LED白光配粉技术

LED白光配粉技术
LED白光配粉技术

LED白光配粉技术

(1)在配粉之前先在CIE图上看看:寻找需要的荧光粉波长;当我们需要某个色温段或者某个X、Y坐标点的时候,这时需要知道自己所用蓝光芯片的波长。当知道我们使用的芯片波长(图中芯片波长460nm)并且知道要做的坐标点(x0.44 y0.41),这时候在CIE图上将芯片波长点与所要达到的坐标点x、y两点连一条直线并延长到上端的CIE波长点,这个时候这个波长延长点就是我们需要的荧光粉的发光波长了(目标荧光粉波长~585nm)。因此要达到这个色坐标就需要用到这个波长的荧光粉了。

2)当我们找到目标荧光粉的波长之后呢,就要寻找相应的荧光粉来做,但是只使用一种荧光粉的话显色较低,因此我们需要用两种以上荧光粉来调配如红粉+绿粉(红粉+绿粉根据光的叠加混色原理可得到需要的目标荧光粉波长),如何选择两种荧光粉?如何调配两种荧光粉的比例呢?这就涉及到需要做的色坐标的目标荧光粉波长和需要做的显色指数要求是多少了,红绿粉适当的比例可得到需要的荧光粉的波长,如果对Ra要求较高时可选用波长较长的红色荧光粉如650nm的红粉(光谱越宽显色指数越高)配合波长520nm左右的绿粉,做90以上显指就很容易了。(找需要的目标荧光粉波长时,根据小标题(1)的方法把已经做出来产品进行测试得到一个坐标点并与蓝光芯片波长做一条直线延伸到CIE上方的波长点;如果这个点的波长比目标荧光粉的波长长的话那么需要减小红色荧光粉的比例,如果比目标波长短的话要增加红色荧光粉的比例)

3)当找到合适的红绿粉并且也找到了目标荧光粉的比例后(红粉与绿粉的比例不要变),如果产品的坐标点仍然偏离需要的坐标点的时候,你可以在CIE上观察到此时产品的色坐标与你要的色坐标点、蓝光芯片的波长点、目标荧光粉的波长点基本在一条直线上,这时只需要调节硅胶与荧光粉的比例(红粉+绿粉),当色坐标低于目标坐标时增加荧光粉浓度,当色坐标高于目标坐标时减少荧光粉浓度。

小结:

1)调配荧光粉时其实就是在混合需要的黄粉的波长。

2)不要只想增加或减少单一的x或y值,x跟y的增长或减少是与你的荧光粉的波长也就是色坐标与蓝光芯片波长的斜率来决定的。

3)当荧光粉的波长确定后色坐标的增长和减小是与荧光粉浓度有关

4)红粉与绿粉的比例只是来确定需要的目标荧光粉波长也就是色坐标的斜率

5)斜率找对了,之后调节浓度就可以得到你要的坐标区域了

建议:

1.在显色指数要求不高的情况下Ra<85,建议用偏绿黄粉+红粉来做,优点是;光效较高易控制。

2.在显色指数要求较高Ra>90的情况下建议使用红粉加绿粉的方式来做,缺点是;光效较低

3.如显色指数要求较高Ra>90且又想光效高一点的话建议使用黄粉+绿粉+红粉的方式来做;缺点是;一致性低、不易控制

关于,荧光粉调配还有很多细节这里就不多说了,希望能帮到你。

荧光粉配比技术

你是是否想学习LED白光配粉技术,想要做好暖白,正白,冷白等白光? 那又如何选择芯片和荧光粉,荧光粉的配比又该怎么确认呢?点荧光粉的坐标/色温范围又该怎么定呢?我这是一个建设性的问题,相信很多这样的新手都想了解这个问题,那请看下面详细解答: 首先大家在配粉的过程中有点误区!在配粉之前先在CIE图上看看: (1)寻找需要的荧光粉波长;当我们需要某个色温段或者某个X、Y坐标点的时候,这时需要知道自己所用蓝光芯片的波长。当知道我们使用的芯片波长(图中芯片波长460nm)并且知道要做的坐标点(x0.44 y0.41),这时候在CIE图上将芯片波长点与所要达到的坐标点x、y两点连一条直线并延长到上端的CIE波长点,这个时候这个波长延长点就是我们需要的荧光粉的发光波长了(目标荧光粉波长~585nm)。因此要达到这个色坐标就需要用到这个波长的荧光粉了。

2)当我们找到目标荧光粉的波长之后呢,就要寻找相应的荧光粉来做,但是只使用一种荧光粉的话显色较低,因此我们需要用两种以上荧光粉来调配如红粉+绿粉(红粉+绿粉根据光的叠加混色原理可得到需要的目标荧光粉波长),如何选择两种荧光粉?如何调配两种荧光粉的比例呢?这就涉及到需要做的色坐标的目标荧光粉波长和需要做的显色指数要求是多少了,红绿粉适当的比例可得到需要的荧光粉的波长,如果对Ra要求较高时可选用波长较长的红色荧光粉如650nm的红粉(光谱越宽显色指数越高)配合波长

520nm左右的绿粉,做90以上显指就很容易了。(找需要的目标荧光粉波长时,根据小标题(1)的方法把已经做出来产品进行测试得到一个坐标点并与蓝光芯片波长做一条直线延伸到CIE上方的波长点;如果这个点的波长比目标荧光粉的波长长的话那么需要减小红色荧光粉的比例,如果比目标波长短的话要增加红色荧光粉的比例) 3)当找到合适的红绿粉并且也找到了目标荧光粉的比例后(红粉与绿粉的比例不要变),如果产品的坐标点仍然偏离需要的坐标点的时候,你可以在CIE上观察到此时产品的色坐标与你要的色坐标点、蓝光芯片的波长点、目标荧光粉的波长点基本在一条直线上,这时只需要调节硅胶与荧光粉的比例(红粉+绿粉),当色坐标低于目标坐标时增加荧光粉浓度,当色坐标高于目标坐标时减少荧光粉浓度。

