ,,, x 0 2 3 3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,, 4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5) 3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过 。 4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,, ,

5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算 y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式 三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定 积分近似计算的抛物线公式 具有三次代数精度至少具有,,,次代 数精度. 7、插值型求积公式的求积 2、若,证明用梯形公式计算积分所 系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。 参考答案: T8、 ,为使A可分解为A=LL, 其中L一、填空题 1、局部平方收敛 2、< 1 3、 4 为对角线元素为正的下三角形,a的取值范围, 4、

5、三阶均差为0 6、n 7、b-a 9、若则矩阵A的谱半径(A)= ,,, 8、 9、 1 10、二阶方法 10、解常微分方程初值问题的梯形二、计算题 格式 1、是,,,阶方法 二、计算题(每小题15分,共60分) 修德博学求实创新 李华荣 1 重庆邮电大学数理学院 2、 右边: 3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度 4、y(0.2)?0.01903 A卷三、证明题

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

数值分析思考题[综合]

1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替? 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、 取 ,计算 ,不用计算而直接判断下列式子中哪 种计算效果最好?为什么? (1)(3 3-,(2)(2 7-,(3) (3 1 3+,(4) ) 6 11 ,(5)99-5. 应用梯形公式 ))()((2b f a f a b T +-= 计算积分1 0x I e dx -=?的近似值,在整个计算过程中按四舍五入规则取五位小数。计算中产生的误差的主要原因是截断误差还是舍入误差?为什么? 6. 下列各数都是经过四舍五入得到的近似值,试指出他们有几位有效数字,并给出其绝对误差限与相对误差限。 (1) 1021.1*1=x ;(2) 031.0*2=x ;(3) 40.560*3=x 。 7. 下列公式如何计算才比较准确? (1) 212 x e -,1x <<;(2) 12 1 N N dx x ++? ,1>>N ;(3) ,1x >>。 8. 序列{}n y 满足递推关系1101n n y y -=-,12,,n =,若0141.y =≈,计算到10y 时误差有多大?这个计算过程数值稳定吗? r e x x e x x ***** -== 141.≈) 6 1

1、怎样确定一个隔根区间?如何求解一个方程的全部实根?如:已知方程:1020()x f x e x =+-=在(),-∞+∞有实数根,用二分法求它的全部实根,要求误差满足210*k x x --<?若要求6*10k x x --<,需二分区 间多少次? 2、求解一个非线性方程的迭代法有哪些充分条件可以保障迭代序列收敛于方程的根?对方程3210()f x x x =--=,试构造两种不同的迭代法,且均收敛于方程在[]12,中的唯一根。 3、设0a >,应用牛顿法于方程30x a -= 确定常数,p q 和r 使得迭代法 2 125k k k k qa ra x px x x +=++, 012,, , k = 4、对于不动点方程()x x ?=,()x ?满足映内性和压缩性是存在不动点的充分条件,他们也是必要条件吗?试证明:(1)函数21()x x ?=-在闭区间[]02,上不是映内的,但在其上有不动点;(2)函数 1()ln()x x e ?=+在任何区间[],a b 上都是压缩的,但没有不动点。 5、设*x 是方程0()f x =的根,且0*'()f x ≠,''()f x 在*x 的某个邻域上连续。试证明:Newton 迭代序列{}k x 满足 12122**()''() lim () '()k k k k k x x f x x x f x -→∞---=-- 6. 设有方程1 12 sin x x =+。对于迭代法1112 ()sin()k k k x x x ?+==+,试证:对 任何15.b ≥,迭代函数()x ?在闭区间[0.5,b]上满足映内性和压缩性。用所给方

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1 -+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2 110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。 4、)(,),(),(1 x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当 2 ≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设1326)(2 4 7 +++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[1 n x x x f 和=?0 7 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0 )(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0 =x ?,则 ?= 1 4 )(dx x x ? 。 8、给定方程组?? ?=+-=-2 21121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ?? ? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设?? ?? ? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , x 0 0.5 1 1.5 2 2.5

