变分方法及其在非线性偏微分方程应用方面的进展和未决问题

变分方法及其在非线性偏微分方程应用方面的进展和未决问题
变分方法及其在非线性偏微分方程应用方面的进展和未决问题

第42卷第2期2018年3月

江西师范大学学报(自然科学版)

Journal of Jiangxi Normal University(Natural Science)

Yol.42 No.2

Mar.2018

文章编号=1000-5862(2018)02-0111-19

变分方法及其在非线性偏微分方程

应用方面的进展和未决问题

邹文明

(清华大学数学科学系,北京100084)

摘要:先介绍变分法发展的简单历史以及将来的发展趋势.然后综述变分法应用于非线性偏微分方程的 基本思想和最新成果.通俗介绍环绕理论、变号临界点理论及应用,其中包括对称扰动方程和Rabinowitz 公开问题、Brezis-Nirenberg 临界指数方程、Li-Lin 公开问题、Bose-Einstein 凝聚、Berestycki-Caffarelli-Niren- berg猜测和Lane-Emden方程及猜想.

关键词:变分法;非线性偏微分方程;环绕理论;临界指数;变号临界点理论;薛定谔方程

中图分类号:〇176;0 175.29 文献标志码:A D O I:10.16357/j. cnki. issnlOOO-5862.2018.02.01

〇变分法简史和将来的发展趋势

变分的思想可以追溯到法国科学家费马(Pierre de Fermat,1601 _1665)时代.他在 1662 年提出了现 在被称为的极小作用原理:光传播的路径是光程取 极值的路径.这个极值可能是最大值(或最小值),甚至可以是函数的拐点.在最初提出时,又被人们称 为“最短时间原理”,即光线传播的路径是需时最少 的路径.此时,微积分还没有产生!

17世纪后半叶,更多的非线性问题需要更加严 密的理论工具,这就促使了微积分的产生.当时,许 多科学家,如法国的费马、笛卡尔,英国的巴罗、瓦里 士,德国的开普勒等,都为微积分的产生做了大量的 前期研究工作,为微积分的创立做出了启蒙的贡献. 英国的数学家牛顿(1643—1727)在1684—1685年 写《自然哲学的数学原理》,于1687年正式出版.德 国数学家莱布尼茨(1646—1716)于1684年在《博 学学报》(Acta Eruditorum)发表了《一种求极大极小 和切线的新方法,它也适用于分式和无理量,以及这 种新方法的奇妙类型的计算》.这2个工作标志着 微积分的诞生.牛顿-莱布尼茨发明微积分后,有了 系统且严谨的办法来研究变分问题.但围绕着微积 分的发明权之争,引发了欧洲大陆学派如德国(莱布尼茨学派)和英国(牛顿学派)的数学家们之间的 互相挑战[1].

约翰?贝努利(Johann Beinoulli,瑞士数学家,I667—1748)在1696年6月提出一个作为向欧洲数 学家(甚至包括他哥哥Jakob Bernoulli,瑞士数学家,1654—1705)挑战的数学问题,即现在被称为的“最 速下降线问题问题提出半年后,仍然未解决.于 是Johann Beinoulli在1697年元旦发表著名的“公 告”(Programma),再次向“全世界最聪明的数学家”(意指牛顿)挑战,1月29日牛顿从英国造币局下班 回到住处,看到了转达Johann Beinoulli挑战的信 件,随后他利用一个晚上的时间解决了这个问题,并 将结果匿名(这是他常用的办法)发表.Johann Bei-nm illi读到这篇文章后惊叹“终于看见了雄狮的利 爪”,意指是牛顿所为.“最速下降线问题”现在被认 为是变分法的起源.瑞士数学家Leonhard Euler (1707—1783)作为 Johann Beinoulli 的学生,也对变 分法做出了极大贡献.例如,Leonhard Euler在1734 年推广了最速降线问题,寻找这类问题的更一般方 法.1744年,Leonhard E uler的《寻求具有某种极大 或极小性质的曲线的方法》一书出版[1].这是变分 学史上的里程碑,它标志着变分法作为一个新的数 学分支的诞生.在这个数学分支中,函数本身就是自 变量,因此比微积分的极值问题更加抽象和复杂.