LED荧光粉的分析测试方法分析

评估方案 一、荧光粉的分析测试方法 1、发射光谱和激发光谱的测定 把样粉装好后,放到样品室里,选定一个激发波长,作发射光谱扫描,读出发射光谱的发射主峰。给定发射光谱的发射主峰,作激发光谱扫描,读出激发光谱峰值波长。重新装样,测试3次,各次之间峰值波长的差值不超过±1nm,取算术平均值。 2、外量子效率的测定 把样粉装好后,放到样品室里,选定一个激发波长,激发荧光粉发光,利用光谱辐射分析仪测试得到荧光粉的发射光谱功率分布。计算荧光粉在该激发波长下的外量子效率。重新装样,测试3次,各次之间的相对差值不大于1%,取算术平均值。 3、相对亮度的测定 将试样和参比样品分别装满样品盘,用平面玻璃压平,使表面平整。用激发光源分别激发试样和参比样品。用光电探测器将试样和参比样品发出的光转换成光电流,并记录数值。试样和参比样品连续重复读数3次,各次之间相对差值不大于1%,取算术平均值。 4、色品坐标的测定 把试样装好放入样品室中。选定激发光源的发射波长,使其垂直激发样品室里的荧光粉样品。利用光谱辐射分析仪按一定的波长间隔(不大于5nm)测试得到荧光粉的发射光谱功率分布。按GB 3102.6-1993中“6.39 色品坐标”的公式求出荧光粉的色品坐标。 重复测试3次,各次之间x、y的差值均不超过±0.001,取算术平均值。 5、温度特性的测定 把试样装好放入样品室中,于室温下测试其激发、发射主峰波长,相对亮度及色品坐标等。每一试样按测定步骤平行测3次,各次之间激发、发射主峰波长的差值均不超过±1 nm,相对亮度的差值不超过±1%,色品坐标的差值不超过±0.001。启动加热装置,将被测的荧光粉试样加热并稳定在设定的温度值10min。稳定在预定的温度下,测定荧光粉试样的激发、发射主峰波长,相对亮度及色品坐标等。每一试样按测定步骤平行测3次,各次之间激发、发射主峰波长的差值均不超过±1nm,相对亮度的差值不超过±1%,色品坐标的差值不超过±0.001。冷却荧光粉试样至室温,测试其激发、发射主峰波长,相对亮度及色

LED白光荧光粉配比浅析

白光荧光粉配比浅析 萤光粉在LED制造过程起着至关重要的作用。使用绿色萤光粉配合黄色萤光粉和蓝色LED芯片,可获得高亮度白光LED;若使用绿色萤光粉配合蓝光LED芯片,可以直接获得绿光;若使用绿色萤光粉配合黄色萤光粉与蓝色LED芯片,可以获得冷色调白光;绿色萤光粉也可配合红色萤光粉与蓝色LED芯片而获得白光。白光LED 的显色指数(CRI)与蓝光芯片、YAG萤光粉、相关色温等有关,其中最重要的是YAG粉,不同色温区的LED,用的粉及蓝光芯片不一样。目标色温越低的管子用的粉发射峰值要越长,芯片的峰值也要长,低于4000K色温,还要另外加入发红光的粉,以弥补红成分的不足,达到提高显色指数的目的,在保持的芯片及粉不变的条件下,色温越高显色指数越高。 在生产中总结出来的经验来看,蓝光与YAG的最佳匹配关係如下: YAG发射峰值/nm 蓝光峰值波长/nm 530±5 450-455 540±5 455-460 550±5 460-465 555±5 465-470 这样做出的白光比较白,一般芯片厂家提供的都是主波长,峰值波长要用专门仪器测试,测出来的值一般都比主波长短5nm左右。萤光粉与芯片波长决定了色座标中一条直线,确定了萤光粉与芯片波长。只要增加减少配比都可以调节色座标在此一条直线上位置。

常见的LED芯片如下: 材料波长材料波长 InGaN 475-485nm InGaN 525nm InGaN 465-475nm InGaN 505nm InGaN 455-465nm InGaN 515nm InGaAlP 620-640nm GaAlAs/GaAs 660nm InGaAlP 610-620nm GaAlAs/GaAlAs 660nm InGaAlP 600-610nm GaP 700nm InGaAlP 592-600nm GaP 570-575nm InGaAlP 580-593nm GaP 565-570nm InGaAlP 567-577nm GaP 550-565nm InGaAlP 550-565nm PY---GaAlAs 585nm 由于萤光粉目前有无机类和有机类萤光粉。若不添加有机类萤光粉之情况,YAG萤光粉和AB胶之比例一般为1:6 ~ 10(重量比)。至于AB胶应为 6 ~10g之间的多少数量,必须视蓝色芯片的功率大小做调整。芯片功率大者,在萤光粉数量固定不变下,AB胶数量应较为少(例如1:6)。反之,功率小者AB胶数量应较为多(例如:1:10)。