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ,则=( ) A . B . C . D . 3. 通过点 的拉格朗日插值基函数满足( ) A . =0, B . =0, C .=1, D . =1, 4. 设求方程 的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 作第一次消元后得到的第3个方程( ). A . B . C . D . π()()2 1 121 1()(2)636f x dx f Af f ≈ ++? A 1613122 3()()0011,,,x y x y ()()01,l x l x ()00l x ()110l x =() 00l x ()111 l x =() 00l x ()111 l x =() 00l x ()111 l x =()0 f x =12312312 20 223332 x x x x x x x x ++=?? ++=??--=?232 x x -+=232 1.5 3.5 x x -+=2323 x x -+=

单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分) 1. 设, 则 , . 2. 一阶均差 3. 已知时,科茨系数 ,那么 4. 因为方程 在区间 上满 足 ,所以 在区间内有根。 5. 取步长,用欧拉法解初值问题 的计算公 式 . 填空题答案 230.5 1.5 x x -=-T X )4,3,2(-==1||||X 2||||X =()01,f x x = 3n =()()() 33301213,88C C C === () 3 3C =()420 x f x x =-+=[]1,2()0 f x =0.1h =()211y y y x y ?'=+?? ?=?

数值计算方法答案

数值计算方法习题一(2) 习题二(6) 习题三(15) 习题四(29) 习题五(37) 习题六(62) 习题七(70) 2009.9,9

习题一 1.设x >0相对误差为2%4x 的相对误差。 解:由自变量的误差对函数值引起误差的公式: (())(())'()()()() f x x f x f x x f x f x δδ?= ≈得 (1)()f x = 11 ()()*2%1% 22x x δδδ≈ ===; (2)4 ()f x x =时 44 4 ()()'()4()4*2%8%x x x x x x δδδ≈ === 2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。 (1)12.1x =;(2)12.10x =;(3)12.100x =。 解:由教材9P 关于1212.m n x a a a bb b =±型数的有效数字的结论,易得上面三个数的有效 数字位数分别为:3,4,5 3.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352) 哪个较精确? 解:(1)31.97+2.456+0.1352 ≈2 1 ((0.3197100.245610)0.1352)fl fl ?+?+ =2 (0.3443100.1352)fl ?+ =0.3457210? (2)31.97+(2.456+0.1352) 2 1 (0.319710(0.245610))fl fl ≈?+? = 21 (0.3197100.259110)fl ?+? =0.34562 10? 易见31.97+2.456+0.1352=0.3456122 10?,故(2)的计算结果较精确。 4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?

吉林大学 研究生 数值计算方法期末考试 样卷

1.已知 ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0 .8329,试用线性插值和抛物插值计算.ln2.1的值并估计误差 2.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值 3. 分别求满足习题1和习题2 中插值条件的Newton插值 (1) (2)

3()1(2)(2)(3) 310 N x x x x x x x =+--+--4. 给出函数f(x)的数表如下,求四次Newton 插值多项式,并由此计算f(0.596)的值 解:

5.已知函数y=sinx的数表如下,分别用前插和后插公式计算sin0.57891的值

6.求最小二乘拟合一次、二次和三次多项式,拟合如下数据并画出数据点以及拟合函数的图形。 (a) (b)

7.试分别确定用复化梯形、辛浦生和中矩形 求积公式计算积分2 14dx x +?所需的步长h ,使得精度达到5 10 -。 8.求A 、B 使求积公式 ?-+-++-≈1 1)] 21()21([)]1()1([)(f f B f f A dx x f 的 代数精度尽量高,并求其代数精度;利用 此公式求? =2 1 1dx x I (保留四位小数)。 9.已知 分别用拉格朗日插值法和牛顿插值法求

) (x f 的三次插值多项式)(3 x P ,并求)2(f 的近 似值(保留四位小数)。 10.已知 求)(x f 的二次拟合曲线)(2 x p ,并求)0(f 的近似值。 11.已知x sin 区间[0.4,0.8]的函数表

相关文档
最新文档