收稿日期:2018<01-20

基金项目:国家自然科学基金(11771234)资助项目.

作者简介:部文明(1966-),男,江西宁都人,教授,博士生导师,国家杰出青年基金获得者,主要从事变分法和非线性微 分方程的研究.E-mails :zou-wm@ mail, tsinghua. edu. cn

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

非线性偏微分方程

FINITE DIMENSIONAL REDUCTION OF NONAUTONOMOUS DISSIPATIVE SYSTEMS Alain Miranville Universit′e de Poitiers Collaborators:

Long time behavior of equations of the form y′=F(t,y) For autonomous systems: y′=F(y) In many situations,the evolution of the sys-tem is described by a system of ODEs: y=(y1,...,y N)∈R N,F=(F1,...,F N)

Assuming that the Cauchy problem y′=F(y), y(0)=y0, is well-posed,we can de?ne the family of solv-ing operators S(t),t≥0,acting on a subset φ?R N: S(t):φ→φ y0→y(t) This family of operators satis?es S(0)=Id, S(t+s)=S(t)?S(s),t,s≥0 We say that it forms a semigroup onφ

Qualitative study of such systems:goes back to Poincar′e Much is known nowadays,at least in low di-mensions Even relatively simple systems can generate very complicated chaotic behaviors These systems are sensitive to perturbations: trajectories with close initial data may diverge exponentially →Temporal evolution unpredictable on ti-me scales larger than some critical value →Show typical stochastic behaviors

第九章 非线性偏微分方程

第九章 非线性偏微分方程 前面几章索研究的偏微分方程都是线性的,但在实际工程级数及自然科学中索遇到的方程大多都是非线性的,在有些情况下,人们为了研究方便,对问题补充了一些附加的条件或略去一些次要的项,才得到线性方程。在这一章内,我们将从一个具体问题出发引入非线性偏微分方程的概念,然后重点讨论两类重要的非线性方程。 §9.1 极小曲面问题 在第八章内已经说过,求解一个边值问题可以转化成求它所对应的一个泛函的最小值(当然,一般说来变分问题的解只是原边值问题的弱解)。其实,在数学里也已证明了相反的结论,即在一定条件下一个变分问题的解必满足一个微分方程。在这一节内,我们以极小曲面问题为例说明这个事实。 设Ω是平面上有界区域,它的边界?Ω是充分光滑的,其方程为: (),(), x x s y y s ==00s s ≤≤ 其中00(0)(),(0)()x x s y y s ==即?Ω是一条闭曲线。现在在?Ω上给定一条空间曲线l (即作一条空间曲线l ,使它到Ω所在平面的投影为?Ω): 0(),:(),0,(),x x s l y y s s s u s ?=??=≤≤??=? (9.1) 这里0(0)()s ??=。所谓极小曲面问题就是要确定一张定义在Ω上的曲

面S ,使得 (1)S 以l 为周界; (2)S 的表面积在所有以l 为周界的曲面中是最小的。 假定空间曲面的方程为 (,)v v x y = 则由微积分学可知,这个曲面的表面积为 ()J v =?? (9.2) 于是上述极小曲面问题就变成求一个函数u ,使得 (1)由(,)u u x y =所表示的曲面以l 为周界,即 1(),u C u ??Ω∈Ω=,或者说,u M ?∈, 其中M ?由(8.7)给出; (2)()min ()v M J u J v ? ∈= (9.3) 这是一个变分问题。 如何求出变分问题(9.3)的解?我们先来看看假若u M ?∈是(9.3) 的解,那么u 必需满足什么样的条件。为此,在0M 任取一个元素v , 即任取0v M ∈,即1(),0v C v ?Ω∈Ω=。对任意(,),u v M ?εε∈-∞+∞+∈,记 ()()j J u v εε=+ (9.4) 其中()J u 由(9.2)确定,从(9.2)可知()j ε是定义在R 上的一个可微函数,由于u 是(9.3)的解,所以对任意R ε∈处取得最小值,故 (0)0j '= (9.5) 不难看出