白光LED如何调色和调比例

白光LED如何高速准确地调色和调比例 LED白光的发展速度和往后在生活上的影响(未来前景),一般业内人事都心知肚明,我就不哆嗦了,白光最有前途但最复杂,现就LED白光上第一道难关:如何快速的调准色温和调配比进行个人自述: 1,如何准确选荧光粉: 一般客户只会给一个出货格规,当然色温范围是一定要有的,其次就是IV(亮度)范围值,一般作出口的产品CRI(显色指数)值也有要求,当然国内比较讲究的客户也对CRI值有要求。现就举例说明:若一客户需要5050正白色温5500-6500,亮度5000mcd以上。CRI要求80以上。看到这规格,第一步:选晶片,晶片波段最好选450-452.5nm这段晶片在荧光粉的激发下亮度发挥得最高,第二步:选粉,把CIE图打开,将自已选要的色温范围诱在CIE图上,然后将colour temp(K)诱上去,看看是不是在能源区内,如此在CIE图上将你的晶片值那里引一条曲线,这条曲线及要穿过你所要的色温区又要贴近那条colour temp(K)线,如此曲线最终落在CIE右边黄色部分就是你要选的荧光粉的波段(大概而已),这些图我都有,如有需要的朋友可以QQ找我要,现正白一般都选560nm左右的荧光粉。 2:如何速调配比 要想快速调出你想要的色温,本人自已想了一些小法子,下面就一步一步地往下说:先根据以前配正白的经验5050,5%比例配一个(以前可以配出),3%和7%各配一个(以防晶片波段有偏差)。三种同时配好后,用同气压和时间点各点一到2颗材料。不烘烤马上进行测试,拿流明638测试机来说,测试前一定要效准机。将三种配比的数据测出来后诱在CIE图上,这三组数据联接起来一定能描出一条斜线,此时需要注意的是:是否斜线穿过你想要的色温区,是:那证明你的荧光粉选对了(数据点落不落在色区不要紧,只要斜线有穿过就够了),否:证明你粉选择失败,不过不要紧,还可以往下看,如果斜线落在色区上,证明你的粉的波长选低了,则需要选更高一点红或褐的粉,加在黄粉中混合用(混合粉粉粉比例需求救的也可以QQ我),若斜线落在色区以下,证明你的粉波长选高了。需要更低些的绿粉啊等。混合粉与A+B的比例经过上一次三种状态配比后,可以用一公试直截算出,我们想要的粉胶比例,此公式较复杂,有需要的朋友可以QQ索求。如此我们这次点胶只需点一种状态就可以了。点完一颗马上去测(这时你一定要记住你的气压和时间),测出的数据刚好落在你的色区,恭喜你完成一半的任务了(因为客户提供样板的话,你得去把材料烤干后对照颜色)。若不落,看看是偏上还是偏下。偏上则用棉签吸一部分胶出来,再测,直到你想要的色区,注意所测的数据一定要占在客户的规格值中间 (5500-6500,配得数据是6000最好),为什么这么做,就因为考虑到产线批量生产时给他们一定的幅动空间,提高良率。将上述材料取下后再去点胶机上进行实物对比点胶(调节气压时间)后面点的材料所调的胶量调到跟这个测数据的胶量一样,再看看气压时间在第一次记录的时间上少了多少?其实做久的人都知道,气压时间的多少与粉胶比例是有关系的。举例气压时间由0.500毫秒降到0.450毫秒相当于粉胶比例从5%降到4.8%.故都有一定的规律可循,如此就可提高配胶速度,当然还有很多种提速的方法就不一一在此献丑了。

荧光粉的配比 LED封装

浅谈LED荧光粉配胶程序 荧光粉在LED制造过程起着至关重要的作用。使用绿色荧光粉配合黄色荧光粉和蓝色LED芯片,可获得高亮度白光LED;若使用绿色荧光粉配合蓝光LED芯片,可以直接获得绿光;若使用绿色荧光粉配合黄色荧光粉与蓝色LED芯片,可以获得冷色调白光;绿色荧光粉也可配合红色荧光粉与蓝色LED芯片而获得白光。白光LED的显色指数(CRI)与蓝光芯片、Y AG荧光粉、相关色温等有关,其中最重要的是Y AG粉,不同色温区的LED,用的粉及蓝光芯片不一样。目标色温越低的管子用的粉发射峰值要越长,芯片的峰值也要长,低于4000K色温,还要另外加入发红光的粉,以弥补红成分的不足,达到提高显色指数的目的,在保持的芯片及粉不变的条件下,色温越高显色指数越高。 在生产中总结出来的经验来看,蓝光与Y AG的最佳匹配关系如下: Y AG发射峰值/nm 蓝光峰值波长/nm 530±5 450-455 540±5 455-460 550±5 460-465 555±5 465-470 这样做出的白光比较白,一般芯片厂家提供的都是主波长,峰值波长要用专门仪器测试,测出来的值一般都比主波长短5nm左右。荧光粉与芯片波长决定了色坐标中一条直线,确定了荧光粉与芯片波长。只要增加减少配比都可以调节色坐标在此一条直线上位置。 常见的LED晶粒如下: 材料波长材料波长 InGaN 475-485nm InGaN 525nm InGaN 465-475nm InGaN 505nm InGaN 455-465nm InGaN 515nm InGaAlP 620-640nm GaAlAs/GaAs 660nm InGaAlP 610-620nm GaAlAs/GaAlAs 660nm InGaAlP 600-610nm GaP 700nm InGaAlP 592-600nm GaP 570-575nm InGaAlP 580-593nm GaP 565-570nm InGaAlP 567-577nm GaP 550-565nm InGaAlP 550-565nm PY---GaAlAs 585nm 由于荧光粉目前有无机类和有机类荧光粉。若不添加有机类荧光粉之情况,Y AG荧光粉和AB胶之比例一般为1:6 ~ 10(重量比)。至于AB胶应为 6 ~10g之间的多少数量,必须视蓝色芯片的功率大小做调整。芯片功率大者,在荧光粉数量固定不变下,AB胶数量应较为少(例如1:6)。反之,功率小者AB胶数量应较为多(例如:1:10)。 LED荧光粉配胶程序是LED工艺中,相当基础的一环,我们来看看是怎么做的。 准备工作: 1、开启并检查所有的LED生产使用设备(烤箱、精密电子称、真空箱) 2、用丙酮清洗配胶所用的小烧杯。 3、准备所需的量产规格书或相应的联络单,及相应型号胶水等并确认其都在有效的使用期内。

