eo卫星激光反射器的结构设计

eo卫星激光反射器的结构设计
eo卫星激光反射器的结构设计

经典实验讲义-菲涅尔双面反射镜干涉 (测量实验)

菲涅尔双面反射镜干涉 (测量实验) 一、实验目的 观察双平面干涉现象及测量光波波长 二、实验原理 如附图7所示的是双面镜装置是由两块平面反射镜M 1和M 2组成,两者间夹一很小的 附图7 菲涅尔双面镜 角?。S 是与M 1和M 2的交线(图中以M 表示)平行的狭缝,用单色光照明后作为缝光源。从同一光源S 发出的光一部在M 1上反射,另一部分在M 2上发射,所得到的两反射光 是从同一入射波前分出来的,所以是相干的,在它们的重叠区将产生干涉。对于观察者来说,两束相干光似乎来自S 1和S 2,S 1和S 2是光源S 在两反射镜中的虚像,由简单的几何光学原理可证明,由S 光源发出的,后被两反射镜反射的两束相干光在屏幕上的光程差与将S 1、S 2视为两相干光源发出两列相干光波到达幕上的光程差相同。与双棱镜实验相似,根据双棱镜的实验中推导出的公式/xd D λ=?,亦可算出它的波长λ。 三、实验仪器 1、钠光灯(可加圆孔光栏) 2、凸透镜L : f=50mm 3、二维调整架: SZ-07 4、单面可调狭缝: SZ-22 5、双面镜 6、测微目镜Le (去掉其物镜头的读数显微镜) 7、读数显微镜架 : SZ-38 8、三维底座: SZ-01 9、二维底座: SZ-02 10、一维底座: SZ-03 11、一维底座: SZ-03 12、凸透镜: f=150mm 13、He —Ne 激光器(632.8nm) 14、白屏H : SZ-13 15、二维调整架: SZ-07 16、通用底座: SZ-01 17、通用底座: SZ-01

四、仪器实物图及原理图 图十一(1) 图十一(2) 五、实验步骤 1、把全部仪器按照图十一的顺序在平台上摆放好(图上数值均为参考数值), 靠拢后目测调至共轴。而后放入双面镜。 2、调节双面镜的夹角,使其与入光的夹角大约为半度,如图十一(2)。(亦 可用激光器替换钠灯,白屏H代替微测目镜,使细激光束同时打在棱边 尽量靠近的双面镜的两个反射镜上,在远离双面镜交棱的白屏上看到干 涉条纹。) 3、然后如图放入测微目镜,找到被双面镜反射的光线。调节单缝的宽度并 旋转单缝使它与双面镜的双棱平行,用测微目镜观察双平面反射镜干涉