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

非线性偏微分方程在金融衍生品定价中的应用

非线性偏微分方程在金融衍生品定价中的应用Black-Scholes期权定价公式对金融衍生品的发展起了不可估量的作用,是 金融衍生品的定价的基础。然而BS方程是建立在六大假设的基础上得到的,现实中不可能全部满足这些假设,后来许多研究者对于方程的假设做了一些修改,其中一些结果是应用了非线性偏微分方程对金融衍生品定价。本文主要介绍这方面的成果。 关键词:非线性偏微分方程金融衍生品定价 一般认为Black-Scholes期权定价公式是现代金融的基础,是现代金融产品定价的核心,以后的金融定价理论都是在此基础上发展起来的,从数学角度来讲,这个方程是一个比较简单的二阶线性抛物方程,通过简单的变形容易得到解析解。Willmott(2000)的著作中就用相似解的方法得到解的表达式。但BS方程是建立在六个假设的基础上的,金融市场上变化因素很多,往往很难同时满足BS 模型的这些假设条件,比如现实交易中应该考虑交易成本的问题,波动率不可能是一个常数,股价并不一定服从对数正态分布等等,为了解决这些问题,一些研究者提出了完全非线性方程。大概有两种,本文就此进行了论述。 两阶模型 第一种是两阶模型,这种方法主要是对于BS公式的假设进行改进,主要有: (一)加入证券的交易成本 现实市场中,证券的交易是要有成本的,然而BS模型的假设中没有考虑到交易成本,对于此,Leland(1985)考虑交易成本的期权的定价模型时,他认为不管每一个时间间隔是否是最优,都要进行Delta 对冲,来求算考虑交易成本的期权定价的模型,这样所得出的模型只要将BS模型中的设为常数的波动率进行修改就可以了,比较简单。而后,Hoggard,Whalley&Willmott(1992)中利用Taylor 展开得到了完全非线性方程: ,k为交易费率。 从上式可以看出,对于单个看涨或者看跌期权,因为其Gamma值都为正,通过变形可以得到其BS模型对应的波动率,这和Leland所得到的结果类似。不过这个模型还可以用来处理Gamma值不是单符号的期权组合的定价问题,还讨

微分方程几种求解方法

第五章 控制系统仿真 §5.2 微分方程求解方法 以一个自由振动系统实例为例进行讨论。 如下图1所示弹簧-阻尼系统,参数如下: M=5 kg, b=1 N.s/m, k=2 N/m, F=1N F 图1 弹簧-阻尼系统 假设初始条件为:00=t 时,将m 拉向右方,忽略小车的摩擦阻力,m x 0)0(= s m x /0)0(=? 求系统的响应。 )用常微分方程的数值求解函数求解包括ode45、 ode23、ode113、ode15s 、ode23s 等。 wffc1.m myfun1.m 一、常微分方程的数值求解函数ode45求解 解:系统方程为 F kx x b x m =++??? 这是一个单变量二阶常微分方程。

将上式写成一个一阶方程组的形式,这是函数ode45调用规定的格式。 令: x x =)1( (位移) )1()2(? ?==x x x (速度) 上式可表示成: ??????--=??????=??? ???????)1(*4.0)2(*2.02.0)2()2()2()1(x x x x x x x && 下面就可以进行程序的编制。 %写出函数文件myfun1.m function xdot=myfun1(t,x) xdot=[x(2);0.2-0.2*x(2)-0.4*x(1)]; % 主程序wffc1.m t=[0 30]; x0=[0;0]; [tt,yy]=ode45(@myfun1,t,x0); plot(tt,yy(:,1),':b',tt,yy(:,2),'-r') hold on plot(tt,0.2-0.2*yy(:,2)-0.4*yy(:,1),'-k') legend('位移','速度',’加速度’)