led荧光粉

LED荧光粉是制造白色LED的必须材料。 首先,我们要了解白色LED的发光原理。白色LED芯片是不存在的。我们见到的白色LED 一般是蓝光芯片激发黄色荧光粉发出白色光的。好比:蓝色涂料和黄色涂料混在一起就变成了白色。 其次,不同波长的LED蓝光芯片需要配合不同波长的黄色荧光粉能够最大化的发出白光。 所以说,LED荧光粉是制造白色LED必须的东西(白色LED也有另外几种发光方式,但是市面上白色LED95%都是蓝光芯片激发黄色荧光粉的原理)。 黑体(热力学) 任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。黑体辐射情况只与其温度有关,与组成材料无关. 基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。用公式表达如下: Er =α*Eo Er——物体在单位面积和单位时间内发射出来的辐射能; α——该物体对辐射能的吸收系数; Eo——等价于黑体在相同温度下发射的能量,它是常数。 普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为 B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1 B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 ) λ—辐射波长(μm) T—黑体绝对温度(K、T=t+273k) C—光速(2.998×108 m·s-1 ) h—普朗克常数,6.626×10-34 J·S K—波尔兹曼常数(Bolfzmann),1.380×10-23 J·K-1 基本物理常数 由图2.2可以看出: ①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关,这就是维恩位移定律(Wien) λm T=2.898×103 (μm·K) λm —最大黑体谱辐射亮度处的波长(μm) T—黑体的绝对温度(K) 根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。这就是太阳辐射中大致的最大谱辐射亮度处。 当T~300K,λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处。 ②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是

LED荧光粉配胶的过程

LED荧光粉配胶的过程 准备工作: 1、开启并检查所有的LED生产使用设备(烤箱、精密电子称、真空箱) 2、用丙酮清洗配胶所用的小烧杯。 3、准备所需的量产规格书或相应的联络单,及相应型号胶水等并确认其都在有效的使用期内。 开始配胶: 1、配胶顺序说明:增亮剂+A胶按比例混合(可以按订单一次性配好),最后再加入荧光粉+ B胶按比例混合物体(须搅拌均匀)。在后再抽真空。 2、根据《量产规格书》或工程通知单中荧光粉配比和生产数量,计算出各种物料所需的重量。 3、调整精密电子称四个底座使电子称呈水平状态。 4、将干净的小烧杯放置于精密的电子磅秤上,归零后,根据量产规格书中荧光粉的配比,分别称取所需重量的荧光粉和A、B胶。 5、将配好的荧光粉手动搅拌20分钟至30分钟不等,直到荧光粉分布均匀为止。 6、把配好的荧光胶抽真空至看不见气泡的状态,取出后,放在室温下用干净的玻璃盖上使用,使用前需按同一方向缓慢搅拌2分钟到3分钟,搅拌速度每转2秒至3秒。 LED喷射式点胶製程的优点 [来源:LED显示屏专家][作者:LED显示屏][日期:10-01-18][热度:71] 目前,针筒式点胶正被喷射式点胶所替代。所谓的喷射(jetting),属於新技术,它採用喷嘴式替代针筒,解决了许多难题。Jetting喷嘴可在需要进行底部填充的器件上方进行点胶,无需到达其顶面以下的位置。Jetting 喷嘴在整个电路板上方沿x、y方向运动,而无需垂直运动。

与点胶针筒不同,喷嘴并不是形成连续的底充胶液流,而代之以每秒鐘喷射200点以上经过精确测量的胶点。随著喷嘴的水準移动,胶点可形成各种需要的线型与图案,如实线、虚线等以及其他各种不同图形。每次喷射都经精确控制,一次喷射所形成的胶点直径最小可达0.33mm,这对於涂敷贴片胶等需要对面积进地精确控制的场合非常重要。 喷射技术是把胶水以很快的速度从喷嘴喷出,依靠胶水的动量使胶水脱离喷嘴。每次喷射都会喷射出一定数量的胶水。目前普遍的喷射频率是100赫兹到200赫兹,但是很快就会达到1000hz。喷射点胶与针头点胶有几处区别。当胶水从喷嘴喷出时,接触基板之前胶水已和喷嘴分离。每一个胶点喷射到基板可以形成点、线和图形。在点胶位置的移动过程中,点胶头没有Z轴方向的运动,这样节约了相当多的时间。针头在点胶时,机械手在X、Y、Z轴运动,胶水从针头流出来接触基板,靠重力及基板表面张力把胶水从针头分离。在每个点胶完成之后,沿Z轴有一个明显的运动,然后移动到下个点胶位置。 LED 市场同样从喷胶技术中受益。喷胶工艺可以喷涂包括硅胶、UV 固化的掺磷导电胶等范围宽广的光学材料,能够在高速点胶中进行位置精确的点胶和胶量控制。喷胶的精确度可以改善价值很高的大功率LED 器件的成品率。应用于白光的製作,萤光粉及混合胶水的点胶,使其一致性得到良好的改善。 中国LED封装技术与国外的差异 [来源:LED显示屏专家][作者:LED显示屏][日期:10-03-12][热度:31] LED产业链总体分为上、中、下游,分别是LED外延芯片、LED封装及LED应用。作为LED产业链中承上启下的LED封装,在整个产业链中起着无可比拟的重要作用。基于LED器件的各类应用产品大量使用LED器件,如大型LED显示屏、液晶显示器的LED背光源、LED照明灯具、LED交通灯和汽车灯等,LED器件在应用产品总成本上占了40%至70%,且LED应用产品的各项性能往往70%以上由LED器件的性能决定。

