离散时间信号系统的频域分析实验报告

离散时间信号系统的频域分析实验报告
离散时间信号系统的频域分析实验报告

离散时间信号系统的频域分析实验报告

《信号、系统与信号处理实验I》

实验报告

实验名称:离散时间信号与系统的频域分析

姓名:韩文草

学号:15081614

专业:通信工程

实验时间:2016.11.28

杭州电子科技大学

通信工程学院

三、实验过程及实验结果

clear all;

w = -4*pi:8*pi/511:4*pi; num = [2 1];den = [1 -0.6];

h = freqz(num, den, w); subplot(2, 1, 1)

plot(w/pi, real(h) ); grid;

title('实部')

xlabel('omega^pi');

ylabel('振幅');

subplot(2, 1, 2)

plot(w/pi, imag(h));grid;

title('虚部')

xlabel('omega^pi');

ylabel('振幅');

figure;

subplot(2,1, 1)

plot(w/pi, abs(h));grid;

title('幅度谱')

xlabel('omega^pi');

ylabel('振幅');

subplot(2, 1, 2)

plot(w/pi,angle(h));grid;

title('相位谱')

xlabel('omega^pi');

');

ylabel('以弧度为单位的相位

h = [1 2 3 4 5 6 7 8 9];

w = 0:pi/511:pi;

h = freqz(h, 1, w);

subplot(2, 1, 1)

plot(w/pi, real(h) ); grid; title('实部')

xlabel('omega^pi');

ylabel('振幅');

subplot(2, 1, 2)

plot(w/pi, imag(h));grid; title('虚部')

xlabel('omega^pi');

ylabel('振幅');

figure;

subplot(2,1, 1)

plot(w/pi, abs(h));grid;

title('幅度谱')

xlabel('omega^pi');

ylabel('振幅');

subplot(2, 1, 2)

plot(w/pi,angle(h));grid; title('相位谱')

xlabel('omega^pi');

ylabel('以弧度为单位的相位');

实验 (三) 项目名称:利用MATLAB分析连续系统及离散系统的复频域特性

广东技术师范学院实验报告 实验 (三) 项目名称:利用MATLAB 分析连续系统及离散系统的复频域特性 一.实验目的 1.掌握 Laplace 变换的意义、基本性质及应用。 2.掌握拉普拉斯变换的三维可视化表示。 3.理解系统函数的零、极点分布(极、零图)决定系统时间原函数的特性。 4.掌握系统冲激响应。 5. H (z )部分分式展开的MA TLAB 实现 6. H (z )的零极点与系统特性的MATLAB 计算 二.实验原理 1.Laplace 变换和逆变换定义为 ??∞+∞-∞ -==j j st st ds e s F j t f dt e t f s F σσπ)(21)()()(0 ( 4 – 1 ) 在 Matlab 中实现 Laplace 变换有两个途径:直接调用指令 laplace 和ilaplace 进行; 根据定义式 ( 4 – 1 ),利用积分指令 int 实现。相较而言,直接利用 laplace 和 ilaplace 指令实现机器变换要简洁一些。 调用格式: L=laplace(F) F=ilaplace(L) 2.实现拉普拉斯曲面图及其可视化的步骤如下: a .定义两个向量x 和y 来确定绘制曲面图的复平面横座标和纵座标的范围。 b .调用meshgrid 函数产生包含绘制曲面图的s 平面区域所有等间隔取样点的复矩阵。 c .计算复矩阵s 定义的各样点处信号拉氏变换F(s)的函数值,并调用abs 函数求其模。 d .调用mesh 函数绘出其幅度曲面图。 3.在连续系统的复频域分析中,系统函数起着十分重要的作用,它包含了连续系统的固有特性。通过系统函数可以对系统的稳定性、时域特性、系统频率响应等系统特性进行分析。 若连续系统的系统函数的零极点已知,系统函数便可确定下来,即系统函数H (s )的零极点分布完全决定了系统的特性。系统函数的零点和极点位置可以用matlab 的多项式求根函数roots()来求得。用roots()函数求得系统函数H(s)的零极点后,就可以用plot 命令在复平面上绘制出系统函数的零极点图。

离散系统频域分析及matlab实现

《数字信号处理》 课程设计报告 离散系统的频域分析及matlab实现 专业:通信工程 班级:通信11级 组次: 姓名及学号: 姓名及学号:

离散系统的频域分析及matlab 实现 一、设计目的 1.熟悉并掌握matlab 软件的使用; 2.掌握离散系统的频域特性; 3.学会分析离散系统的频域特性的方法; 二、设计任务 1.设计一个系统函数系统的频率响应进行分析; 2.分析系统的频域响应; 3.分析系统的因果稳定性; 4.分析系统的单位脉冲响应; 三、设计原理 1. 系统函数 对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。 在本文中利用系统函数H(z)进行描述。若已知一个差分方程为 ∑∑==---=M i N i i i i n y a i n x b n 0 1 )()()(y ,则可以利用双边取Z 变换,最终可以得到系统函数的一 般式H(z),∑∑=-=-== N i i i M i i i z a z b z X z z H 0 0) () (Y )(。若已知系统的单位脉冲响应,则直接将其进行Z 变换就可以得到系统函数H(z)。系统函数表征系统的复频域特性。 2.系统的频率响应: 利用Z 变化分析系统的频率响应:设系统的初始状态为零,系统对输入为单位脉冲序列 ) (n δ的响应输出称为系统的单位脉冲响应h (n )。对h(n)进行傅里叶变换,得到: ∑∞ ∞∞-==-)(jw n j |)(|)(e H w j n n j e e H e n h ?ω) (

其中|)(|jwn e H 称为系统的幅频特性函数,)(ω?称为系统的相位特性函数。)(jw e H 表示的是系统对特征序列jwn e 的响应特性。对于一个系统输入信号为n )(ωj e n x =,则系统的输出信号为jwn e )(jw e H 。由上可以知道单频复指数信号jwn e 通过频率响应函数为)(jw e H 后,输出仍为单频复指数信号,其幅度放大了|)(|jw e H ,相移为)(ω?。 对于系统函数H(z)与H(w)之间,若系统函数H(z)的收敛域包含单位圆|z|=1,则有 jw e z jw z H e H ==|)()(,在MATLAB 中可以利用freqz 函数计算系统的频率响应。 (1)[h,w]=freqz(b,a,n) 可得到n 点频率响应,这n 个点均匀地分布在上半单位圆(即 ),并将这n 点频率记录在w 中,相应的频率响应记录在h 中。n 最好能取2的幂次方,如果缺省,则n=512。 (2)[h,w]=freqz(b,a,n,'whole') 在 之间均匀选取n 个点计算频率响应。 (3)[h,w]=freqz(b,a,n,Fs) Fs 为采样频率(以Hz 为单位),在0~Fs/2频率范围内选取n 个频率点,计算相应的频率响应。 (4)[h,w]=freqz(b,a,n,'whole',Fs) 在0~Fs 之间均匀选取n 个点计算频率响应。 (5)freqz(b,a) 可以直接得到系统的幅频和相频特性曲线。其中幅频特性以分贝的形式给出,频率特性曲线的横轴采用的是归一化频率,即Fs/2=1。 3.系统的因果性和稳定性 3.1因果性 因果系统其单位脉冲响应序列h(n)一定是一个因果序列,其z 域的条件是其系统函数H(z)的收敛域一定包含∞,即∞点不是极点,极点 分布在某个圆内,收敛域在某个圆外。 3.2稳定性 系统稳定就要求∞<∑∞ ∞-|h(n)|,由序列的)(jw e H 存在条件和jw e z jw z H e H ==|)()(可以知道 系统稳定的z 域条件就是H(z)的收敛域包含单位圆,即极点全部分布在单位圆内部。 由上3.1和3.2可知,利用系统的零极点分布图可以判断系统的因果性和稳定性。 若在零极点分布图中,若系统的极点都分布在单位圆内,则此系统是因果系统,若有极点分布在单位圆 外,则此系统是非因果系统。在MATLAB 中可以利用zplane 函数画出系统的零极点分布图。系统函数的零极点图的绘制:zplane(b,a)。其中b 为系统函数的分子,a 为系统函数的分母。 4.系统的单位脉冲响应 设系统的初始状态为零,系统对输入为单位脉冲序列)(n δ的响应输出称为系统的单位脉冲响应h (n )。对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。单位脉冲响应是系统的一种描述方法,若已知了系统的系统函数,可以利用系统得出系统的单位脉冲响应。在MATLAB 中利用impz 由函数函数求出单位脉冲响应h(n)。

北京理工大学信号与系统实验实验5连续时间系统地复频域分析报告报告材料

实验5 连续时间系统的复频域分析 一、实验目的 1.掌握拉普拉斯变换及其反变换的定义,并掌握MATLAB 实现方法。 2.学习和掌握连续时间系统系统函数的定义及复频域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理与方法 1.拉普拉斯变换 连续时间信号)(t x 的拉普拉斯变换定义为 )1.....(..........)()(dt e t x s X st ? +∞ ∞ --= 拉普拉斯反变换定义为 )2....(..........)(21)(ds e s X j t x j j st ?∞ +∞ -=σσπ 在MATLAB 中,可以采用符号数学工具箱的laplace 函数和ilaplace 函数进行拉氏变换和反拉氏变换。 L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。 L=laplace(F,t)用t 替换结果中的变量s 。 F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量为t 的结果表达式。 F=ilaplace(L,x)用x 替换结果中的变量t 。 除了上述ilaplace 函数,还可以采用部分分式法,求解拉普拉斯逆变换,具体原理如下: 当 X (s )为有理分式时,它可以表示为两个多项式之比: )3.(..........)()()(0 110 11a s a s a b s b s b s D s N s X N N N N M M M M +?+++?++==---- 式(3)可以用部分分式法展成一下形式 )4.....(.............)(2211N N p s r p s r p s r s X -++-+-= 通过查常用拉普拉斯变换对,可以由式(1-2)求得拉普拉斯逆变换。 利用 MATLAB 的residue 函数可以将 X (s )展成式(1-2)所示的部分分式展开式,该 函数的调用格式为:[r,p,k] = residue(b,a) 其中b 、a 为分子和分母多项式系数向量,r 、p 、k 分别为上述展开式中的部分分式系数、极点和直项多项式系数。 2.连续时间系统的系统函数

