试验筛修正系数测定方法

试验筛修正系数测定方法

试验筛修正系数测定方法

1. 用一种已知80μm标准筛筛余百分数的粉状试样(该试样受环境影响筛余百分数不发生变化)作为标准样。按本方法3.1条操作程序测定标准样在试验筛上的筛余百分数。

2. 试验筛修正系数按下式计算:

C=Fn/Ft

式中:C——试验筛修正系数;

Fn——标准样给定的筛余百分数,%;

Ft——标准样在试验筛上的筛余百分数,%。

修正系数计算至0.01。

注:修正系数超出0.80~1.20的试验筛不能用于水泥细度检验。

动摩擦因数的几种测量方法

动摩擦因数的几种测量方法 高中物理实验中动摩擦因数的测量方法进行分类整理如下: 方法一:利用平衡条件求解。在学习过计算滑动摩擦力公式f=μN 之后,可以利 用平衡条件进行实验。 例1:如图1所示,甲、乙两图表示用同一套器材测量铁块P 与长金属板之间的动摩擦因数的两种不同方法。已知铁块P 所受重力大小为5N ,甲图使金属板静止在水平桌面上,用手通过弹簧秤向右拉P ,使P 向右运动;乙图把弹簧秤的一端固定在墙上,用力水平向左 你认为两种方法比较,哪种方法可行?你判断的理由是 。 图中已经把两种方法中弹簧秤的示数(单位:N )情况放大画出,则铁块P 与金属板间的动摩擦因数的大小是 分析与解答:以铁块P 为研究对象,显然,在甲图所示方法下,弹簧秤对铁块P 的拉力只有在铁块匀速前进时才等于滑动摩擦力的大小,但这种操作方式很难保证铁块P 匀速前进。而在乙图所示方法下,不论金属板如何运动,铁块P 总是处于平衡状态,弹簧秤的示数等于铁块所受滑动摩擦力的大小,故第二种方法切实可行,铁块所受摩擦力f=2.45N 。 由于铁块在水平方向运动,其在竖直方向受力平衡,故此时正压力在数值上等于铁块所受重力大小,即N=5N ,由f=μN 得49.0== N f μ 方法二:利用牛顿运动定律求解 例2:为了测量小木块和斜面间的动摩擦因数,某同学设计了如图2所示的实验:在小木块上固定一个弹簧秤(弹簧秤的质量不计),弹簧秤下吊一个光滑

小球,将木板连同小球一起放在斜面上,如图所示,用手固定住木板时,弹簧秤的示数为F 1,放手后木板沿斜面下滑,稳定时弹簧秤的示数为F 2,测得斜面的倾角为θ,由测量的数据可以计算出小木板跟斜面间的动摩擦因数是多少? 分析与解答:对小球,当装置固定不动时,据平衡条件有F 1=mgsin θ ① 当整个装置加速下滑时,小球加速度m F F a 2 1-= ②,亦即整体加速度,所以 对整个装置有a=gsin θ-μgcos θ得 θ θμcos sin g a g -= ③ 把①、②两式代入③式得 θθ θ θ θμtg F F mg F g m F F m F g a g 1 222 11 cos cos cos sin == --= -= 方法三:利用动力学方法求解 例3:为测量木块与斜面之间的动摩擦因数,某同学让木块从斜面上端由静止开始匀加速下滑,如图3所示,他使用的实验器材仅限于(1)倾角固定的斜面(倾角θ已知),(2)木块,(3)秒表,(4)米尺。 实验中应记录的数据是 。 计算动摩擦因数的公式是μ= 。 为了减少测量的误差,可采用的办法是 。 分析与解答:本题可从以下角度思考: 由运动学公式2 2 1at S = 知,只要测出斜边长S 和下滑时间t ,则可以计算出加速度。再 由牛顿第二定律可以写出加速度的表达式θμθcos sin g g a -=。将此式代入2 21at S = 得 图3

氯离子扩散系数测定方法492法

混凝土氯离子扩散系数快速测定方法 北欧试验方法 NT BUILD 492 中交武汉港湾工程设计研究院有限公司

氯离子扩散实验—北欧实验方法 NT BUILD 492 1.范围 本过程可以从非稳态迁移实验确定混凝土、砂浆或者水泥基修补的材料中氯化物的迁移系数. 2.适用领域 本实验方法适用于在实验室中成型或者从建筑物上钻取的试样.氯离子迁移系数的方法是测量被测材料对氯离子渗透的电阻.这种非稳态下的迁移系数不能直接与从其他实验方法获得的氯化物的扩散系数相比较,例如非稳态下的浸渍实验或者稳态下的迁移实验. 3.参考文献 ① NT BUILD 201,“Concrete:Making and curing of moulded test specimens for strength tests”,2nd ed.,Approved 1984-05. ②NT BUILD 202,“Concrete,hardened:Sampling and treatment of cores for strength tests”,2nd ed.,Approved 1984-05. ③NT BUILD 208,“Concrete,hardened:Chloride content”,2nd ed.,Approved 1984-05. ④Tang,L and Soensen,H.E.,“Evaluation of the Rapid Test Methods for Chloride Difficient of Concrete,NORDTEST Project No.1388-98”,SP Report 1998:42,SP Swedish National Testing and Research Institute,Boras,Sweden,1998. 4.定义 迁移:离子在外加电场作用下的运动. 扩散:分子或离子在浓度梯度的作用下的一种运动,确切的说是化学电势,即从一个高的浓度区到一个底的浓度区. 5.取样 该实验方法需要直径为100mm、厚度为50mm的圆柱形试样,该试样可以从成型的圆柱试件上或至少为100mm的芯样上切割得到.该圆柱形或芯样应该各自满足在NT BUILD 201和NT BUILD 202中所描述的条件.在实验中需要三个试件. 6.实验方法 6.1原理 在试件的轴向上利用外部的电势能迫使试件外部的氯离子向试件内部迁移。经过一段时间后,将该试件沿轴向方向劈裂,在新劈开的断面上喷射硝酸银溶液,从生成的可见的白