荧光粉的配比LED封装精编版

荧光粉的配比L E D封 装精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

浅谈LED荧光粉配胶程序 荧光粉在LED制造过程起着至关重要的作用。使用绿色荧光粉配合黄色荧光粉和蓝色LED芯片,可获得高亮度白光LED;若使用绿色荧光粉配合蓝光LED芯片,可以直接获得绿光;若使用绿色荧光粉配合黄色荧光粉与蓝色LED芯片,可以获得冷色调白光;绿色荧光粉也可配合红色荧光粉与蓝色LED芯片而获得白光。白光LED的显色指数(CRI)与蓝光芯片、YAG荧光粉、相关色温等有关,其中最重要的是YAG粉,不同色温区的LED,用的粉及蓝光芯片不一样。目标色温越低的管子用的粉发射峰值要越长,芯片的峰值也要长,低于4000K色温,还要另外加入发红光的粉,以弥补红成分的不足,达到提高显色指数的目的,在保持的芯片及粉不变的条件下,色温越高显色指数越高。 在生产中总结出来的经验来看,蓝光与YAG的最佳匹配关系如下: YAG发射峰值/nm 蓝光峰值波长/nm 530±5 450-455 540±5 455-460 550±5 460-465 555±5 465-470 这样做出的白光比较白,一般芯片厂家提供的都是主波长,峰值波长要用专门仪器测试,测出来的值一般都比主波长短5nm左右。荧光粉与芯片波长决定了色坐标中一条直线,确定了荧光粉与芯片波长。只要增加减少配比都可以调节色坐标在此一条直线上位置。 常见的LED晶粒如下: 材料波长材料波长 InGaN 475-485nm InGaN 525nm InGaN 465-475nm InGaN 505nm InGaN 455-465nm InGaN 515nm InGaAlP 620-640nm GaAlAs/GaAs 660nm InGaAlP 610-620nm GaAlAs/GaAlAs 660nm InGaAlP 600-610nm GaP 700nm InGaAlP 592-600nm GaP 570-575nm InGaAlP 580-593nm GaP 565-570nm InGaAlP 567-577nm GaP 550-565nm InGaAlP 550-565nm PY---GaAlAs 585nm 由于荧光粉目前有无机类和有机类荧光粉。若不添加有机类荧光粉之情况,YAG荧光粉和AB胶之比例一般为1:6 ~ 10(重量比)。至于AB胶应为 6 ~10g之间的多少数量,必须视蓝色芯片的功率大小做调整。芯片功率大者,在荧光粉数量固定不变下,AB胶数量应较为少(例如1:6)。反之,功率小者AB胶数量应较为多(例如:1:10)。 LED荧光粉配胶程序是LED工艺中,相当基础的一环,我们来看看是怎么做的。 准备工作: 1、开启并检查所有的LED生产使用设备(烤箱、精密电子称、真空箱) 2、用丙酮清洗配胶所用的小烧杯。 3、准备所需的量产规格书或相应的联络单,及相应型号胶水等并确认其都在有效的使用期内。 开始配胶:

LED用荧光粉的制备

化学化工学院文献检索课程作业 成员陆海威王仁桢王卓历袁波班级化工1004 学号16 23 25 29 教师王彩凤

LED用荧光粉的制备 一、背景 回顾人类的照明发展史可以概括为:最早于50 多万年前使用燃 烧的木头照明;1772 年发明了煤气照明;1876 年发明了电灯泡照明;1938 年实现了荧光灯照明。每次照明领域的革命都使人类文明进入一个崭新的阶段。目前,世界上接近四分之一的电能用于生活照明,而且传统的照明光源的效率最高也仅有85~100lm/ W[1 - 3 ] 。如果照明消耗节约5 % ,那么全世界每年就可以节约至少50 亿美元的照 明投入。在当前全球能源危机和气候变暖的双重压力下,迫切需要提高生活照明用电的光电转换效率以及减少温室气体排放量,同时,科学技术的飞速发展也对照明光源的色纯度等提出了更高的要求,这就迫使照明光源进行技术革命。 半导体白光二极管照明(L ED) 就是在这样的大背景下诞生的,与 光效高、稳定性好、使用寿命长、颜色可调、显色指数更高(接近于

自然白光) 等优点,被称为新一代照明光源。目前,白光L ED 主要通过以下三个途径产生白光:一是利用三基色L ED 合成白光;二是利用蓝光L ED 激发黄色荧光粉合成白光;三是利用近紫外发射L ED 激发三基色荧光粉合成白光。三种方案各有优缺点,现在世界各国商业化、大规模生产的主要是后两种(可概括为荧光转换型白光L ED) ,而就荧光转换型方案来说,荧光粉是制约该类型白光L ED 器件性能提高的一个关键因素。目前白光L ED 用荧光粉特别是稀土荧光粉的研究十分活跃, 如蓝粉BaMgAl10O17 : Eu2 + 、绿粉ZnS : (Cu2 + ,Al3 + ) ,红粉Y2O2 S : Eu3 + 等。这些传统的荧光粉在紫外区激发的光效低,且绿粉和红粉均为硫化物体系,该体系的化学稳定性差,在制备和使用过程中容易对环境造成污染,使得白光L ED 的发光效率和使用寿命不易提高。因此研究和开发蓝色光激发的红色或者黄色发射荧光粉是十分重要的。所以我们小组就在前辈们的基础上就这个课题做进一步的探讨。 二、检索过程 1. 中文资源检索策略及检索结果 篇名:LED用荧光粉的制备 并且关键词:LED 并且关键词:荧光粉 并且关键词:制备