实验三 连续和离散系统的复频域分析

∞ 实验三 连续和离散系统的复频域分析 一、实验目的 1.掌握连续时间函数的拉普拉斯正变换及反变换; 2.掌握离散时间函数的 Z 变换和 Z 反变换;; 3.掌握连续系统复频域分析方法; 4.掌握离散系统复频域分析方法。 二、实验仪器 装有 MATLAB 软件的微型计算机 1 台 三、实验原理 3.1 拉氏变换的正变换和逆变换 (1)定义 正变换: F (s ) = ? f (t )e -st dt 反变换: f (t ) = 1 ? σ + j ∞ F (s )e st ds -∞ 2πj ο - j ∞ 其中 F(s) 可以表示为有理分式 F (s ) = B (s ) 或零极点相乘形式 A (s ) F (s ) =k (s -z 1)(s -z 2)L (s -z m ) (s - p 1)(s - p 2)L (s - p n ) A(s)和 B(s)都是 s 的多项式,z 1,z 2,…,z m 是 F(s)的零点,p 1,p 2,…,p n 是 F(s)的极点, k 为 F(s)的增益。 (2)拉氏变换的函数调用 正变换: Fs = laplace(f) 逆变换:f = ilaplace(Fs)

□? 3.2 Z 变换的正变换和逆变换 (1)定义 正变换: F (z) = ∑ f (n)z -n n =0 反变换: f (n) = 1 2π j c F (z)z n -1 dz 其中 F(z)可以表示为有理分式 F (z) = B(z) 或零极点相乘形式 A(z) F (z ) =k (z -z 1)(z -z 2)L (z -z m ) (z -p 1)(z -p 2)L (z -p n ) A(z)和 B(z)都是 z 的多项式,z 1,z 2,…,z m 是 F(z)的零点,p 1,p 2,…,p n 是 F(z)的极点, k 为 F(z)的增益。 (2)Z 变换的函数调用 正变换: F = ztrans(f) f = f (n ) ? F = F (z ) 逆变换: f = iztrans (F) F = F (z ) ? f = f (n ) 3.3 复频域分析其他相关函数 (1) ezplot 函数 调用格斯:ezplot(f) 功能:符号型函数的绘图函数 (2) dimpulse 函数 调用格式:dimpulse(B,A[,N]) 功能:绘制传递函数 H(Z)的单位脉冲响应,其中 B ,A 分别是传递函数按 Z-1 的升幂排列的分子分母系数行向量,N 为指定的单位脉冲响应序列的点数。 (3) dstep 函数 ∞

实验八 系统的复频域分析

实验八系统的复频域 分析

一、实验目的 1、掌握系统的复频域分析方法。 2、掌握测试系统的频率响应的方法。 二、预习内容 1、系统频响的方法。(见第四章波特图的介绍) 三、实验原理 1. N 阶系统系统的传递函数 用微分方程描述的N 阶系统为: 根据零状态响应(起始状态为零),则对其进行拉氏变换有: 则系统传递函数可表达为: 用差分方程描述的N 阶系统为: 根据零状态响应(起始状态为零),则对其进行拉氏变换有: 则系统传递函数可表达为: 2.根据系统传递函数的零极点图分析系统 零点:传递函数分子多项式的根。 极点:传递函数分母多项式的根。 根据零极点图的不同分布分析系统。 3.涉及到的Matlab 函数 (1)freqz 函数:实验六中出现过,可用来求单位圆上的有理z 变换的值。调用格式:同实验六 (2)zplane 函数:得到有理z 变换的零极点图。 调用格式:zplane(num,den)

其中,num和 den是按z ?1 的升幂排列的、z 变换分子分母多项式系数的行向量。 (3)roots 函数:求多项式的根。 调用格式:r=roots(c), c 为多项式系数向量;r 为根向量。 四、实验内容 1.系统零极点的求解 (1)求解系统和的零极点,验 证下面程序的运行结果,根据系统零极点图分析系统性质。 b=[1,0,-1]; a=[1,2,3,2]; zr=roots(b); pr=roots(a); plot(real(zr),imag(zr),'go',real(pr),imag(pr),'mx','markersize',12,'linewidth',2); grid; legend('零点','极点'); figure; zplane(b,a); (2)参考上述程序,绘制系统和 的零极点图,并分析系统性质。与用zplane 函数直接绘制系统零极点图(注:圆心的圆圈并非系统的零点)做比较。