摆式摩擦系数测定仪操作规程

摆式摩擦系数测定仪操作规程 1、选点:在测设路段上,沿行车方向的左轮轮迹,选择有代表性的五个测点,每一测点相距约 5—10米。 2、仪器调平:①将仪器置于测点上(标定方法见附录),并将摆的摆动方向与行车方向一致。 ②转动调平螺丝(J)使水准泡(M)居中。 3、调零:①放松固定把手(A和B),转动升降把手(C)使摆升高并能自由摆动,然后旋紧把 手(A和B)。②将摆向右运动,按下释放开关(D),使卡环(N)进入释放开关槽,并处于水平释放位置,然后松开释放(D),此时指针(H)应被拔至150处。③按下释放开关(D)摆向左运动,并带动指针(H)向上运动。当摆达到最高位置下落时,用左手将摆杆接住,此时指针应指零。若不指零时,可稍旋紧或放松针簧调节螺母(E)重复本项操作,直至指针指零。 4、标定滑动长度:①用橡皮刷清除摆动范围内路面上的松散颗粒和杂物。②让摆自由悬挂,提 起举升柄(P)将垫块(L)置于定为螺丝(O)下面,使滑溜块(S)升高。放松紧固把手(A 和B)转动升降把手(C),使摆缓缓下降。当滑溜块上的橡胶片(T)刚刚接触路面时,即将把手(A和B)旋紧使摆头固定。③提升举升柄(P),取下垫块(L),使摆向右运动,放下举升柄使摆慢慢向左运动,直至橡胶片的边缘刚刚接触路面。在橡胶的外边平行摆动方向设置标准尺(126毫米),尺的一端正对该点。再用手提器举升柄(P),使滑溜块(S)向上抬起,并使摆向左运动放下举升柄(P),再将摆慢慢运动,使橡胶片的边缘再一次接触路面。 橡胶片两次同路面的接触点的距离为126毫米(即滑动长度)若滑动长度不符标准时,则升高或降低仪器底座正面的调平螺丝(J)来校正。但须调平水准泡。使滑动长度符合要求。 尔后将摆置于水平位置。 5、测定:用水浇洒路面,并用橡皮刷刷刮,以便洗去泥浆。然后再洒水,并按下释放开关(D), 使摆在路面上滑过,指针即可指出路面的摩擦系数值(一般第一次可不作记录)当摆向回摆时,用左手接住摆杆,右手提起举升柄使滑溜块升高,并将摆向右运动,按下开关,使摆卡环进入释放开关,重复此项,测定五次(每次均应洒水)。记录每次的数值。五次数值差不大于三个单位(即刻度盘的一格半)如差值大于三个单位,应检查产生的原因,并再次重复上述各项操作,至符合规定要求为止。 6、测定结果:①每个测点用五次测定读数的平均值代表测点的摩擦系数值,并用五个测点的摩 擦系数的平均值,代表该测定路段摩擦系数值。②测定读数,即该度盘上指针的读数(简称“摆值”)除以100,即为路面的摩擦系数。如:摆值33,摩擦系数即为0.33。 7、注意事项:①由于路面的摩擦系数受季度和温度的影响,故应记录测试日期和湿路面的温度。 ②测试路段应描述路面的结构类型,外观和使用年限。③当摆向左摆动后返回时,一定要用 手接住摆感杆,以免损坏滑溜块和指针。④在滑溜块上橡胶片滑动的有效范围内不应有显著的凹形和凸形,以免影响测定数值。⑤标定滑动长度时,应以橡胶片刚刚接触路面为准,不可借摆的力量向前滑动,以免标定的滑动的长度过长。⑥路面摩擦系数沿公路的横断面而变化,通常路中小、路面大。为反映测试路段的最不利情况,应选择摩擦系数小,而使用刹车较频繁的位置,几沿行车方向的左抡轮迹处。⑦滑溜块上采用新橡胶片时,应先在干燥的路面上测试数次后再用。橡胶片的磨耗长边不得超过3.2毫米,短边不得超过1.6毫米。否则,应更换新橡胶片。此外,橡胶片被污染后也不能使用。橡胶片的有效使用旗为一年。一年以后不管是否使用过,均不得再做测定用。因为橡胶要老化,弹性、硬度均发生变化,影响测试结果。

试验设计分子扩散系数测定

实验设计:丙酮分子扩散系数测定 一、实验原理 扩散属于由于分子扩散所引起的质量传递,扩散系数在工业中是一项十分重要的物性指标。 在如图所示的垂直细管中盛以待测组分的液体A,该组分通过静止气层Z扩散至管口被另一头气流B带走。紧贴液面上方组分A的分压为液体A在一定温度下的饱和蒸汽压,管口处A的分压可视为零,组分A的汽化使扩散距离Z不断增加。记录时间t与Z的关系即可计算A在B中的扩散系数。 液体A通过静止气体层的扩散为单相扩散,此时传递速率: N=D/(RTZ) ·P/P·(P-P) 可写成: A2AA1Bm N=ρ/RT·D/Z·ln(P/P) (a) B1AB2设S为细管的截面积,ρ为液体A密度。在dt时间内汽化的液体A的量应等于液体A扩散出管口的量,即 SNdt=ρSdZ/N 或: AA N=ρ/M·dZ/dt AA (b) 二、计算公式 T形管: 横管为两端开口的普通玻璃管,用于气体流通;竖管为下端封口的毛细管,用于盛放丙酮溶液(丙酮为被测气体),由于使用了毛细管,可以将被测气体的扩散视为一维的竖直扩散。. 真空泵: 可生成20-60kPa的负压,使毛细管中扩散出的气体迅速离开管口,以保证管口处被测气体浓度不变(接近零)。 游标卡尺: 实验中使用精度为0.1mm的游标卡尺,可以通过显微镜对毛细管内的液位进行测量。 显微镜: 由于游标卡尺刻度较密,且置于水浴箱中,要借助显微镜进行读数。