基于STM32可视化倒车雷达的设计

基于STM32可视化倒车雷达的设计 摘要 为有效地解决驾驶员停车及泊车所面临视野盲区的困扰,提高驾驶安全系数。本文设计了一种基于STM32可视化倒车雷达的预警系统,该系统成本低、经济实用,是一种很人性化的设计。 倒车雷达又叫超声波倒车防撞系统。该系统核心是利用超声波技术测距,驾驶员倒车时系统能自动检测与障碍物的距离,并在LCD 上实时显示出来,当车辆与障碍物距离超出预先设定的范围,系统就会语音提示驾驶员作出正确的判断。实验结果表明:该系统能够及时预警,可降低交通事故的发生。 关键词STM32/超声波测距/LCD显示/语音提示 Design Of Visual Reversing Radar Based On STM32 ABSTRACT In order to effectively solve the driver parking and parking to face the vision of the blind area, and improve driving safety.This paper designs a visual reversing radar warning system based on STM32, the system is low cost, economical and practical, is a very user-friendly design. The reversing radar is also called ultrasonic reversing anti-collsion system. The core of the system is the use of ultrasonic ranging technology, when the driver backs up, the system can automatically detect the distance with obstacles, and display it on LCD in real time, When the distance between the vehicle and the obstacle exceeds the preset range, the system will voice prompt the driver to make a correct judgment. Experimental results show that the system can give early warning, and reduce the occurrence of traffic accidents. KEY WORDS STM32, ultrasonic distance measurement, LCD display, voice prompt 目录 摘要………………………I ABSTRACT ………………………II 1 绪论 (3) 1.1 课题的背景及意义 (3) 1.2 论文研究内容 (3) 2 可视化倒车雷达系统 (4) 2.1 倒车雷达系统构成及原理 (4) 2.2 倒车雷达的发展历程 (4) 3 基于STM32倒车雷达硬件电路设计 (6) 3.1 基于STM32倒车雷达硬件总体结构 (6) 3.2 STM32F103ZET6单片机 (6) 3.2.1 STM32F103ZET6单片机结构 (6) 3.2.2引脚定义及功能 (7) 3.3超声波测距电路模块 (8) 3.3.1 超声波测距功能及原理 (8) 3.3.2 超声波发射电路 (8) 3.3.3 超声波接收电路 (9) 3.4 LCD显示电路 (10) 3.4.1 LCD显示模块引脚及功能 (10) 3.4.2 STM32与LCD显示电路的接口电路 (11) 3.5 报警电路 (11) 3.5.1 蜂鸣器 (11) 3.5.2 STM32与蜂鸣器的接口电路 (12)

激光器的分类介绍

激光器的分类介绍 实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。在同一类型的激光器中又包括有许多不同材料的激光器。如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。最常用而范围广的有CO2laser及Nd:YAG激光。有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。如红宝石激光。而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。 (一)固体激光器 实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。 在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。由于工作物质很复杂,造价高。当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长 1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。 固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。聚光腔是使光源发出的光都会聚于工作物质上。工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。工作物质有2条主要作用:一是产生光;二是作为介质传播光束。因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。 (二)气体激光器 工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。 气体激光器大多应用电激励发光,即用直流,交流及高频电源进行气体放电,两端放电管的电压增压时可加速电子,带有一定能量,在工作物质中运动的电子

模块化雷达天线座结构设计

DOI:10.3969/j.issn.2095-509X.2015.08.013 模块化雷达天线座结构设计 孟 鹏 (中国电子科技集团公司第二十研究所,陕西西安 710068) 摘要:基于模块化、系列化的方法,研究确定方位-俯仰型雷达天线座的模块化结构形式。针对不同功能需求与工作环境,选配相应的功能模块。在满足基本功能要求的前提下,实现天线座结构模块化、系列化。 关键词:天线座;模块化设计;方位;俯仰 中图分类号:TH122 文献标志码:A 文章编号:2095-509X(2015)08-0062-03 天线座是支撑天线探测目标的装置,它通过天 线控制系统,使天线能够按照预定的规律运动,准 确指向目标,并精确测出目标的方位[1-2]。 模块化设计是在一定范围内的不同功能或相 同功能、不同性能和不同规格的产品进行功能分析 的基础上,划分并设计出一系列功能模块,通过模 块的选择和组合可以构成不同的产品,以满足市场 不同需求的设计方法[3-5]。 1 天线座模块化设计方案 天线座模块化设计时需综合考虑结构隐身性、 通用性和整体造型,在满足雷达功能要求的前提 下,对方位传动模块与俯仰传动模块进行设计改 进。 图1所示为经典的方位-俯仰型天线座三维 模型,图2、图3所示分别为俯仰传动模块与方位 传动模块三维模型。图1 方位 -俯仰型天线座图 2 方位传动 图3 俯仰传动 方位传动模块及俯仰传动模块设计涉及2个方面的内容:1)功能技术设计。模块设计在适应环境条件的前提下,要保证满足天线的转动范围、天线转动的角速度和角加速度、伺服系统的精度、天线座的刚度和强度、系统要求的外形尺寸和质量等要求,在本着经济性、通用性原则的基础上,最终实现设 备使用方便、维修容易、可靠性高、寿命长等目的。 收稿日期:2015-05-15 作者简介:孟鹏(1986—),男,陕西蒲城人,中国电子科技集团公司第二十研究所助理工程师,硕士,主要研究方向为电子结构设计。?26?2015年8月 机械设计与制造工程 Aug.2015第44卷第8期 MachineDesignandManufacturingEngineering Vol.44No.8