连续系统的复频域分析

实验四:连续系统的复频域分析 一、实验目的: 1、掌握连续与离散时间系统的正反复频域与Z域变换 2、掌握利用MATLAB进行零极点分析,进一步了解零极点对整个系统的影响 3、掌握simulink环境下系统建模与仿真以及系统求解。 二、实验内容: 1、已知某连续系统的系统函数为: (1)利用[r, p, k]=residue(num, den),求H(s)的极零点以及多项式系数; (2)画出系统的零极点分布图,判断系统得稳定性。 (3)求h(t),判断系统得稳定性。 2、已知某离散系统的系统函数为:, (1)利用[r, p, k]=residuez(num, den)求H(z)的极零点以及多项式系数; (2)画出零极点分布图,判断系统得稳定性。 (3)求单位函数响应用impz(b, a),判断系统是否稳定; 3、已知线性时不变微分方程 在Simulink环境下搭建起系统的仿真模型,并查看仿真结果曲线。(1)写出传递函数H(s),绘出系统模拟框图; (2)当f(t)分别为,,的零状态响应;且当与课本P81的结果进行比较(3)方程的初值为, ,求全响应; 4、已知某信号,n(t)为正态噪声干扰且服从N(0,0.22)分布,对此信号进行采样,采样间隔为0.001s,之后对此信号进行Botterworth低通滤波,从信号中过滤10HZ的输出信号,试对系统进行建模与仿真。 三、实验数据处理与结果分析: 第一题:题1_1:

>> num=[2,5]; den=[1,1,3,2]; [r,p,k]=residue(num,den) r = -0.5750 - 0.7979i -0.5750 + 0.7979i 1.1499 p =-0.1424 + 1.6661i -0.1424 - 1.6661i -0.7152 k =[]

实验四-离散时间系统的频域分析(附思考题程序)

实验四 离散时间系统的频域分析 1.实验目的 (1)理解和加深傅里叶变换的概念及其性质。 (2)离散时间傅里叶变换(DTFT)的计算和基本性质。 (3)离散傅里叶变换(DFT)的计算和基本性质。 2.实验原理 对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。 离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。 设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥ =-? = -?,并且其傅里叶变 换为:()()(){}sp n iwt f t f nT t nT dt e d ¥ ¥ -? =-? --= ? òF 。 这就是采样序列f(nT)的DTFT::()()iwT inwT DTFT n F e f nT e ¥ -=-? = ?,为了方便,通常将采 样间隔T 归一化,则有:()()iw inw DTFT n F e f n e ¥ -=-? = ?,该式即为信号f(n)的离散时间傅 里叶变换。其逆变换为:()1()2iw DTFT inw F e dw f n e p p p -=ò。 离散傅里叶变换(DFT ,Discrete-time Fourier Transform )是对离散周期信号的一种傅里叶变换,对于长度为有限长信号,则相当于对其周期延拓进行变换。在频域上,DFT 的离散谱是对DTFT 连续谱的等间隔采样。 21 1 20 ()()| ()()DFT k DTFT k w N knT N N i iwT iwnT N n n F w F e f nT e f nT e p p =----==== = 邋 长度为N 的有限长信号x(n),其N 点离散傅里叶变换为: 1 ()[()]()kn N N n X k DFT x n x n W -=== ?。 X(k)的离散傅里叶逆变换为:10 1()[()]()kn N N k x n IDFT X k X k W N --===?。 DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域

信号与系统报告 实验5 连续系统的复频域分析实验

信号与系统 实验报告 实验五连续系统的复频域分析 实验五连续系统的复频域分析 一、实验目的 1. 深刻理解拉普拉斯变换、逆变换的定义,掌握用MATLAB实现拉普拉斯变换、逆变换的方法。 2会求几种基本信号的拉氏变换。 3 掌握用MATLAB绘制连续系统零、极点的方法。 4 求解系统函数H(s)。 二

1已知连续时间信号f(t)=sin(t)u(t)、求出该信号的拉普拉斯变换,并用MATLAB 绘制拉普拉斯变换的曲面图。 syms t; ft=sin(t)*heaviside(t); Fs=Laplace(ft); a=-0.5:0.08:0.5; b=-2:0.08:2; [a,b]=meshgrid(a,b); c=a+i*b; d=ones(size(a)); c=c.*c; c=c+d; c=1./c; c=abs(c); mesh(a,b,c); surf(a,b,c) axis([-0.5,0.5,-2,2,0,10]) colormap(hsv