基于偏微分方程

数学物理方程论文 ——基于偏微分方程在PKMK型几何积分方法中的应用研究

基于偏微分方程在PKMK型几何积分方法中的应用研究 摘要: 人类的发展历史表明科学的理论总是从简单到复杂,从特殊到一般,从粗糙到 精确,逐渐深化的。因此,以数学为工具,以物理学开路的严密自然科学在初期阶 段总是力图把描述简单化、近似化,在数学方面采取的一个重要办法就是线性化。 但是随着科学的发展和人类向更完美的目标的持续追求,复杂的自然界不断促使我 们把一个个线性理论发展为非线性理论。非线性化是科学发展的必由之路。一些学 者已将非线性科学誉为上世纪继相对论和量子力学之后自然科学的“第三次革命”。 正如一位物理学家所说:“相对论的建立排除了对绝对空间和时间的牛顿幻觉;量 子力学的建立则排除了对可控空间和时间的牛顿幻觉;非线性科学的建立排除了拉 普拉斯决定论的可预见性狂想。”非线性科学的建立是研究非线性现象共性的一门 学问。 关键词:偏微分方程 PKMK型几何积分函数商的零点 正文: 在数学、物理、化学以及生物等领域中,人们遇到大量的非线性现象,这些现 象的表现形式虽然千差万别,但其运动规律却具有相似的数学模型。一般地,它们 可以用常微分方程和偏微分方程的数学模型来描述。许多偏微分方程通过空间离散 化可以化为常微分方程的初值问题。 传统上,人们从两个极端不同的出发点来理解和掌握常微分方程问题。纯数学 家对问题认识深刻,推导严密,并采用大范围整体化的定性知识;而数值分析家通 过构造富有技巧的算法,以获得只有很小的误差的离散解,他们一般不考虑整体的 定性性质。孰优孰劣?这要视具体问题具体分析。如果要问到:“局部误差多大?” 这个问题大可以由传统的数值分析方法来解决。事实上,真实的物理过程都不是极 端的。在数学物理问题的研究中,问题所属的物理学、力学和工程技术本身的特殊 规律,常常会在问题进行严格数学处理之前,提示求解问题定性的思想和方法,并 促使具体问题的解决。本文强调应将微分方程的几何性质等定性信息与数值计算有 机地结合起来,进而处理实际问题。 大部分在物理学中显示巨大威力的新的数学思想均来自于几何与分析的交叉。 我们可以简单地回顾微分方程与几何学不可分割的历史渊源。18世纪以前的物理学 家和自然哲学家,如Copemies,Galileo,Kepler,Newton等都对几何学非常熟悉,他们常用几何概念来表达其物理思想。在19世纪,Descartes对Euclid几何引入坐标后,将几何学的研究看成是代数和分析的应用,这引起了几何学的革命,促进了在 几何学中各种分析工具的应用。与此同时,在物理学中利用坐标概念将自然定律表 示成微分方程,促进了物理学的发展。在此阶段,多数物理学家主要注意对物理体 系局域运动性质的探讨,对运动实体的内部对称性及大范围整体性质往往注意不 足。拓扑学与微分几何在物理学的重要性常被忽视。19世纪中叶,Maxwell从实验 观察总结出电磁现象的运动方程,注意到Maxwell方程组的共性不变性。Lorentz。Minkowski之后,直到20世纪初,Einstein提出了狭义相对论,人们才进一步深入 认识到了时空的基本几何特性的重要性。这时主要应用的数学工具是微分方程及群 论分析等。长期以来,微分方程在自然现象的数学研究中起到了决定性的作用,人 们充分认识到,通过研究微分方程的几何性质,可以获知它的真解的关键性的定性