水浴箱: 毛细管浸于水浴池中,使毛细管内液体保持恒温。另外,温度高时扩散较快,可加快实验速度。实验中要求设定为50度。 系统时钟:可成倍加快实验速度,减少实验中的等待时间。 扩散系数:D=BρRT/(2MP) ·1/ln(P/P)B1AB23;797kg/m ρ—丙酮密度,T—扩散温度,实验中要求设定为232K; M—丙酮分子量,58.05;A P—大气压,100kPa; P—空气在毛细管出口处的分压,可视为P;B2**为丙酮的饱和蒸气压,P=P-P —空气在毛细管内液面处的分压,P,P AB1B1A*=50kPa;时P232K A2为纵坐标作图得到的直线的斜率。Z B—以时间t为横坐标,2为纵坐标,时间的数据,以Z实验时每隔10-15分钟测量一次扩散距离Z 为横坐标作图可得到B,将所有数据带入计算公式即可求得扩散系数。 三、注意事项 1.开始测量数据后,不要改变水浴温度,温度对扩散速率有影响。 2.测量时真空泵要一直开启。 3.计算时要注意单位的统一。 试验步骤: 进入实验后,水浴加热器与真空泵均未开启,鼠标点击两个红色开关即可打开相应的设备。. 打开水浴加热器后,点击显示仪表盘可出现温度设置窗口,将温度设定为50度。仪表盘默认显示的是当前实际温度,要察看或改变设定温度应按下右侧的“调节”按钮。仪表盘将显示设定温度的同时,设定温度的个位或十位处于闪动状态,闪动状态的数字可以调节,再次按下“调节”按钮可以切换闪动位。 仪表盘右上方的“升高”与“降低”两个按钮可以对闪动数字进行调节。 调节完成后按下“设定”按钮即可切换到实际温度显示。 调节状态下,若30秒不进行任何操作,将自动切换回实际温度显示。 主界面的水浴温度显示盘下有3个温度指示灯,它们是用来指示水浴加热器工作状态的。 黄灯闪烁说明实际温度已高于设定值,正在降温。 红灯闪烁说明实际温度还未达到设定值,正在加热。 绿灯闪烁说明实际温度已达到设定值,正在保温。 点击真空泵的显示仪表盘也可出现设置窗口,不过实验中只是要保证气体流动顺畅,故实际上不需要对其进行调节,只要将泵打开即可。 仪表盘显示的是真空泵设定的压力,右侧的两个按钮可对真空泵压力进行调整,点击一次调整10kPa。 确定水浴温度达到50度、真空泵打开后,即可开始测量实验数据。鼠标点击主界面上的显微镜即可出现显微镜的观测窗口。 第1次打开显微镜的观测窗口时,由于显微镜还没有对准毛细管的液面,故看不见液面与卡尺。通过点击右上侧框格中的4个按钮,

摆式仪法检测摩擦系数作业指导书

T0964-2008摆式仪法检测摩擦系数作业指导书 一目的和适用范围及标准 本方法适用于以摆式摩擦系数测定仪(摆式仪)测定沥青路面、标线或其他材料试件的抗滑性,用以评定路面或路面材料在潮湿状态下的抗滑能力。 二仪具与材料 本试验需要下列仪具及材料: (1)摆式仪:摆及摆的连接部分总质量为1500±30g,摆动中心至摆的重心距离为410±5mm,测定时摆在路面上滑动长度为126±lmm,摆上橡胶片端部距摆动中心的距离为510mm,橡胶片对路面的正向静压力为22.2±0.5N。 橡胶物理性质技术要求 (2)橡胶片:当用于测定路面抗滑值时,其尺寸为 6.35mm ×25.4mm ×76.2mm,橡胶质量应符合上表的要求。当橡胶片使用后,端部在长度方向上磨耗超过 1.6mm或边缘在宽度方向上磨耗超过3.2mm,或有油类污染时,即应更换新橡胶片。新橡胶片应先在干燥路面上测试10次后再用于测试。橡胶片的有效使用期为1年。 (3)滑动长度量尺:长126mm。

(4)喷水壶。 (5)硬毛刷。 (6)路面温度计:分度不大于1 C。 (7)其它:皮尺或钢卷尺、扫帚、粉笔等。 三方法与步骤 3.1 准备工作 (1)检查摆式仪的调零灵敏情况,并定期进行仪器的标定。当用于路面工程检查验收时,仪器必须重新标定。 (2)对测试路段按随机取样选点的方法,决定测点所在横断面位置。测点应选在行车道的轮迹带上,距路面边缘不应小于1m,并用粉笔作出标记。测点位置宜紧靠铺砂法测定构造深度的测点位置,一一对应。 3.2 试验步骤 (1)仪器调平 ①将仪器置于路面测点上,并使摆的摆动方向与行车方向一致。 ②转动底座上的调平螺栓,使水准泡居中。 (2)调零 ①放松上、下两个紧固把手,转动升降把手,使摆升高并能自由摆动,然后旋紧紧固把手。 ②将摆向右运动,按下安装于悬臂上的释放开关,使摆上的卡环进入开关槽,放开释放开关,摆即处于水平释放位置,并把指针抬至与摆杆平行处。

摆式摩擦系数测定仪检定规程

摆式摩擦系数测定仪(自校)检定规程 JTJ058-2000 T0321-94条文说明 每次试验前,应对摆式摩擦系数测定仪进行检查、标定,以保证试验条件一致,具体步骤如下。 1、摆的质量 放松摆杆与转向节的连接螺母,从仪器上取下装有滑溜块的摆,称其质量,准确至g,摆的质量应符合1500g±30g。 2、摆的重心位置的标定 装有滑溜块的摆的中心,将摆置于刀口上测定。为得到平衡点的位置,连接骡马应固定于摆臂的远端,得到平衡点后,应旋进或旋出平衡锤直到摆壳边部水平为止,并将平衡位置作一记号。 3、摆动中心到重心的距离 把摆重新装在仪器上,并取下转向节螺盖,测量从摆动中心(轴承螺母中心)至重心的距离,准确至mm,应符合410mm ±5mm。 4、力矩标定 用“称秤法”进行力矩标定,步骤如下: ⑴摆的质量W加上调节螺母质量W0,并使其和质量(W+ W0)符合1500g±30g。 ⑵算出重心距L=615000gmm/( W+ W0)(由摆动中心算起) ⑶以重心距这点作秤的支点,把W0调节到在摆杆的L′位置,使秤平衡,然后把力矩调节螺母置于摆杆内弹簧引线上的相应位置即可。 注1-4项在仪器出厂时已作标定,一般仪器没有出现大的问题时,用户不必在标定这几项。 5、压力标定 ⑴将摆从仪器上取下,使滑溜块的橡胶片与摆壳周板平行。旋紧滑溜块的固定螺母。用卡尺量橡胶片边缘至周板顶面的距离(取前、后板两处的平均值),应为60mm。若有出入,可调节摆下部止滑螺钉,使滑溜块升高或降低,以达到要求。调节后止滑螺钉不应再动。 ⑵放松滑溜块的固定螺母,并使两螺母拼紧,以保证滑溜块能绕自身的轴转动,而在轴上的窜动量不大与0.2mm。 ⑶将压力标定天平置于试验台上,调平使指针指中。把三角架置于右侧秤盘的后部。摆式仪放在三角架上。用夹块将摆杆固定在立柱上,使对准右秤盘中部并压下3mm-5mm,在左秤盘中加1g左右,使天平稳定(此时天平指针向右方)。调节仪器底座调平螺丝,使指针对准右20mm处,并注意保持水准泡居中。 ⑷提起举升柄,将垫块放在定位螺丝下,使指针回零,若不回零,调节定位螺丝使之回零。 ⑸从举升柄定位螺丝下轻轻取出垫块,橡胶片的压力即将秤盘压下,指针偏斜至右方20mm处。然后再左侧秤盘上加标定砝码(2263g),此时指针应回零。若指针不回零,则表示橡胶片对路面的压力过大(指针偏向右方)或过小(指针偏向左方),取下标定砝码,用螺丝刀插入弹簧引线的槽内,旋紧或放松弹簧松紧螺母,使指针回零。此时应注意握紧摆杆,在旋紧和放松调节螺母过程中,不致于人为对秤盘加载。然后,重新校核压力,以达到2263g为止。