) 2求[(1-e^(-at))]/t的拉氏变换。 syms t s a f1=(1-exp(-a*t))/t; F=laplace(f1,t,s) F = log(s+a)-log(s) 3求F(s)=-log(s)+ log(s+a)的拉氏逆变换syms t s a F =log(s+a)-log(s); f1=ilaplace(F,s,t) f1 = (1-exp(-a*t))/t

4已知某连续系统的系统函数为: H(s)=(s^2+3s+2)/(8s^4+2s^3+3s^2+5)试用MATLAB求出该系统的零极点,画出零极点分布图。 b=[1 3 2]; a=[8 2 3 0 5]; zs=roots(b); ps=roots(a); hold on plot(real(zs),imag(zs),'o'); plot(real(ps),imag(ps),'x'); grid axis([-2.5,1,-1,1]) 5已知H(s)=(s+1)/(s^2+s+1),绘制阶跃响应图形,冲激响应图形,频率激响应图形。 syms t s H=(s+1)/(s^2+s+1); f1=ilaplace(H,s,t); f2=heaviside(t);

实验六-信号与系统复频域分析

实验六信号与系统复频域分析 一、实验目的 1.学会用MATLAB进行部分分式展开; 2.学会用MATLAB分析LTI系统的特性; 3.学会用MATLAB进行Laplace正、反变换。 4.学会用MATLAB画离散系统零极点图; 5.学会用MATLAB分析离散系统的频率特性; 二、实验原理及内容 1.用MATLAB进行部分分式展开 用MATLAB函数residue可以得到复杂有理分式F(s)的部分分式展开式,其调用格式为 其中,num,den分别为F(s)的分子和分母多项式的系数向量,r为部分分式的系数,p为极点,k为F(s)中整式部分的系数,若F(s)为有理真分式,则k为零。 例6-1 用部分分式展开法求F(s)的反变换 解:其MATLAB程序为 format rat; num=[1,2]; den=[1,4,3,0]; [r,p]=residue(num,den) 程序中format rat是将结果数据以分数形式显示

F(s)可展开为 210.536()13 F s s s s --=++++ 所以,F(s)的反变换为 3211()()326t t f t e e u t --??=--???? 2.用MATLAB 分析LTI 系统的特性 系统函数H (s )通常是一个有理分式,其分子和分母均为多项式。计算H (s )的零极点可以应用MATLAB 中的roots 函数,求出分子和分母多项式的根,然后用plot 命令画图。 在MATLAB 中还有一种更简便的方法画系统函数H (s )的零极点分布图,即用pzmap 函数画图。其调用格式为 pzmap(sys) sys 表示LTI 系统的模型,要借助tf 函数获得,其调用格式为 sys=tf(b,a) 式中,b 和a 分别为系统函数H (s )的分子和分母多项式的系数向量。 如果已知系统函数H (s ),求系统的单位冲激响应h(t)和频 率响应H ω(j )可以用以前介绍过的impulse 和freqs 函数。 例6-2 已知系统函数为 321221 s s s +++H(s)= 试画出其零极点分布图,求系统的单位冲激响应h(t)和频率响应H ω(j ),并判断系统是否稳定。 解:其MATLAB 程序如下: num=[1];

离散时间信号与系统的频域研究分析

离散时间信号与系统的频域分析

————————————————————————————————作者:————————————————————————————————日期:

计算机与信息工程学院 实验报告 专业:通信工程年级/班级:2012级通信工程2013—2014学年第二学期 课程名称指导教师 本组成员 学号姓名 实验地点实验时间 项目名称离散时间信号与系统的频 域分析 实验类型 一、实验目的 1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。 2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。 3、掌握离散时间傅里叶变换的特点及应用 4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法 二、实验仪器或设备 一台装有MATLAB的计算机 三、实验原理 1. 离散时间系统的频率特性 在离散LTI 系统时域分析中得到系统的单位冲激响应可以完全表征系统,进而通过h[n]特性来分析系统的特性。系统单位冲激响应h[n]的傅里叶变换H () 成为LTI 系统的频率响应。与连续时间LTI 系统类似,通过系统频率响应可以分析出系统频率特性。与系统单位冲激响应h[n]一样,系统的频率响应H () 反映了系统内在的固有特性,它取决于系统自身的结构及组成系统元件的参数,与外部激励无关,是描述系统特性的一个重要参数,H () 是频率的复函数可以表示为 其中,|1随频率变化的规律称为幅频特性;?(ω)随频率变化的规律称为相频特性。 2. 离散时间信号傅里叶变换的数值计算方法