偏微分方程

论文题目:偏微分方程的来源与发展课程:数学物理方程 姓名:卢江 学号:162210012 专业:轮机工程

偏微分方程的来源与发展 摘要:“数学物理方程”是以物理、工程技术和其它科学中出现的偏微分方程为主要研究对象,并且主要介绍求偏微分方程精确解方法的一门数学基础课程。本文简单介绍了偏微分方程发展的来源、发展历程及特点、解决问题的方法,给出了偏微分方程的发展趋势。 关键词:偏微分方程;模型;发展阶段;历程。 一、偏微分方程问题的来源以及模型的建立 偏微分方程由起初研究直接来源于物理与几何的问题发展到一个独立的数学分支,它内容庞杂,方法多样。偏微分方程讨论的问题不仅来源于物理、力学、生物、几何和化学等学科的古典问题,而且在解决这些问题时应用了现代数学的许多工具。近几十年来,该领域的研究工作,特别是对非线性方程的理论、应用以及计算方法的研究起到了极大的推动作用,十分活跃。 用数学方法处理应用问题时,首先是要建立合理的数学模型。在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题需要用多个变量的函数来描述。这样建立的数学模型在很多情况下是偏微分方程。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量; 速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量; 物体在一点上的张力状态的量叫做张量。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程。 物质总是在时间和空间中运动着的。虽然物质的运动形式千差万别,然而却具有共同的量的变化规律。客观世界的一切事物的运动和变化在数学上的反映就是变量的概念。事物的运动和变化又是相互依赖、相互制约的,反映在数学上,就是变量之间的关系,从而又形成了函数的概念。由于大量的实际问题中,稍微复杂一些的运动过程往往不能直接写出他们的函数,却容易建立变量及其导数( 或微分) 间的关系式,即微分方程。如果一个微分方程中出现的未知函数只含

偏微分方程求解方法及其比较

偏微分方程求解方法及其比较 发表时间:2008-12-11T09:32:01.530Z 来源:《科海故事博览科教创新》2008年第10期供稿作者:曹海洋吕淑娟王淑芬 [导读] 近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 摘要:近些年来,无限维动力系统得到了很大的发展.随着对它研究的深入和计算能力的迅速提高,使得与之相关的数值研究越来越被人们关注.谱方法作为一种数值求解偏微分方程的方法,它具有无穷阶收敛性.因此,谱方法也就引起人们更多的关注. 关键词:谱方法;偏微分;收敛;逼近; 1偏微分方程及其谱方法的介绍 偏微分方程主要借助于未知函数及其导数来刻画客观世界的物理量的一般变化规律。理论上,对偏微分方程解法的研究已经有很长的历史了。最初的研究工作主要集中在物理,力学,几何学等方面的具体问题,其经典代表是波动方程,热传导方程和位势方程(调和方程)。通过对这些问题的研究,形成了至今仍然使用的有效方法,例如,分离变量法,fourier变换法等。早期的偏微分方程研究主要集中在理论上,而在实际操作中其研究方法和研究结果都难以得到广泛的应用。求解的主要方法为:有限差分法,有限元法,谱方法。 谱方法起源于Ritz-Galerkin方法,它是以正交多项式(三角多项式,切比雪夫多项式,勒让得多项式等)作为基函数的Galerkin方法、Tau 方法或配置法,它们分别称为谱方法、Tau方法或拟谱方法(配点法),通称为谱方法。谱方法是以正交函数或固有函数为近似函数的计算方法。