热膨胀实验

实验一热膨胀实验 一.实验目的 1.了解材料线膨胀系数测定的意义、方法。 2.了解WTD2智能型热膨胀仪的原理、结构和操作步骤。 3.学会初步掌握测试数据和曲线的分析方法。 二.实验原理 现代化大型工程,如高层建筑、铁路、桥梁、航空航天器件等,都是由多种复杂的材料构成,要经过酷暑寒冬甚至太空中的急剧温度变化,因此必须确切地掌握有关材料的热膨胀系数以及其随温度变化的规律。 利用热膨胀方法对材料进行测定和研究称为“膨胀分析”。它不仅用于膨胀系数的测定,也是研究动态相变过程的有效手段,例如钢中过冷奥氏体的等温转变过程(TTT曲线)和连续冷却转变过程(CCT曲线)的测定,最常用的方法就是膨胀分析。在金属材料研究中,材料的结构转变、再结晶、时效固溶和沉淀析出,往往都伴随着体积的变化,因此可以用膨胀分析法来研究。又如粉末冶金中材料烧结致密度的评定,非晶体材料的软化温度的测定等,也可以用这一方法。 1.线膨胀系数 线膨胀系数是指与单位温度变化对应的试样单位长度的线膨胀量,当温度从T1变到T2时,试样的长度相应地从L1变到L2, 则材料在该温度区间的平均线膨胀系数α为: L2-L1 ΔL α=—————=———— L1(T2-T1) L1 ΔT 线膨胀系数α单位为: mm·mm-1·℃-1 2. 体膨胀系数 体膨胀系数是指与单位温度变化对应的试样单位体积的体积膨胀量,当温度从T1变到T2时,试样的体积相应地从V1变到V2,则材料在该温度区间的平均体膨胀系数β为: V2-V1 ΔV β=——————=———— V1 (T2-T1) V1ΔT 由于体膨胀系数测定较为复杂,所以对于热膨胀各向同性的材料,平均

构造深度及摩擦系数测定过程及方法

构造深度试验(手动铺沙法、电动铺沙法、激光法) 一)手工铺砂法 1.目的与适用范围 本方法适用于测定沥青路面及水泥混凝土路面表面构造深度,用以评定路面表面的宏观粗糙度、路面表面的排水性能及抗滑性能。 2.仪具与材料(1)人工铺砂仪:由圆筒、推平板组成。 ①量砂筒:一端是封闭的,容积为(25土0.15)mL,可通过称量砂 筒中水的质量以确定其容积V,并调整其高度,使其容积符合要求。带一专门的刮尺将筒口量砂刮平。 2推平板:推平板应为木制或铝制,直径50mm, 底面粘一层厚1.5mm的橡胶片,上面有一圆柱把手。 ③刮平尺:可用30cm钢尺代替。 (2)量砂:足够数量的干燥洁净的匀质砂,粒径为0.15~0.3mm。 (3)量尺;钢板尺、钢卷尺,或采用将直径换算成构造深度作为刻度单位的专用的构造深度尺。 (4)其他:装砂容器(小铲)、扫帚或毛刷、挡风板等。 3.方法与步骤 1)准备工作(1)量砂准备:取洁净的细砂晾干、过筛,取0.15~0.3mm的砂置适当的容器中备用。量砂只能在路面上使用一次,不宜重复使用。回收砂必须经干燥、过筛处理后方可使用。(2)对测试路段按随机取样选点的方法,决定测点所在横断面位置。测点应选在行车道的轮迹带上,距路面边缘不应小于1m。 2)试验步骤 ①用扫帚或毛刷子将测点附近的路面清扫干净;面积不小于30cmx 30cm。 ②用小铲装砂沿筒向圆筒中注满砂,手提圆筒上方,在硬质路面上轻轻地叩打3次,使砂密实,补足砂面用钢尺一次刮平。不可直接用量砂筒装砂,以免影响量砂密度的均匀性。③将砂倒在路面上,用底面粘有橡胶片的推平板,由里向外重复做摊铺运动,稍稍用力将砂细心地尽可能地向外摊开;使砂填人凹凸不平的路表面的空隙中,尽可能将砂摊成圆形,并不得在表面上留有浮动余砂。注意摊镭时不可用力过大或向外推挤。 ④用钢板尺测量所构成圆的两个垂直方向的直径,取其平均值,准确至5mm。⑤按以上方法,同一处平行测定不少于3次,3个测点均位于轮迹带上,测点间距3~5m。该处的测定位置以中间测点的位置表示。 4.计算 (1)计算路面表面构造深度测定结果。(2)每一处均取3次路面构造深度的测定结果的平均值作为试验结果,精确至0.1mm。(3)计算每一个评定区间路面构造深度的平均值、标准差、变异系数。 5.报告 (1)列表逐点报告路面构造深度的测定值及3次测定的平均值,当平均值小于0,2mm 时,试验结果以<0.2mm表示。 (2)每一个评定区间路面构造深度的平均值、标准差、变异系数。(二)电动铺砂法 1.目的和适用范围 本方法适用于测定沥青路面及水泥混凝土路面表面构造深度,用以评定路面表面的宏观粗糙度及路面表面的徘水性能和抗滑性能。 2.仪具与材料(1))电动铺砂仪:利用可充电的直流电源将量砂通过砂漏铺设成宽度5cm、厚度均匀一致的器具。