算法原理, 由傅里叶变换原理可知: 序列f [n]的离散时间傅里叶变换F是ω的连续函数。由于数据在 matlab 中以向量的形式存在,F ()只能在一个给定的离散频率的集合中计算。然而, 只有类似 形式的e? jω的有理函数,才能计算其离散时间傅里叶变换。 四、实验内容 1 离散时间傅里叶变换 (1)下面参考程序是如下序列在范围?4π≤ω≤4π的离散时间傅里叶 变换 实验代码 %计算离散时间傅里叶变换的频率样本 clear all; w=-4*pi:8*pi/511:4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1) plot(w/pi,real(h)); grid; title(‘实部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, imag(h)); grid; title(‘虚部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); figure; subplot(2,1,1) plot(w/pi, abs(h)); grid; title(‘幅度谱’) xlabel(‘omega/\pi’); ylabel(‘振幅’);

离散时间信号与系统

实验:离散时间信号与系统的时域分析 一、实验目的 1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数; 2、掌握离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程; 3、牢固掌握系统的单位序列响应的概念,掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。 基本要求:掌握用MATLAB描述离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。掌握线性时不变离散系统的时域数学模型用MATLAB描述的方法,掌握线性常系数差分方程的求解编程。 二、实验原理 信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。 在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。 在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。但是,还有一些信号的独立时间变量是离散变化的,这种信号称为离散时间信号。前面提到的股票市场的日收盘指数,由于相邻两个交易日的日收盘指数相隔24小时,这意味着日收盘指数的时间变量是不连续的,因此日收盘指数是离散时间信号。 而系统则用于对信号进行运算或处理,或者从信号中提取有用的信息,或者滤出信号中某些无用的成分,如滤波,从而产生人们所希望的新的信号。系统通常是由若干部件或单元组成的一个整体(Entity)。系统可分为很多不同的类型,例如,根据系统所处理的信号的不同,系统可分为连续时间系统(Continuous-time system)和离散时间系统(Discrete-time system),根据系统所具有的不同性质,系统又可分为因果系统(Causal system)和非因果系统(Noncausal system)、稳定系统(Stable system)和不稳定系统(Unstable system)、线性系统(Linear system)和非线性系统(Nonlinear system)、时变系统(Time-variant system)和时不变系统(Time-invariant system)等等。 然而,在信号与系统和数字信号处理中,我们所分析的系统只是所谓的线性时不变系统,这种系统同时满足两个重要的基本性质,那就是线性性和时不变性,通常称为线性时不变(LTI)系统。 1. 信号的时域表示方法 1.1将信号表示成独立时间变量的函数

用MATLAB分析离散信号的频谱与信号的采样

实验六 用 MATLAB 分析离散信号的频谱与信号的采样 一、 实验目的 1、了解离散时间信号频谱的分析方法; 2、了解相关函数的调用格式及作用; 3、掌握用MATLAB 分析信号的采样过程与原理。 二、涉及的MATLAB 函数 1、fft 函数:可用来计算离散周期信号频谱 X[m] = fft(x) x :是离散周期信号0~N -1 一个周期的序列值 X[m] 是离散周期信号的频谱 函数fft 还可用来计算离散非周期信号频谱、连续周期信号和连续非周期信号的频谱。 2、rectpuls 函数:表示矩形脉冲信号 y=rectpuls(t,width) 产生宽度为0.4,幅度为1,以零点对称的矩形波1P (t) 三、实验内容 1、用MATLAB 实现下图所示周期矩形序列的频谱 x[k]的频谱函数为:X[m]= ) ( sin )] 12([ sin N m M N m ππ+ k

%Program 6_1计算离散周期矩形序列的频谱 N=32; M=4; %定义周期矩形序列的参数x=[ones(1,M+1),zeros(1,N-2*M-1),ones(1,M)]; %产生周期矩形序列X=fft(x); %计算DFS系数 m=0:N-1; stem(m,real(X)); %画出频谱X的实部title('X[m]的实部');xlabel('m') figure; stem(m,imag(X)); %画出频谱X的虚部title('X[m]的虚部');xlabel('m'); xr=ifft(X); figure; stem(m,real(xr)); xlabel('k'); title('重建的x[k]'); 仿真的结果如下:

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k 。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

离散时间信号系统的频域分析实验报告

《信号、系统与信号处理实验I》 实验报告 实验名称:离散时间信号与系统的频域分析 姓名:韩文草 学号:15081614 专业:通信工程 实验时间:2016.11.28 杭州电子科技大学 通信工程学院