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。而这些方法的基础就是建立空间基函数。 下面介绍几种正交多项式各种节点的取值方法及权重。 1) Chebyshev-Gauss: 2) Chebyshev-Gauss-Radau: x0 =1, 3) Chebyshev-Gauss-Lobatto: x0 =1, xN =1, 4)Legendre-Gauss: xj 是的零点且 5) Legendre-Gauss-Radau: xj 是的N+1个零点且 6) Legendre-Gauss-Lobatto: x0=-1,xN=1其它N-1个点是的零点且 下面介绍谱方法中最重要的Jacobi正交多项式其迭代公式为: 其中: Jacobi正交多项式满足正交性: 而Chebyshev多项式是令时Jacobi多项式的特殊形式,另外Legendre多项式是令时Jacobi多项式的特殊形式。 2 几种典型的谱方法 谱方法是以正交函数或固有函数为近似函数的计算方法。谱近似可以分为函数近似和方程近似两种近似方式。从函数近似角度看.谱方法可分为Fourier方法.Chebyshev或Legendre方法。前者适用于周期性问题,后两者适用于非周期性问题。从方程近似角度看,谱方法可分为在物理空间离散求解的Collocation法、在谱空间进行离散求解的Galerkin法,以及先在物理空间离散求积,再变换到谱空间求解的Pseudo-spectral法。Collocation法适用于非线性问题.Galerkin法适用于线性问题,而Pseudo-spectral法适用于展开方程时的非线性项的处理。谱方法的特点是对光滑函数指数性逼近的谱精度;以较少的网格点得到较高的精度;无相位误差;适合多尺度的波动性问题;计算精度高于其他方法。快速傅立叶变化的提出大大促进了谱方法的发展,迄今已有各种的谱方法计算格式被提出.并被应用于天文学、电磁学、地理学等各种问题的计算。 下面介绍一下应用于各个区域的几种谱方法: 1)以Fourier谱方法为例介绍谱方法解方程的主要过程 以一阶波动方程为例: 其中u(x,t)为方程的解,L是包含u和u关于空间变量的导数的算子,除了方程以有初始条件和适当的边界条件。 故可设其中为试探空间的基函数,ak(t)为展开系数,对于傅立叶谱方法中的共轭有: 其中从而利用其正交性和周期性可以减少工作量,另外再结合边界条件就可以求出来。 2) Galerkin方法是谱方法中十分经典的解偏微分方程的方法,但还有其局限性,而利用Hermite谱方法中依赖时间的权函数对经典的Galerkin方法进行拓展后的新的方法能适用范围扩大了很多。它能很好的应用在微分方程最优控制问题有限元方法的分析中,并且如果能够灵活运用利用Chebyshev方法、Galerkin方法和配置方法,则会形成更强的计算方法。如将Tau方法的思想成功地应用于奇数阶微分方程Petrov-Galerkin谱方法。 3)在无界区域上谱方法和拟谱方法发展了以Hermite函数和Laguerre函数为基函数的正交逼近和插值理论,在这些结果的基础上发展了全空间和半空间上数理方程的谱方法和拟谱方法,从而形成一种新的能更好解决误解区域问题的方法,此种方法被很好的应用于统计物理、量子力学和流体力学中。 4) 我们利用非一致带权Sobolev空间中的Jacobi多项式正交逼近和Jacobi-Gauss型插值理论,提出以Jacobi多项式为基函数的Jacobi谱方法和拟谱方法用来解决一些奇异问题和计算某些特定的无界区域问题。 5)有限谱方法是基于有限点、有限项的局域谱方法。这种方法要求近似函数应具有等同隔网格和非周期性的性质。有限谱方法分为基于非