白光LED荧光粉概述

白光LED荧光粉概述 1 引言 在全球气候变化和能源紧张的背景下,节约能源、保护环境成为当今时代的主流,其中寻求高节能的照明光源已受到高度重视. 白光发光二极管(Light EmittingDiode, LED)具有发光效率高、能耗低(仅为白炽灯的1/8)、寿命长(可达10 万h)、无污染等诸多优点,已广泛应用于城市景观照明、液晶显示背光源、室内外普通照明等多种照明领域[1–20],被认为是替代白炽灯、荧光灯的新一代绿色照明光源. 目前,获取白光LED 的主要有效途径有以下几种:(1)蓝色LED 芯片与可被蓝光有效激发的发黄光荧光粉结合组成白光LED[23.27]. 荧光粉吸收一部分蓝光,受激发发射黄光,发射的黄光与剩余的蓝光混合,通过调控二者强度比,从而获得各种色温的白光; (2)采用发紫外光的LED 芯片和可被紫外光有效激发而发射红、绿、蓝三基色的荧光粉,产生多色混合组成白光LED. 制备白光发光二极管大多离不开稀土荧光粉,主要有黄色荧光粉、红色荧光粉及三基色荧光粉等,因此获得化学性质稳定和性能优异的荧光粉成为实现白光LED 的关键. 本文综述了白光LED 用荧光粉的发光机理、制备方法、各种体系荧光粉及荧光粉的性能表征做了较为详细的阐述. 2 荧光粉的发光机理 发光是物质吸收的外部能量转换成光辐射的过程,是热辐射之外的一种辐射,持续时间超过光的振动周期(10?11 s). 发光材料大多数都是晶体材料,其发光性能与合成过程中化合物(发光材料基质)晶格中产生的结构缺陷和杂质有关,这种局部不完整破坏了晶体晶格的规则排列,从而形成了缺陷能级. 在外部光源激发作用下,电子就会在各种能级间跃迁,从而产生发光现象.目前,获取白光LED 的主要途径为光转换型,即利用波长为430~470 nm的InGaN 基蓝光LED 和可被蓝光有效激发的掺杂稀土的钇铝石榴石Y3Al5O12(YAG)荧光材料结合组成白光发光材料. 研究[28]发现,当YAG 的晶体结构中均匀掺入稀土元素时,其发光性能会有很大的提高. 以Ce 为例,由于其发光是由电子的5d?4f 跃迁引起的,跃迁能量受晶体环境影响较大,掺入Ce 不但可显著提高YAG 荧光材料的光转化效率和光通量,降低材料色温,还可通过调节发射光谱位置,适应不同白光色度要求. 刘如熹等[29]证实了这一理论,当YAG 中掺入稀土元素Ce 时,激发的黄光强度随Ce 含量增大而增加;Gd 取代Y 后,发射主峰有红移趋势;Ga 取代Al 时,发射主峰有蓝移趋势. 因而通过调节掺杂元素的种类及含量就可使发射主峰在一定波长内发生变化,见图1(a). 然而,此类荧光粉还存在着显色性较差、发光效率不够高、难以满足低色温照明要

白光LED基础知识

白光LED基础知识 1.LED发光原理 1.1用蓝色LED激励黄色荧光粉。即将黄色荧光粉敷涂在蓝色LED表面,蓝色LED本身光通量并不高,但在激励黄色荧光粉后产生的白光光通量是原蓝光光通量的8倍。这种工艺是目前制造白光LED的主要方法。 1.2将红、绿、蓝三种LED集成在一起,通过调整其发光比例产生白光(即三基色远离),一般比例为红:绿:蓝=3:6:1。这种方式造价高,不适合于商品化发展。 2.LED分类 2.1LED按照功率区分,可以分为大功率和小功率。0.5W以下一般称为小功率,0.5W以上称为大功率。 3.LED内部结构 3.1大功率LED除两个电极外,都还自带有专门的散热结构和外部连接,用于提高散热效果。而小功率LED由于体积及成本原因,几乎都没有专门的散热结构,仅靠两个电极和外部连接,散热能力差。因此大功率灯具都应选择大功率LED,而小功率灯具(如LED灯泡、LED灯管)在对灯具散热进行优化设计后,可以采用小功率LED。 以下为最普通的一种大功率LED结构图。 a)大功率LED的一种结构

c)内部结构说明 以下为philips lumileds公司Rebel型大功率LED结构图 4.白光LED基本技术指标 4.1 光通量 光通量是指单位时间内光源发出的光能总和。光通量的单位为“流明”,符号为lm,光通量通常用Φ来表示。光通量越大,说明光源发出的光越多,按照通俗的理解,可以认为该光源亮度越高。光源的光通量可以通过积分球和光度计测量。

色温是表示光源光色的尺度,单位为K。当某一光源所发出的光的光谱分布与不反光、不透光完全吸收光的黑体在某一温度时辐射出的光谱分布相同时,我们就把绝对黑体的温度称之为这一光源的色温。 一些常用光源的色温为:钨丝灯为2760-2900K;荧光灯为3000K;中午阳光为5400K;蓝天为12000-18000K;高压钠灯为2000-2500K。 LED光源可以通过改变荧光粉的配比来控制色温输出,一般范围为2000K-10000K。 人对不同色温的光源感官反应也不同,一般按色温可将光源分为三种: 比如,家庭多使用暖白光,而办公环境多使用正白光或冷白光。色温可以通过光谱分析仪测量。 4.3 显色指数和显色性 光源照射到物体后反应物体本身颜色的能力称为显色性,显色性高低用显色指数来表示。显色指数的符号为Ra,最大为100(自然光),显色指数越高,说明光源的显色性越好。常见光源的显色指数如下: 白炽灯97 日光色荧光灯80-94 白色荧光灯75-85 暖白色荧光灯80-90 卤钨灯95-99 高压汞灯22-51 高压钠灯20-30 金属卤化物灯60-65 LED灯65-90 显色指数可以通过光谱分析仪测量。 4.4 正向电压 LED的本质就是二极管,它的电压即指二极管的管压降,用Vf表示,单位为V。为了得到更高的光效,在同样光通量(亮度)前提下,LED的电压越低越好。一般白色、纯绿色、蓝色LED的电压为3V左右,红色、黄色LED的电压为2V左右。