一、实验目的 二、实验内容

三、实验过程及实验结果 clear all; w = -4*pi:8*pi/511:4*pi; num = [2 1];den = [1 -0.6]; h = freqz(num, den, w); subplot(2, 1, 1) plot(w/pi, real(h) ); grid; title(' 实部 ') xlabel('omega^pi'); ylabel(' 振幅 '); subplot(2, 1, 2) plot(w/pi, imag(h));grid; title(' 虚部 ') xlabel('omega^pi'); ylabel(' 振幅 '); figure; subplot(2,1, 1) plot(w/pi, abs(h));grid; title(' 幅度谱 ') xlabel('omega^pi'); ylabel(' 振幅 '); subplot(2, 1, 2) plot(w/pi,angle(h));grid; title(' 相位谱 ') xlabel('omega^pi'); ylabel(' 以弧度为单位的相位'); h = [1 2 3 4 5 6 7 8 9]; w = 0:pi/511:pi; h = freqz(h, 1, w); subplot(2, 1, 1) plot(w/pi, real(h) ); grid; title(' 实部 ') xlabel('omega^pi'); ylabel(' 振幅 '); subplot(2, 1, 2) plot(w/pi, imag(h));grid; title(' 虚部 ')

实验八 连续系统的复频域分析

a=-0.5:0.08:0.5; b=-2:0.08:2; [a,b]=meshgrid(a,b); d=ones(size(a)); c=a+i*b; c=c.*c; c=c+d; c=1./c c=abs(c); surf(a,b,c); axis=([-0.5,0.5,-2,2,0.15]); title('单边正弦信号拉氏变换图'); colormap(hsv); 2. a=0:0.5:5; b=-20:0.1:20; [a,b]=meshgrid(a,b); c=a+i*b; c=(1-exp(-2*c)./c); c=abs(c) mesh(a,b,c); sufr(a,b,c); view(-10,20); axis([-0.5:-20,20,0.2]); title('拉氏变换S域像函数'); w=-20:0.1:20; Fw=(2*sin(w).*exp(i*w)); plot(w,abs(Fw)) title=('傅里叶变换'); xlabel('频率w'); 3. a=[1,2,-3,2,1]; b=[1,4]; sjdt(a,b); a=[1,5,16,30]; b=[5,20,25,0]; sjdt(a,b); 4. a=[8,2,3,15]; b=[1,3,2]; [p,q]=sjdt(a,b); 5.

a=[1,0]; b=[1]; impulse(b,a) a=[1,2]; b=[1]; impulse(b,a) a=[1,-2]; b=[1]; impulse(b,a) a=[1,1,16,25]; b=[1]; impulse(b,a) a=[1,0,16]; b=[1]; impulse(b,a) a=[1,-1,16,25]; b=[1]; impulse(b,a) 6. q=[0,0]; p=[-100,100]; f1=0; f2=1000; k=0.1; splxy(f1,f2,k,p,q) q=[0,0]; f1=0; f2=1000; k=0.1; p=[-500,-1000]; splxy(f1,f2,k,p,q) q=[0,0]; f1=0; f2=1000; k=0.1; p=[-2000,-4000]; splxy(f1,f2,k,p,q) 7. 8

系统的复频域分析实验报告

实验六 系统的复频域分析 信号)(t x 的拉普拉斯变换 ?∞ ∞--=dt e t x s X st )()( (6.1) 是连续时间傅立叶变换地推广。连续时间傅立叶变换在研究连续时间信号与系统中是很有用的。然而,许多信号不存在傅立叶变换而存在拉普拉斯变换,这使得拉普拉斯变换成为线性时不变系统分析的一种有用方法。对一大类信号来说,它们的拉普拉斯变换可以表示为s 的多项式之比,即 ) () ()(s D s N s X = 这里)(s N 和)(s D 分别称作分子和分母多项式。能表示成多项式之比的变换称为有理变换,这里作为满足线性常系数微分方程的LTI 系统的系统函数中常常出现。除了一个标量因子外,有理变换是完全由多项式)(s N 和)(s D 的根决定的,这些根分别称为零点和极点。由于这些根在LTI 系统的研究中起着重要的作用,所以它们以零极点图的方式展现出来的是很方便的。这一章将用拉普拉斯变换在复频域研究LTI 系统的一些性质。 §6.1 MATLAB 函数lsim (用于系统函数) 目的 用lsim 仿真由系统函数表征的因果LTI 系统的输出。 相关知识 第二章所讨论的是如何用lsim 命令仿真一个输出满足一个线性常系数微分方程的因果LTI 连续时间系统。因为系统函数唯一地表征了关联系统输入和输出的微分方程。所以由系统函数表征的因果LTI 系统的输出也能够用lsim 仿真。如果系统函数给出如下形式: ) ()1()1()()1()1()(N a s N a s a M b s M b s b s H N M +-+++-++= (6.2) 那么,对输入地系统)(t x 的系统输出就能用lsim(b,a,x,t)仿真,其中MATLAB 向量b 和a 包含了分子分母s 多项式的系数。