摆式摩擦系数测定仪校验方法

摆式摩擦系数测定仪校验方法 1概述 摆式摩擦系数测定仪包括:释放开关、底座、立柱、摆头、示数系统、摆、橡胶片等。 摆式摩擦系数测定仪用途:测定磨光后集料(沥青和水泥混凝土路面面层所用碎石、砾石、破碎砾石)的磨光值。 2技术要求 外观质量要求:度盘刻度应清晰,指针无弯曲和其它影响测量结果的缺陷橡胶片对路面的正向静压力:2263g;摆的滑动长度:126mm 橡胶片物理性质 3校验用参考器具 游标卡尺:测量范围0?200mm精度0.02mm 百分表:测量范围0?10mm精度0.01mm 电子天平5000g,感度0.1g 4校验项目及校验条件 校验项目有压力标定、校核滑动长度及外观质量。 校验条件:环境温度5°C?35°C; 5校验方法 5.1压力标定: ①将摆从仪器上取下,使滑溜块的橡胶片与摆壳周板平行。旋紧滑溜块的固定螺母。用卡尺量橡胶片边缘至周板顶面的距离(去前、后两处的平均值),应为60mm若有出入,可调节摆下部止滑螺钉,使滑溜块升高活降低,以达到要 求。调节后止滑螺钉不应在滑。 ②放松滑溜块固定螺母,并使两螺母拼紧,以保证滑溜块能绕自身的轴转动,而在轴上的窜动量不大于0.2mm ③将压力标定天平置于试验台上,调节使指针指中。把三角架置于右侧称盘的后部。 摆式仪放在三角架上。用夹块将摆杆固定在立杆上,使对准右称盘中部并压下3mmr

5mm在左称盘中加1g左右,使天平稳定(此时天平指针指向右方)。调节仪器底座调 平螺丝,使指针对准右方20mmi处,并注意保持水准泡居中。 ④提起举升柄,将垫块放在定位螺丝下,使指针回零,若不回零,调节定位螺丝使之回零。 ⑤从举升柄定位螺丝下轻轻取出垫块,橡胶片的压力即将称盘压下,指针偏斜至右方20mm处。然后在左侧称盘上加标定砝码(2263g),此时指针应回零。若指针不回零,则表示橡胶片对路面的压力过大(指针偏向右方)或过小(指针偏向左方),取下标定砝码,用螺丝刀插入弹簧引线的槽内,旋紧或放松弹簧松紧调节螺母,使指针回零。此时应注意握紧摆杆,在旋紧和放松调节螺母过程中,不至于人为对称盘加载。然后,重新校核压力,以达到2263g 为止。 5.2 校核滑动长度 (1)将仪器置于路面测点上,并使摆的摆动方向与行车方向一致,调整三个调平螺栓,使水准泡居中。 (2)调零:放松上、下两个紧固把手使摆升高并能自由摆动,然后旋紧紧固把手。将摆向右运动,按下释放开关,使摆上的卡环进入开关槽,放开释放开关,摆即处于水平位置,并把指针抬至与摆杆平行处; (3)按下释放开关,使摆向左带动指针摆动,当摆达到最高位置后下落时,用左手将摆杆接住,此时指针应指零。若不指零时,可稍旋紧或放松摆的调节螺母,重复本项工作,直至指针指零。调零允许误差为± 1BPN。 (4)用扫帚扫净路表面,并用橡胶刮板清除摆动范围内路面上的松散粒料; (5)让摆自由悬挂,提起摆头上的升举柄,将底座上垫块置于定位螺丝下面,使摆头上的滑溜块升高。放松紧固把手,转动立柱上升降把手,使摆缓缓下降。当滑块上的橡胶片刚刚接触路面时,既将紧固把手旋紧,使摆头固定。 (6)提取举升柄,取下垫块,使摆左右运动。然后,手提举升柄使摆慢慢向左运动,直至橡胶片的边缘刚刚接触路面。在橡胶的外边摆动方向设置标准尺,尺的一端正对准该点。再用手提起举手柄,使滑溜块向上抬起,并使摆继续运动至左边,使橡胶片返回落下再一次接触地面,橡胶片两次同路面接触点的距离应在126m m(既滑动长度)左右。若滑动长度不符合标准时,则升高或降低仪器底正面的调平螺丝来校正,但许调平水准泡,重复此项校核直至滑动长度符合要求,而后,将摆和指针置于水平释放位置。 校核滑动长度时应以橡胶片长边刚刚接触路面为准,不可以借摆力量向前滑动,以免标定的滑动长度过长。 6 校验结果判定处理 校验结束后,外观质量符合要求,把压力标定值、校核的滑动长度填入校验记录表。

气体扩散系数的测定

气体扩散系数的测定和计算 实验目的 1. 了解和掌握气体扩散系数测定的一般方法 2. 测定并计算气体扩散系数 实验原理 气体的扩散系数与系统的温度、压力以及物质的性质有关。对于双组分气体混合物,组分的扩散系数在低压下与浓度无关。测定二元气体扩散系数的常用方法有蒸发管发、双容积法、液滴蒸发法等。这里以蒸发管法为例进行说明。下图所示为蒸发管法测定气体扩散系数的装置。 将此装置置于恒温、恒压的系统内。测定时,将液体A 注入圆管的底部,使气体B 徐徐地流过关口。圆管中待测组分A 汽化并通过气层B ,组分A 扩散到管口处即被气体B 带走,使得管口处的浓度很低,可认为p A2为0,而液面处组分A 的分压p A1为在测定条件下的组分A 饱和蒸汽压。此过程可近似看作稳态过程。 若气体B 不能溶解于液体A 中,则该过程为组分A 通过停滞组分B 的稳态扩散过程。则组分A 的扩散通量为 )(21A A BM AB A p p zp RT p D N -?= 对组分A 物料衡算得 A A A M Ad N dzA θρ= 整理得

θ ρd dz M N A A A = 又该过程为稳态过程则有 θ ρd dz M p p zp RT p D N A A A A BM AB A =-?= )(21 对上式积分得 ?? -=z z A A A AB BM A zdz p p pM D RTp d 0)(210ρθθ 得 2)(2 0221z z p p pM D RTp A A A AB BM A --=ρθ 也即 2)(2 0221z z p p M p RTp D A A A BM A AB --=θρ 测定时,可记录一系列时间间隔与z 的对应关系,便可由上式计算出气体的扩散系数D AB 。 实验装置 1-加热器开关 2-真空泵开关 3-空气泵 4-水浴 5-温度计 6-加热器控制器 7-毛细管 8-游标卡尺 9-显微镜