LED白光配粉技术

LED白光配粉技术 (1)在配粉之前先在CIE图上看看:寻找需要的荧光粉波长;当我们需要某个色温段或者某个X、Y坐标点的时候,这时需要知道自己所用蓝光芯片的波长。当知道我们使用的芯片波长(图中芯片波长460nm)并且知道要做的坐标点(x0.44 y0.41),这时候在CIE图上将芯片波长点与所要达到的坐标点x、y两点连一条直线并延长到上端的CIE波长点,这个时候这个波长延长点就是我们需要的荧光粉的发光波长了(目标荧光粉波长~585nm)。因此要达到这个色坐标就需要用到这个波长的荧光粉了。 2)当我们找到目标荧光粉的波长之后呢,就要寻找相应的荧光粉来做,但是只使用一种荧光粉的话显色较低,因此我们需要用两种以上荧光粉来调配如红粉+绿粉(红粉+绿粉根据光的叠加混色原理可得到需要的目标荧光粉波长),如何选择两种荧光粉?如何调配两种荧光粉的比例呢?这就涉及到需要做的色坐标的目标荧光粉波长和需要做的显色指数要求是多少了,红绿粉适当的比例可得到需要的荧光粉的波长,如果对Ra要求较高时可选用波长较长的红色荧光粉如650nm的红粉(光谱越宽显色指数越高)配合波长520nm左右的绿粉,做90以上显指就很容易了。(找需要的目标荧光粉波长时,根据小标题(1)的方法把已经做出来产品进行测试得到一个坐标点并与蓝光芯片波长做一条直线延伸到CIE上方的波长点;如果这个点的波长比目标荧光粉的波长长的话那么需要减小红色荧光粉的比例,如果比目标波长短的话要增加红色荧光粉的比例) 3)当找到合适的红绿粉并且也找到了目标荧光粉的比例后(红粉与绿粉的比例不要变),如果产品的坐标点仍然偏离需要的坐标点的时候,你可以在CIE上观察到此时产品的色坐标与你要的色坐标点、蓝光芯片的波长点、目标荧光粉的波长点基本在一条直线上,这时只需要调节硅胶与荧光粉的比例(红粉+绿粉),当色坐标低于目标坐标时增加荧光粉浓度,当色坐标高于目标坐标时减少荧光粉浓度。

荧光粉配比怎么算

荧光粉配比怎么算 YAG铝酸盐荧光粉, 优点:亮度高,发射峰宽,成本低,应用广泛,黄粉效果较好 缺点:激发波段窄,光谱中缺乏红光的成分,显色指数不高,很难超过85 硅酸盐荧光粉 优点:激发波段宽,绿粉和橙粉较好 缺点:发射峰窄,对湿度较敏感,缺乏好的红粉,不太耐高温,不适合做大功率LED,适合用在小功率LED 氮化物荧光粉 优点:激发波段宽,温度稳定性好,非常稳定红粉、绿粉较好 缺点:制造成本较高,发射峰较窄 硫化物荧光粉 优点:激发波段宽红粉、绿粉较好, 缺点:湿度敏感,制造过程中会产生污染,对人有害(属于淘汰的产品但市场有卖假粉的人为了赚取更多的利润,有可以用这种成份的荧光粉来充当好荧光粉) 荧光粉对白光LED光衰的影响 实现白光LED的途径有多种,目前使用最为普遍最成熟的一种是通过在蓝光晶片上涂抹一层黄色荧光粉,使蓝光和黄光混合成白光,所以荧光粉的材质对白光LED的衰减影响很大。市场最主流的荧光粉是YAG钇铝石榴石荧光粉、硅酸盐荧光粉、氮化物荧光粉,与蓝光LED芯片相比荧光粉有加速老化白光LED的作用,而且不同厂商的荧光粉对光衰的影响程度也不相同,这与荧光粉的原材料成分关系密切。选用最好材质的白光荧光粉,使做出的白光LED相比同行在衰减控制方面有了很大的提高。 荧光粉在LED制造过程起着至关重要的作用。使用绿色荧光粉配合黄色荧光粉和蓝色LED芯片,可获得高亮度白光LED;若使用绿色荧光粉配合蓝光LED芯片,可以直接获得绿光;若使用绿色荧光粉配合黄 色荧光粉与蓝色LED芯片,可以获得冷色调白光;绿色荧光粉也可配合红色荧光粉与蓝色LED芯片而获得白光。白光LED的显色指数(CRI)与蓝光芯片、YAG荧光粉、相关色温等有关,其中最重要的是YAG 粉,不同色温区的LED,用的粉及蓝光芯片不一样。目标色温越低的管子用的粉发射峰值要越长,芯片的峰值也要长,低于4000K色温,还要另外加入发红光的粉,以弥补红成分的不足,达到提高显色指数的目的,在保持的芯片及粉不变的条件下,色温越高显色指数越高。 在生产中总结出来的经验来看,蓝光与YAG的最佳匹配关系如下: YAG发射峰值/nm 蓝光峰值波长/nm 530±5 450-455 540±5 455-460 550±5 460-465 555±5 465-470 这样做出的白光比较白,一般芯片厂家提供的都是主波长,峰值波长要用专门仪器测试,测出来的值一般都比主波长短5nm左右。荧光粉与芯片波长决定了色坐标中一条直线,确定了荧光粉与芯片波长。只要增加减少配比都可以调节色坐标在此一条直线上位置。

led荧光粉配胶解决方案

LOGO
配方自动纠错监控新技术
深圳市乔川科技有限公司 SZ QiaoChun Technology co., LTD 2012


荧光粉配方在LED封装中的重要性 传统配料制程弊端 乔川自动纠错监控系统特性 乔川自动纠错监控技术参数 系列产品图

(一)荧光粉配方在LED封装中的重要性
v配方重要性
§ 荧光粉配方是LED白光封装中必不可 少的,且直接控制着产品的各个光参 数,如:色温,显色指数,色容差, 色坐标。 § 配方的微小差异将直接导致产品的参 数不达标,良率下降,甚至导致产品 报废。

(二)与传统配料制程弊端
v传统工艺弊端
§ 传统工艺都是采用人工加电子称操作,无人监 控,随意性比较大,精度由操作员主观意识改 变而影响精确度,难保证不出差错,加错料, 加料精度不准导致产品不良率上升。 § 无人监控导致配料不正常损耗,每个生产单用 的配料不一样,成本核算不精准

(三)乔川自动纠错监控系统特性
v 系统特性与效益:
v 真人语音提示称料:各称料动作以真人语音提示。例如:称料超重,重量OK等. v 精确度监视及管制:可设定称料上/下容许误差,并由电脑监控,超过设定误差值 电脑语音提示,必须达到误差值内天平才自动归零,才允许称下一个料,以达到掌 握称料精确度之目的,防止人为因数产生称料误差。 v 电脑全程记录称料,可精确提供各个材料的日用量/月用量报表,防止非正常损耗 v 可连接局域网监控管理,可与指定电脑联网查询用料情况或者打印数据 v 高效的人机交互界面,简捷的操作模式,整体结构设计,占地小,不锈钢天平台 面,易于清洁和维护