系统的复频域分析

实验六 系统的复频域分析 §6.1 MATLAB 函数lsim (用于系统函数) 目的 用lsim 仿真由系统函数表征的因果LTI 系统的输出。 基本题 1.定义系数向量a1和b1用以描述由下面系统函数表征的因果LTI 系统: 2 2 )(1+-= s s s H 2.定义系数向量a2和b2用以描述由下面系统函数表征的因果LTI 系统: 3 .03 )(2+= s s H 3.定义系数向量a3和b3用以描述由下面系统函数表征的因果LTI 系统: 8 .02)(3+= s s s H 4.利用lsim 和前面部分定义的向量求这些因果LTI 系统对由t=[0:0.1:0.5],x=cos(t)给出的输入的输出。 以上四题解: t=[0:0.1:0.5]; x=cos(t); b1=[1 -2]; a1=[1 2]; b2=3; a2=[1 0.3] b3=2 a3=[1 0.8] y1=lsim(b1,a1,x,t); subplot(2,2,1) plot(t,y1); y2=lsim(b2,a2,x,t); subplot(2,2,2)

plot(t,y2); y3=lsim(b3,a3,x,t); subplot(2,2,3) plot(t,y3); §6.2作连续时间的零极点图 目的 这一节要学习如何在一个零极点图上展现有理系统函数的零极点。 基本题 1.下列每个系统函数都对应于稳定的LTI 系统。用roots 求每个系统函数的零极点,如上所示的利用plot 画出零极点图并作适当标注。 (i) 3 25)(2+++=s s s s H (ii) 10 21252)(22++++=s s s s s H (iii) ) 2)(102(1252)(2 2+++++= s s s s s s H

实验2 连续时间系统的频域分析、复频域分析

实验二、连续时间系统的频域分析、复频域分析 一、实验目的 1、学会用MATLAB 实现连续时间信号傅里叶变换 2、学会用MATLAB 分析LTI 系统的频域特性 3、学会用MATLAB 分析LTI 系统的输出响应 4.学会用MATLAB 进行Laplace 正、反变换。 5.学会用MATLAB 画连续时间系统零极点图,系统的稳定性判断 6.学会用MATLAB 分析连续系统的频率特性; 二、实验原理及程序示例 频域部分: 1.傅里叶变换的MATLAB 求解 MATLAB 的symbolic Math Toolbox 提供了直接求解傅里叶变换及逆变换的函数fourier()及ifourier()两者的调用格式如下。 Fourier 变换的调用格式 F=fourier(f):它是符号函数f 的fourier 变换 默认返回是关于w 的函数。 F=fourier(f ,v):它返回函数F 是关于符号对象v 的函数,而不是默认的w ,即 ()()j v x F v f x e d x +∞ --∞ =? Fourier 逆变换的调用格式 f=ifourier(F):它是符号函数F 的fourier 逆变 换,默认的独立变量为w ,默认返回是关于x 的函数。 f=ifourier(f,u):它的返回函数f 是u 的函数,而不是默认的x. 注意:在调用函数fourier()及ifourier()之前,要用syms 命令对所用到的变量(如t,u,v,w )进行说明,即将这些变量说明成符号变量。 例3-1 求 2()t f t e -=的傅立叶变换 解: 可用MATLAB 解决上述问题: syms t Fw=fourier(exp(-2*abs(t))) 例3-2 求2 1 ()1F jw ω= +的逆变换f(t) 解: 可用MATLAB 解决上述问题 syms t w ft=ifourier(1/(1+w^2),t) 2.连续时间信号的频谱图 例3-3 求调制信号 t t AG t f 0cos )()(ωτ=的频谱,式中 )2 ()2()(,21,12,40τ ττπωτ--+== ==t u t u t G A 解:MATLAB 程序如下所示 ft=sym('4*cos(2*pi*6*t)*(Heaviside(t+1/4)-Heavi side(t-1/4))'); Fw=simplify(fourier(ft)) subplot(121) ezplot(ft,[-0.5 0.5]),grid on subplot(122) ezplot(abs(Fw),[-24*pi 24*pi]),grid 3. 用MATLAB 分析LTI 系统的频率特性 当系统的频率响应H (jw )是jw 的有理多项式时,有 1110 1110 ()()()()()()()()()M M M M N N N N b jw b jw b jw b B w H jw A w a jw a jw a jw a ----++++== ++++L L MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解。其调用格式如下 H=freqs(b,a,w) 其中,a 和b 分别是H(jw)的分母和分子多项式的系数向量,w 为形如w1:p:w2的向量,定义系统频率响应的频率范围,w1为频率起始值,w2为频率终止值,p 为频率取样间隔。H 返回w 所定义的频率点上,系统频率响应的样值。 例如,运行如下命令,计算0~2pi 频率范围内以间隔0.5取样的系统频率响应的样值 a=[1 2 1]; b=[0 1]; h=freqs(b,a,0:0.5:2*pi) 例 3-4 三阶归一化的butterworth 低通滤波器的频率响应为 32 1 ()()2()2()1 H jw jw jw jw = +++ 试画出该系统的幅度响应 () H jw 和相位响应

相关文档
最新文档