摆式摩擦系数测定实施细则

摆式摩擦系数测定仪检测路面摩擦系数实施细则 一、准备工作 1、试验室接受委托、试验检测组接受试验检测任务。 2、出发前检查摆式仪的调零灵敏情况,是否定期对仪器进行了标定。 3、检查附件是否带齐全:备用橡胶片、滑动长度量尺(长126mm),喷水壶、硬毛刷、路面温度度、扫帚、记录表格等。 二、现场测试步骤 1、选点:在测试路段上,顺行车方向的左轮轮迹,选择有代表性的3个测点,每一测点相距约3~5m,距路面边缘不应小于1m 。 2、清洁路面:用扫帚或其他工具将测点处的路面打扫干净。 3、仪器调平: (1)将仪器置于测点上,并使摆的摆动方向与行车方向一致。 (2)转动调平螺丝,使水准泡居中。 4、调零: (1)放松固定把手,转动升降把手,使摆升高并能自由摆动,然后旋紧把手。 (2)将摆向右运动,按下释放开关。使卡环进入释放开关槽,并处于水平释放位置,然后松开释放开关,此时指针应被拨至紧靠拨针片。 (3)按下释放开关,摆向左运动,并带动指针向上运动,当摆达到最高位置后下落时,用左手将摆杆接住,此时指针应指零。若不指零时,可稍旋紧或放松毛毡圈调节螺母。重复本项操作,直至指针指零。调零允许误差为±1。 5、校核滑动长度: (1)用刷子清除摆动范围内路面上的松散颗粒和杂物。 (2)让摆自由悬挂,在橡胶片的外边平行摆动方向设置标准尺(126mm),放松紧固把手,转动升降把手。使摆缓缓下降,当滑溜块上橡胶片刚接触路面时,提起举升柄使滑溜块升高,将摆向右运动,并转动升降把手使摆下降一段距离,然后放下举升柄使摆慢慢向左运动,直至橡胶片的边缘刚刚接触路面,对正126mm尺的一端,再用手提起举升柄,使滑溜块向上抬起,并使摆继续向左运动,放下举升柄,再将摆慢慢向右运动使橡胶片的边缘再一次接触路面。橡胶片两次同路面的接触点的距离应为

纤维摩擦系数测定

实验十九辊轴式纤维摩擦系数测试 一、实验目的与要求 通过实验,熟悉Y151型纤维磨擦系数测定的结构,了解纤维磨擦系数测试的方法。 二、实验仪器与用具 Y151型纤维磨擦系数测定仪及附件(摩擦辊芯、预加张力夹、纤维成型板、铁夹子、金属梳片),镊子,塑料胶带,剪刀。 三、试样 化学纤维一种(涤纶、腈纶、锦纶、丙纶等)。 第2楼试验工发表于2005/04/03 14:13 四、实验方法与程序 (一)包制纤维辊 1.从试样中取出0.5g左右的纤维,用手扯法整理成一端平齐,纤维顺直的纤维束(见图19—1)(注意:在整理纤维过程中,手必须洗干净,而且只能握持纤维的两端不要接触纤维束的中段)。然后用手夹持纤维束的一端,用金属梳片梳理另一端,去掉纤维束中的纤维结和乱纤维,梳理完一端再倒过来梳理另一端。此时纤维片宽度约3cm,厚度约在0.5mm左右. 第3楼试验工发表于2005/04/03 14:14 图19—1 整理纤维 2.将纤维用镊子夹到纤维成型板上,并使纤维片一端超出成型板上端边缘2~3cm,将此超出部分折入成型板的下侧,用铁夹子夹住,如图19—2所示。 第4楼试验工发表于2005/04/03 14:14 图19—2 夹在成型板上 3.将成型板上的纤维片以金属梳片梳理整齐后,以塑料胶带沿成型板前端(不夹夹子一端)将纤维片粘住,粘的时候须注意,应以胶带的一半左右宽度粘住纤维,另一半宽度(3mm 左右)留着,胶带长度也应比纤维片宽度长,两端各留出5mm左右,粘在试验台上。如图19—3所示。 第5楼试验工发表于2005/04/03 14:14 图19—3 粘在胶带上 4.去掉夹子,抽出成型板,将弯曲的纤维剪掉,使留下的纤维长度在3cm左右。揭起粘在试验台上的塑料胶带右端,将其粘在金属辊芯顶端,旋转辊芯,以塑料带粘住的纤维片就卷绕在辊芯表面,如图19—4所示。卷绕时,应使用权纤维束的一端(粘住的一端)与金属辊子关端平齐。卷好后,将露出在辊芯头端外面的胶带折入端孔,以顶端螺丝的垫圈固定,再

材料热膨胀系数的测定

材料热膨胀系数的测定 1. 实验目的 1.1 掌握热机分析的基本原理、仪器结构和使用方法。 1.2 掌握热膨胀系数的概念以及测定方法。 2. 基本原理 物体的体积或长度随着温度的升高而增大的现象称为热膨胀。它是衡量材料的热稳定性好坏的一个重要指标。目前,测定材料线膨胀系数的方法很多,有示差法(或称“石英膨胀计法”)、双线法、光于涉法、重量温度计法等。在所有这些测试方法中,以示差法具有广泛的实用意义。 当物体的温度从T 1上升到T 2时,其体积也从V 1变化为V 2,则该物体在T 1一T 2的温度范围内,温度每上升一个单位。单位体积物体的平均增长量为平均体膨胀系数。从测试技术来说,测体膨胀系数较为复杂。因此,在讨论材料的热膨胀系数时,常常采用线膨胀系数,其意义是温度升高1℃时单位长度上所增加的长度,单位为cm ·cm ·℃-1 。 将试样装在装样管内用顶杆压住试样,顶杆与位移传感器接触,在加热炉中,通过精密温度控制仪按规定的升温速率加热试样到试验最终温度,并经位移传感器测量加热过程中试样的线膨胀情况.按下式计算由室温至试验温度的各温度间隔的线膨胀系数: 0 0001);(t t L L L t t --?=α 式中:0t —— 初始温度,℃; t —— 实际(恒定或变化)的试样温度,℃; 0L ——受测玻璃试样,在温度为0t 时的长度,mm ; L ——温度为t 时的试样长度,mm 。 若标称初始温度0t 为20℃;因此平均线性热膨胀系数就应表示为);C 20(t ?α。膨胀系数实际上并不是一个恒定的值,而是随温度变化的,所以上述膨胀系数都是具有在一定温度范围内的平均值的概念,因此使用时要注意它适用的温度范围。 3. 仪器与试剂 热机分析仪 XYW-500B