荧光粉的配比LED封装

荧光粉的配比L E D封 装 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

浅谈LED荧光粉配胶程序 荧光粉在LED制造过程起着至关重要的作用。使用绿色荧光粉配合黄色荧光粉和蓝色LED芯片,可获得高亮度白光LED;若使用绿色荧光粉配合蓝光LED 芯片,可以直接获得绿光;若使用绿色荧光粉配合黄色荧光粉与蓝色LED芯片,可以获得冷色调白光;绿色荧光粉也可配合红色荧光粉与蓝色LED芯片而获得白光。白光LED的显色指数(CRI)与蓝光芯片、YAG荧光粉、相关色温等有关,其中最重要的是YAG粉,不同色温区的LED,用的粉及蓝光芯片不一样。目标色温越低的管子用的粉发射峰值要越长,芯片的峰值也要长,低于4000K色温,还要另外加入发红光的粉,以弥补红成分的不足,达到提高显色指数的目的,在保持的芯片及粉不变的条件下,色温越高显色指数越高。 在生产中总结出来的经验来看,蓝光与YAG的最佳匹配关系如下: YAG发射峰值/nm 蓝光峰值波长/nm 530±5 450-455 540±5 455-460 550±5 460-465 555±5 465-470 这样做出的白光比较白,一般芯片厂家提供的都是主波长,峰值波长要用专门仪器测试,测出来的值一般都比主波长短5nm左右。荧光粉与芯片波长决定了色坐标中一条直线,确定了荧光粉与芯片波长。只要增加减少配比都可以调节色坐标在此一条直线上位置。 常见的LED晶粒如下: 材料波长材料波长 InGaN 475-485nm InGaN 525nm InGaN 465-475nm InGaN 505nm InGaN 455-465nm InGaN 515nm InGaAlP 620-640nm GaAlAs/GaAs 660nm InGaAlP 610-620nm GaAlAs/GaAlAs 660nm InGaAlP 600-610nm GaP 700nm InGaAlP 592-600nm GaP 570-575nm InGaAlP 580-593nm GaP 565-570nm InGaAlP 567-577nm GaP 550-565nm InGaAlP 550-565nm PY---GaAlAs 585nm 由于荧光粉目前有无机类和有机类荧光粉。若不添加有机类荧光粉之情况,YAG 荧光粉和AB胶之比例一般为1:6 ~ 10(重量比)。至于AB胶应为 6 ~10g之间的多少数量,必须视蓝色芯片的功率大小做调整。芯片功率大者,在荧光粉数量固定不变下,AB胶数量应较为少(例如1:6)。反之,功率小者AB胶数量应较为多(例如:1:10)。 LED荧光粉配胶程序是LED工艺中,相当基础的一环,我们来看看是怎么做的。 准备工作:

新手学LED白光配粉技术轻松入门

新手学LED白光配粉技术轻松入门 国际LED技术论坛-学LED技术从这里开始! 你是是否想学习LED白光配粉技术,想要做好暖白,正白,冷白等白光?那又如何选择芯片和荧光粉,荧光粉的配比又该怎么确认呢?点荧光粉的坐标/色温范围又该怎么定呢?我这是一个建设性的问题,相信很多这样的新手都想了解这个问题,那请看下面详细解答: 首先大家在配粉的过程中有点误区!在配粉之前先在CIE图上看看: (1)寻找需要的荧光粉波长;当我们需要某个色温段或者某个X、Y坐标点的时候,这时需要知道自己所用蓝光芯片的波长。当知道我们使用的芯片波长(图中芯片波长460nm)并且知道要做的坐标点(x0.44y0.41),这时候在CIE图上将芯片波长点与所要达到的坐标点x、y两点连一条直线并延长到上端的CIE波长点,这个时候这个波长延长点就是我们需要的荧光粉的发光波长了(目标荧光粉波长

~585nm)。因此要达到这个色坐标就需要用到这个波长的荧光粉了。 2)国际LED技术论坛(https://www.360docs.net/doc/8310916081.html,)提醒你当我们找到目标荧光粉的波长之后呢,就要寻找相应的荧光粉来做,但是只使用一种荧光粉的话显色较低,因此我们需要用两种以上荧光粉来调配如红粉+绿粉(红粉+绿粉根据光的叠加混色原理可得到需要的目标荧光粉波长),如何选择两种荧光粉?如何调配两种荧光粉的比例呢?这就涉及到需要做的色坐标的目标荧光粉波长和需要做的显色指数要求是多少了,红绿粉适当的比例可得到需要的荧光粉的波长,如果对Ra要求较高时可选用波长较长的红色荧光粉如650nm的红粉(光谱越宽显色指数越高)配合波长520nm左右的绿粉,做90

以上显指就很容易了。(找需要的目标荧光粉波长时,根据小标题(1)的方法把已经做出来产品进行测试得到一个坐标点并与蓝光芯片波长做一条直线延伸到CIE上方的波长点;如果这个点的波长比目标荧光粉的波长长的话那么需要减小红色荧光粉的比例,如果比目标波长短的话要增加红色荧光粉的比例) 3)当找到合适的红绿粉并且也找到了目标荧光粉的比例后(红粉与绿粉的比例不要变),如果产品的坐标点仍然偏离需要的坐标点的时候,你可以在CIE上观察到此时产品的色坐标与你要的色坐标点、蓝光芯片的波长点、目标荧光粉的波长点基本在一条直线上,这时只需要调节硅胶与荧光粉的比例(红粉+绿粉),当色坐标低于目标坐标时增加荧光粉浓度,当色坐标高于目标坐标时减少荧光粉浓度。

相关主题
相关文档
最新文档