44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808 nm半导体激光器设计与制作 仇伯仓,胡海,何晋国 深圳清华大学研究院 深圳瑞波光电子有限公司 1. 引言 半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上 [1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为0.3 mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。 2.高功率激光结构设计 图1. 半导体激光外延结构示意图

半导体激光器的研究进展

半导体激光器的研究进展 摘要:本文主要述写了半导体激光器的发展历史和发展现状。以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。 一、引言。 激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。 半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。 本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。 二、大功率半导体激光器的发展历程。 1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。在1968—1970 年期间,美国贝尔实验室的Panish,Hayashi 和Sμmski成功研究了AlGaAs /GaAs单异质结激光器,室温阈值电流密度为8.6 × 103 A /cm2,比同质结激光器降低了一个数量级。

开放式雷达体系结构可实现网络中心性.

开放式雷达体系结构可实现网络中心性 MIT Lincoln实验室 2010年10月 摘要:第二代开放式雷达体系结构已得到发展并投入实践中。这一研究包括了:一个分层的架构,该架构将应用与下层的软硬件(如操作系统、中间件、通信网络以及计算机平台)分隔开;以及一套组件库,使该结构可用于一系列扩充的应用领域。库中组件或是新开发的组件可以很方便地被替换,再加上高度的硬件独立性,使应用这一体系结构搭建的系统能够方便地进行维护和升级。 1 介绍:开放式系统的特性 雷达传感器及相似的设备控制系统由十分基础的积木式组件发展而来,使用了专有的软硬件体系结构。这一开发模型通常费用昂贵,并且需要很长的设计与开发研制周期。因为系统的每个设备都要求使用独一无二的架构及支撑技术,这就使得大量各式雷达系统的维护和升级变得复杂并且昂贵。 采办改革的大力推进再加上越来越多地使用开放式系统(OS)和商用现货技术,这些都为国防采办项目的重大改变及成本降低铺平了道路。然而,开放式系统的优点不仅仅是控制开发成本,它还能缩短开发周期,以及更好地利用最新技术。 更进一步,OS有助于挑选通用架构、备用供应商以及更有竞争力的采购模型。可以看到,一个标准的开放式体系结构使雷达系统的开发过程合理化,并极大地提高了未来技术植入的机会。 OS具有以下显著特征:它通常是一个复杂系统,因为可分解成各个子系统,所以可控性更强;可进一步细化到组件。 OS中的部件通过定义良好的已发布的组件接口以一种可预测的方式进行交互。这一方法使得单个部件(如子系统或组件)在被替换后不会影响系统的其他部分,只要替换的部件符合已发布的互操作性能及接口。这里所描述的系统分解有以下主要优点:部件开发过程的可控性更强,因为只需更少的工程师和开发人员去研发既定的部件;部件测试起来更加