摩擦系数和局部阻力系数的测定详解

汕头大学实验报告 学院:工学院系:机电系年级: 14机电姓名:莫智斌学号:2014124066 组:¥ 实验四、摩擦系数和局部阻力系数的测定 实验小组成员:#####费玉洁,薛栋栋等五人计算:## 莫智斌校核:# 实验时间2016 年5 月5 日晚上8 时 一、实验目的和要求 摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。 二、主要仪器设备 伯努利实验仪 设备流程图

三、实验步骤 1.泵启动:首先对水箱进行灌水,然后关闭出口阀,打开总电源和仪表开 关,启动水泵,待电机转动平稳后,注意观察水箱水位是否稳定。 2. 静水压强:在水箱水位稳定、管路出口阀关闭的情况下,记录零流速水 位于表4。 3.流量调节:开启管路出口阀,调节流量,让流量从1 到3m3/h 范围内变 化。每次改变流量,待流动达到稳定后,在表4 记下对应测点的压差值。 4.实验结束:关闭出口阀,关闭水泵和仪表电源,清理装置。 四、实验数据记录 表4 阻力测定记录表格 实验日期:实验者莫智斌等六人设备号:ZB-3 型第2 号 1、2 号测头距离0.25 米;3、4号测头距离0.5米; 规格:大管内径:21.2mm, 水温:24.5 C ,零流速水位:582.1mm ,左小管内径12.9mm ,右小管内径: 13.4mm 序号各测头水位(mm)流量流量 l/s 1 2 3 4 5 6 体积/ml 时间/s 零流速58 58 2.5 582 .5 582 .5 581.5 581. 5 # # # 1 57 8.5 57 4.5 575 574 .5 573 566 1640 70 0.234

气体扩散系数测定

气体扩散系数的测定 实验目的 1.了解和掌握气体扩散系数测定的一般方法; 2.认识菲克定律; 3.测定并计算气体扩散系数; 4.求出液体表面蒸发的气体扩散系数。 实验原理 挥发性液体之气体扩散系数可藉由Winklemann's method来检测,在有限内径的垂直毛细管中保持固定的温度和经过毛细管顶部的空气流量,可确定液体表面的分子扩散到气体中的蒸气分压。 最小平方法或称最小平方差法 (least-squares method) 的最基础型——线型的 (linear).今有一组实验数据基本上呈现线型的态势,则若以表示直线方程式,其中代表斜率 (slope),代表截距 (intercept),则最小平方法就是在使误差的平方和达到最小,即使下式最小化(minimize),因此将上二式常规化(normalize) 得据此可由Cramer法则求出斜率和截距。其中是的平均值,是的平均值.一般而言,线性关系的良窈可由E值的大小来判断,但要注意值本身的大小.此外,统计学家尚有一个相关系数 (correlation coefficient) 的判断法,相关系数R可由计算得到。 气体的扩散系数与系统的温度、压力以及物质的性质有关。对于双组分气体混合物,组分的扩散系数在低压下与浓度无关。测定二元气体扩散系数的常用方法有蒸发管发、双容积法、液滴蒸发法等。这里以蒸发管法为例进行说明。下图所示为蒸发管法测定气体扩散系数的装置。 将此装置置于恒温、恒压的系统内。测定时,将液体A注入圆管的底部,使气体B徐徐地流过关口。圆管中待测组分A汽化并通过气层B,组分A扩散到管口处即被气体B带走,使得管口处的浓度很低,可认为p A2为0,而液面处组分A 的分压p A1为在测定条件下的组分A饱和蒸汽压。此过程可近似看作稳态过程。若气体B不能溶解于液体A中,则该过程为组分A通过停滞组分B的稳态扩散过程。则组分A的扩散通量为

干涉法测热膨胀系数

干涉法测热膨胀系数 【实验目的】 1、 了解迈克尔逊干涉仪的基本原理。 2、 采用干涉法测量试件的线膨胀系数。 【实验原理】 1、固体的线膨胀系数 在一定温度范围内,原长为0L (在0t =0℃时的长度)的物体受热温度升高,一般固体会由于原子的热运动加剧而发生膨胀,在t (单位℃)温度时,伸长量△L ,它与温度的增加量△t (△t=t-0t )近似成正比,与原长0L 也成正比,即: △L=α×0L ×△t (1) 此时的总长是: t L =0L +△L (2) 式中α为固体的线膨胀系数,它是固体材料的热学性质之一。在温度变化不大时,α是一个常数,可由式(1)和(2)得 t L L t L L L t 1 000??=-= α (3) 由上式可见,α的物理意义:当温度每升高1℃时,物体的伸长量△L 与它在0℃时的长度之比。α是一个很小的量,附录中列有几种常见的固体材料的α值。当温度变化较大时,α可用t 的多项式来描叙: α=A+Bt+C 2t +…… 式中A ,B ,C 为常数。 在实际的测量当中,通常测得的是固体材料在室温1t 下的长度1L 及其在温度1t 至2t 之间的伸长量,就可以得到热膨胀系数,这样得到的热膨胀系数是平均热膨胀系数α: ()() 12121 12112t t L L t t L L L -?=--≈ α (4) 式中1L 和2L 分别为物体在1t 和2t 下的长度,△21L =2L -1L 是长度为1L 的物体在温度

从1t 升至2t 的伸长量。在实验中我们需要直接测量的物理量是21L ?,1L ,1t 和2t 。 2、干涉法测量线膨胀系数 图1 干涉法线膨胀系数原理图 采用迈克尔逊干涉法测量试件的线膨胀系数如图1所示,根据迈克尔逊干涉原理可知,长度为L 1的待测试件被温控炉加热,当温度从t 1上升至t 2时,试件因线膨胀推动迈克尔逊干涉仪动镜(反射镜3)的位移量与干涉条纹变化的级数N 成正比,即: 2 λ N L =? (5) 式中λ 为激光的光波波长。 将式(5)带入式(4)得: () 1212t t L N -= λ α (6) 【主要技术参数】 1、He-Ne 激光器:功率约1 mW ,波长632.8 nm (可选); 半导体激光器:功率约1.5mW ,波长650nm (可选);