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

变分方法及其在非线性偏微分方程应用方面的进展和未决问题

第42卷第2期2018年3月 江西师范大学学报(自然科学版) Journal of Jiangxi Normal University(Natural Science) Yol.42 No.2 Mar.2018 文章编号=1000-5862(2018)02-0111-19 变分方法及其在非线性偏微分方程 应用方面的进展和未决问题 邹文明 (清华大学数学科学系,北京100084) 摘要:先介绍变分法发展的简单历史以及将来的发展趋势.然后综述变分法应用于非线性偏微分方程的 基本思想和最新成果.通俗介绍环绕理论、变号临界点理论及应用,其中包括对称扰动方程和Rabinowitz 公开问题、Brezis-Nirenberg 临界指数方程、Li-Lin 公开问题、Bose-Einstein 凝聚、Berestycki-Caffarelli-Niren- berg猜测和Lane-Emden方程及猜想. 关键词:变分法;非线性偏微分方程;环绕理论;临界指数;变号临界点理论;薛定谔方程 中图分类号:〇176;0 175.29 文献标志码:A D O I:10.16357/j. cnki. issnlOOO-5862.2018.02.01 〇变分法简史和将来的发展趋势 变分的思想可以追溯到法国科学家费马(Pierre de Fermat,1601 _1665)时代.他在 1662 年提出了现 在被称为的极小作用原理:光传播的路径是光程取 极值的路径.这个极值可能是最大值(或最小值),甚至可以是函数的拐点.在最初提出时,又被人们称 为“最短时间原理”,即光线传播的路径是需时最少 的路径.此时,微积分还没有产生! 17世纪后半叶,更多的非线性问题需要更加严 密的理论工具,这就促使了微积分的产生.当时,许 多科学家,如法国的费马、笛卡尔,英国的巴罗、瓦里 士,德国的开普勒等,都为微积分的产生做了大量的 前期研究工作,为微积分的创立做出了启蒙的贡献. 英国的数学家牛顿(1643—1727)在1684—1685年 写《自然哲学的数学原理》,于1687年正式出版.德 国数学家莱布尼茨(1646—1716)于1684年在《博 学学报》(Acta Eruditorum)发表了《一种求极大极小 和切线的新方法,它也适用于分式和无理量,以及这 种新方法的奇妙类型的计算》.这2个工作标志着 微积分的诞生.牛顿-莱布尼茨发明微积分后,有了 系统且严谨的办法来研究变分问题.但围绕着微积 分的发明权之争,引发了欧洲大陆学派如德国(莱布尼茨学派)和英国(牛顿学派)的数学家们之间的 互相挑战[1]. 约翰?贝努利(Johann Beinoulli,瑞士数学家,I667—1748)在1696年6月提出一个作为向欧洲数 学家(甚至包括他哥哥Jakob Bernoulli,瑞士数学家,1654—1705)挑战的数学问题,即现在被称为的“最 速下降线问题问题提出半年后,仍然未解决.于 是Johann Beinoulli在1697年元旦发表著名的“公 告”(Programma),再次向“全世界最聪明的数学家”(意指牛顿)挑战,1月29日牛顿从英国造币局下班 回到住处,看到了转达Johann Beinoulli挑战的信 件,随后他利用一个晚上的时间解决了这个问题,并 将结果匿名(这是他常用的办法)发表.Johann Bei-nm illi读到这篇文章后惊叹“终于看见了雄狮的利 爪”,意指是牛顿所为.“最速下降线问题”现在被认 为是变分法的起源.瑞士数学家Leonhard Euler (1707—1783)作为 Johann Beinoulli 的学生,也对变 分法做出了极大贡献.例如,Leonhard Euler在1734 年推广了最速降线问题,寻找这类问题的更一般方 法.1744年,Leonhard E uler的《寻求具有某种极大 或极小性质的曲线的方法》一书出版[1].这是变分 学史上的里程碑,它标志着变分法作为一个新的数 学分支的诞生.在这个数学分支中,函数本身就是自 变量,因此比微积分的极值问题更加抽象和复杂. 收稿日期:2018<01-20 基金项目:国家自然科学基金(11771234)资助项目. 作者简介:部文明(1966-),男,江西宁都人,教授,博士生导师,国家杰出青年基金获得者,主要从事变分法和非线性微 分方程的研究.E-mails :zou-wm@ mail, tsinghua. edu. cn

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

非线性偏微分方程 偏微分方程数值方法

非线性偏微分方程偏微分方程数值方法非线性偏微分方程偏微分方程数值方 法 非线性偏微分方程定义:各阶微分项有次数高于一的,该微分方程即为非线性微分方程 (一)主要研究内容 非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。 1.非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。 2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。 3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的

许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。 (二)研究方向的特色 1.变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。 2.该研究是现代数学与电力生产的交叉学科研究课题,它对电力生产及管理有着十分重要的理论指导意义和实际应用价值,为控制系统设计、分析和计算都可提供一些重要的理论依据。在应用数学学科的这一研究领域中本课题属于国内外前沿性研究工作。 (三)可取得的突破 1.深入研究空间、时间、时滞对解的性质的影响,诸如静态解、周期解的存在性、解的存在性、渐近性等问题;寻求它们在含间断项的非线性偏微分方程方面的突破。 2.寻求和发现新的处理非单调、非凸不可微能量泛函的方法(如建立Ishikawa 迭代序列收敛准则),建立发展型方程G-收敛准则,寻求可行的光滑方法将算子方程光滑化,创建新的先验估计方法。 3.应用现代数学所获得的理论,研究最有控制系统的微分方程,为控制系统设计、分析和计算提供一些重要的理论依据和方法。 1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。 1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。 随机微分方程数值解

相关文档
最新文档