医学中常用的激光器

医学中常用的激光器 自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。由于激光的物理特性决定了其具有明显的生物学效应,。各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。 一.气体激光器 气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。 (2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。分 子激光器以二氧化碳(CO 2)激光器为代表,其他还有氢分子(H 2 ),氮分子(N 2 )和一氧化碳(CO)分子等激光 器。分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。氦镉激光器(激活介质为Cd+)等。离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。 气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。 1、氦氖激光器 氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。它的光束质量很好(发散角小,单色性好,单色亮度大)。激光器结构简单,成本低,但输出功率较小。氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。 氦氖激光器有三种结构形式:内腔式、外腔式和半内腔式。它们均由放电管、谐振腔、激励电源等三部分组成。以内腔式为例,放电毛细管是产生气体放电和激光的区域,它的内径很小,约在1到几毫米。电极A为阳极,由钨杆或钼(或镍)筒制成。阴极K为金属圆筒,由铝、钼、钽等制成,它们均有足够的电子发射能力和抗溅射能力。组成谐振腔的两块反射镜紧贴于放电管两端,并镀以多层介质膜。其中一个为全反射镜,另一个则为部分反射镜,整个谐振腔在出厂前已调整完毕,因此使用简单、方便。放电管的管径比放电毛细管粗几十倍,用以保持氦氖气压比及加固谐振腔。为了避免放电管变形而引起激光输出下降,内腔管的长度不宜过大,一般不超过一米。外腔式激光器可以更换不同的反射镜,使输出功率最大,光束发散角最小。也可在反射镜和放电管之间插入光学元件,以研究激光器的输出特性,调制它的频率或幅度,并可制成单频大功率激光器。 2、二氧化碳激光器 二氧化碳激光器的能量转换效率达20~25%(氦氖激光器的能量转换效率仅为千分之几)。它的输出波长为10.6微米,属于远红外区,连续输出功率可达万瓦级,常用电激励,结构比较简单紧凑,使用 方便,是目前最常用的激光器之一,在医学上,CO 2激光器作为手术刀使用日益引起人们的重视。CO 2 激 光器也用于皮肤科、外科、神经外科、整形外科、妇科和五官科的手术,在癌症的治疗上也有一定成效。 最常见的封离型内腔式二氧化碳激光器的管壳是由硬质玻璃或石英材料制成的。常见为三层玻璃套管结构,其最内层是放电管,中间层是水冷套,外层是储气管。在内外层之间有气体循环通路,这是为了保证混合气体的均匀分布而设计的。其光学谐振腔通常用平凹球面腔。球面镜可用石英或其他光学玻璃做基片,然后,在表面上镀层金属膜。平面镜是输出窗片,要求它对10.6μm的激光有很好的透过率,且表面不易损伤,机械性能好等。一般中小功率的激光器常常采用锗单晶做输出片,大功率的用砷化镓

红外感应开关上的菲涅尔镜片的原理和应用

菲涅尔镜片的原理和应用 菲涅尔镜片是红外线探头的“眼镜”,它就象人的眼镜一样,配用得当与否直接影响到使用的功效,配用不当产生误动作和漏动作,致使用户或者开发者对其失去信心。配用得当充分发挥人体感应的作用,使其应用领域不断扩大。 菲涅尔镜片是根据法国光物理学家FRESNEL发明的原理采用电镀模具工艺和PE(聚乙烯)材料压制而成。镜片(0.5mm厚)表面刻录了一圈圈由小到大,向外由浅至深的同心圆,从剖面看似锯齿。圆环线多而密感应角度大,焦距远;圆环线刻录的深感应距离远,焦距近。红外光线越是靠进同心环光线越集中而且越强。同一行的数个同心环组成一个垂直感应区,同心环之间组成一个水平感应段。垂直感应区越多垂直感应角度越大;镜片越长感应段越多水平感应角度就越大。区段数量多被感应人体移动幅度就小,区段数量少被感应人体移动幅度就要大。不同区的同心圆之间相互交错,减少区段之间的盲区。区与区之间,段与段之间,区段之间形成盲区。由于镜片受到红外探头视场角度的制约,垂直和水平感应角度有限,镜片面积也有限。镜片从外观分类为:长形、方形、圆形,从功能分类为:单区多段、双区多段、多区多段。 下图是常用镜片外观示意图:

下图是常用三区多段镜片区段划分、垂直和平面感应图。 当人进入感应围,人体释放的红外光透过镜片被聚集在远距离A区或中距离B区或近距离C 区的某个段的同心环上,同心环与红外线探头有一个适当的焦距,红外光正好被探头接收,探头将光信号变成电信号送入电子电路驱动负载工作。整个接收人体红外光的方式也被称为被动式红外活动目标探测器。 镜片主要有三种颜色,一、聚乙烯材料原色,略透明,透光率好,不易变形。二、白色主要用于适配外壳颜色。三、黑色用于防强光干扰。镜片还可以结合产品外观注色,使产品整体更美观。 每一种镜片有一型号(以年号+系列号命名),镜片主要参数:

激光机聚焦镜反射镜清洗技巧

激光机聚焦镜反射镜清洗技巧 如果您的激光机镜片出现掉膜,金属飞溅,凹痕,划伤,它的功能就大打折扣,要正常发挥激光机的功效就需要更换新的镜片 激光镜片安装注意事项: 1. 拿取镜片一定要戴指套或橡胶手套,因为手上的污垢和油滴会弄脏镜片,引起性能下降。 2. 不要用任何工具来拿取镜片,例如镊子等。 3. 镜片要放在镜头纸上,以避免损伤。 4. 不要把镜片放在粗糙或硬的表面,红外镜片很容易被刮伤。 5. 纯金或纯铜的表面不要清洁和触摸。 激光镜片清洗注意事项: 1. 用空气球把镜片表面浮物吹掉,注意:不要用工厂的压缩空气,因为其中含有大量的水和油,油和水会在膜层表面形成有害的吸收薄膜。 2. 用丙酮,丙醇沾湿棉签或棉球,轻轻地擦洗表面,注意避免用力地擦洗。要尽量快地划过表面,利于液体蒸发,不留下条纹。注意:1)用纸柄的棉签和高质量的外科棉球。 2)推荐用试剂级的丙酮或丙醇。 3. 适度地清洁中等的污染物(唾液,油滴)用白醋沾湿棉签或棉球,用很小的力擦洗表面,然后用干的棉签擦掉多余的白醋。接着立即用丙酮沾湿棉签或棉球,轻轻地擦拭表面,除去残留的醋酸。注意:1)只能用纸柄的棉签 2)用高质量的外科棉球 3)推荐用浓度6%的醋酸。 对于非常脏的镜片和前面清洗无效的镜片。如果膜层被擦掉,镜片就失去了它的功能。明显的颜色变化表示膜层的脱落。 1 . 强劲地清洗严重污染的镜片(飞溅)对于那些极度污染的镜片,我们用一种抛光膏来除去这些污染物。把抛光膏摇匀,倒4-5滴到棉球上,然后轻轻地在镜片上做圆周式的移动。不用向下压棉球,棉球的自重已足够。如果用太大的压力,抛光膏很快就会划伤表面。频繁地翻转镜片,避免在一个方向上过度抛光。抛光的时间应控制在30秒内。任何时间,发现颜色变化,立刻停止抛光,说明膜层的外部正在被腐蚀。没有抛光膏可以用牙膏。 2. 用蒸馏水沾湿一个新棉球,轻轻拭洗镜片表面,要全把镜片沾湿,尽可能多地除去残留的抛光膏。注意不要让镜片表面变干燥,这将很难再除去剩余的抛光膏。 3 . 迅速用丙醇沾湿一个起毛的棉签,轻轻地清洗整个镜片表面,尽可能多地除去残留的抛光膏。注意:如果镜片的直径超过2英寸,就用棉球代替棉签进行此步骤。 4 . 用丙酮沾湿一个起毛的棉签,轻轻地清洗镜片表面。除去上个步骤留下的抛光膏和丙醇。用丙酮进行最后的清洗时,棉签轻轻地拭过镜片 ,重叠进行,直道整个表面都被擦过。在最后一次擦洗时,慢慢地移动棉签确保表面的丙酮快速干燥。这样可以消除镜片表面的条纹。 5 . 干净镜片的检测最后一步是在阳光下,黑色背景上仔细检查镜片表面。如果发现还有抛光膏的残留,可以反复进行,直到它被彻底清除。注意:有些类型的污染或损伤是没有办法清除的,例如金属飞溅,凹痕等。如果发现镜片有如此类污染或损伤,那您需要反修或更换新的镜片了。