摆式摩擦系数测定仪使用说明书

一、说明 随着国家交通运输事业的蓬勃发展,国道及各省干线公路建设日新月异,为适应公路建设快速发展的需要,满足对公路检测设备的高要求,我公司与有关科研部门共同研制生产了用于路面质量检测的BM—III型摆式摩擦系数测定仪这一高科技产品。该产品对于高等级公路、城市道路及机场跑道抗滑性能的检测上了一个新台阶,可以与国外同类产品相妣美。该仪器调试方便,操作简单,测试数据准确,稳定性大大提高,并且室内外均可使用,是高等级公路等专用设备建设中不可缺少的检测仪器之一。 二、原理 BM—III型摆式摩擦系数测定仪是动力摆冲击型仪器。它是根据“摆的位能损失等于摆臂末端橡胶片在路面上滑动时,克服路面摩擦所做的功”这一基本原理研制而成。 三、结构 1、底座:由T型腿,调平丝和水准泡组成,对仪器起调平、支承作用。 2、立柱:由立柱、升降机构、导向杆及仪器把手组成,用于升降和固定摆头的位置。 3、释放开关:安装于悬臂上的开关,用于保持摆杆水平位置和释放摆落下的作用。 4、转向系统:包括紧固把手、摆轴、转向节和轴承,起联接摆,固定位置,保证在摆动平面内能自由摆动。 5、示数系统:包括指针毛毡圈、压紧盖、指针调节螺母及刻度盘,指针可直接指示出摆值。 6、摆头:由上下部接头、摆杆、弹簧、杠杆、举升柄、锤壳、滑溜块及橡胶片(76mm*25.4mm*6.35mm)组成,它对摆动中心有规定力矩,对路面有规定压力。本身前与后、左与右的力矩平衡,它是度量路面摩擦系数的尺度。摆式摩擦系数测定仪的结构照片如下图所示。 四、主要技术参数

1、摆质量: 1500±30g 摆重心距: 410±5mm 2、橡胶片对路面正向静压力: 2263g 3、摆从倾斜5度处自由放下到摆动停止的次数,应不少于70次。 4、橡胶片外边缘路摆动中心距离510mm。 5、仪器总重约12Kg左右。 五、使用方法 1、选点:在测试路段上,沿行车方向的左轮轮迹,选择有代表性的五个测点,每一测点相距约5—10m。 2、仪器调平: (1)将仪器置于测点上,并使摆的摆动方向与行车方向一致。 (2)转动调平螺丝使水准泡居中。 3、调零: (1)标定指针位置:将摆呈垂直向下状态,拨动指针使上部与拨针器上调节螺丝紧靠,此时指针指示的位置应与摆杆中心位置对正。否则应调整拨针器的调节螺丝使指针与摆杆中心位置对正,调节完毕应将调节螺丝上的并紧螺母并紧,以固定指针调节螺丝的位置。 (2)放松固定把手,转动升降把手使摆升高并呈自由摆动,然后旋紧固定把手。 (3)将摆向右运动,使定位卡环进入释放开关槽,使摆杆处于水平释放位置。同时,用左手拨动指针使之紧靠拨针器上的螺钉。 (4)按下释放开关摆向左运动,并带动指针向上运动。当摆达到最高位置后下落时,用左手接住摆杆,此时指针应指零。若不指零时,可稍紧或放松指针调节螺母,直到指针指零为止。 4、标定滑动长度: (1)用橡皮刷清除测试范围内路面上的松散颗粒和杂物。 (2)让摆自由悬挂,将标尺的中部对准摆杆,并使滑动标尺平行于测试方向并靠近橡胶片。 (3)放松固定把手,转动升降把手让摆缓慢下降并同时用右手提起举升柄使摆向右方移动,在标尺右端放下滑溜块使之接触路面并与标尺刻线对齐,然后

YBB00202003-2015 平均线热膨胀系数测定法.doc

YBB00202003-2015 平均线热膨胀系数测定法 Pingjunxianrepengzhangxishu Cedingfa Test for Coefficent of Mean Linear Thermal Expansion 本法规定了远低于转变温度的弹性固体玻璃的平均线热膨胀系数的测定方法。 本法适用于各种材料药用玻璃平均线热膨胀系数的测定。 定义 (1)平均线热膨胀系数α(t 0:t ) 在一定的温度间隔内,供试品的长度变化与温度间隔及供试品初始长度之比。用式(1)表示: ()00001:t t L L L t t --?= α 式中: t 0 —初始温度或基准温度,℃; t —供试品实际温度,℃; L 0 —试验时玻璃供试品在温度t 0的长度,mm ; L —供试品在温度t 时的长度,mm 。 本法规定标称基准温度t 0是20℃,因此平均线热膨胀系数表示为α(20℃:t )。 (2)转变温度t g 玻璃动态黏度为1012.3 Pa ·s 时的温度,该温度表示了玻璃由脆性状态向粘滞状态的转变,它相应于热膨胀曲线高温部分和低温部分两切线交点的温度。 仪器装置 (1)测量供试品的长度装置,精度为0.1%。 (2)推杆式膨胀仪(水平或垂直),能测出2×10-5L 0的供试品长度变化量(即2μm/100mm )。 测长计的接触力不应超过1.0N 。这个力通过平面与球面的接触起作用,球面当的曲率半径不应小于供试品的直径。在一些特殊的装置中需要平行平面。 承载供试品装置应确保供试品安放在稳固的位置上,在整个实验过程中供试品要与推杆轴在同一轴线上,防止有任何微小改变。 若承载供试品装置是用石英玻璃制造,见结果表示(2)中给出的注意事项。 应采用标准材料进行仪器性能试验,方法见仪器性能试验 (3)加热炉 加热炉应与膨胀仪装置相匹配,起温度上限要比预期的转变温度高50℃左右,加热炉相对于膨胀仪的工作位置在轴向和径向上应具有0.5mm 以内的重现性。 在试验温度范围内(即上限温度比最高的预期的转变温度t g 低150℃并至少为300℃),在整个供试品长度区间,炉温应能恒定在±2℃之内。 (4)炉温控制装置应符合升降速率为5℃/min ±1℃/min 控制要求。 (5)温度测量装置 在t 0和t 温度范围内,能准确测定供试品的温度,误差应小于±2℃之内。 供试品 (1)形状和尺寸

相关文档
最新文档