某雷达接收机箱结构设计

某雷达接收机箱结构设计 介绍了某型号雷达接收分机机箱的研制过程。通过内部器件的合理布局,用19英寸的机箱取代了初始设计的24英寸机箱,减小了体积;为满足机载条件下的冲击振动试验要求,对机箱进行了加固设计;合理制定散热方案解决了箱内器件的散热问题。经过产品的使用验证,此机箱的结构设计完全满足指标要求。 标签:接收机箱;加固设计;散热设计 1 引言 雷达结构设计是雷达研制过程中的一个重要环节,它对保证雷达的优良性和可靠性起着重要的作用。雷达的机动性、可靠性、安全性、环境适应性、工艺性等在很大程度上都通过结构设计来实现;雷达的造型、美观也取决于结构设计的水平。某雷达接收分机是该雷达的重要组成部分,受限于总体尺寸,机箱宽高有严格限制,而且是一个混装机箱,箱内既安装有不同种类的模块,又安装有普通插件及CPCI标准插件。接收分机安装在设备机柜内,要兼顾地面试验和挂装运七飞机使用条件,满足公路运输、飞机冲击、振动等要求。所以,接收机箱的设计既要保证内部设备的布局合理,又要保证机箱具在良好的刚强度,同时还要提供内部器件运行的良好环境。 2 结构设计 分机机箱结构布局如图1所示,机箱高6U。校正源模块设计成与变频接收模块相同的结构形式,与3个六通道变频接收模块、1个本振源模块一起占用9.5个面板宽度。频率源插件、模拟电源插件各占用2个面板宽度。CPCI标准的1个时序控制板、3个数据采集板及1个数字电源共需要6个面板宽度。接收分机共需要20个面板宽度,故选用19英寸的标准CPCI机箱进行改装设计。 图1 分机机箱布局 3 刚强度设计 为了兼顾地面试验和挂装运七飞机使用平台,满足公路运输、飞机冲击、振动等要求,将机箱上、下导轨分别设计成整体结构形式,如图2所示,且选用铝合金材料加工,以进一步增加刚强度。机箱左右侧壁采用5mm厚铝板加固。机箱内变频接收模块、校正源模块和本振源模块均设计成用锲形锁紧装置固定的机载固定方式。对于频率源插件和模拟电源插件,在前面板上均采用4个松不脱螺钉固定,为进一步加固,在机箱后部又增加了定位销座。 图2 整体式导轨 4 散热设计

菲涅尔光学屏幕的成像原理解析

菲涅尔光学屏幕的成像原理解析 背投光学屏幕目前广泛应用于大型会议室、指挥控制中心、培训教育、电视会议、展示厅、展览馆、礼堂、体育馆、音乐厅、超级市场、机场、车站、码头、自助餐厅、橱窗等场合,甚至各种环境光强烈的复杂环境。那么到底什么是为光学屏幕和菲涅尔光学屏幕,他们是如何成像的呢,于传统投影屏幕有什么区别呢? 1、光学屏幕定义 包含一个或多个光学镜头系统的投影屏幕称为光学屏幕,在镜头里面,光线被折射,方向发生了改变,只有背投屏幕能控制光线的方向,故只有背投屏幕才有光学屏幕。光线的方向取决于投影屏幕材料的折射系数及镜头的剖面形状。2、市面上有哪些光学背投屏幕 目前市面上主要菲涅尔光学屏幕有丹麦DNP公司的GWA巨型广角屏幕/NWA 新广角屏幕/Holo Screen/SIGMA西格玛屏幕、美国Stewart斯图尔特公司的/背投漫反射硬幕/BlackHawk Xtreme NEW/MicroWave背投光学屏幕/PowerView背投光学屏幕/OptaWave背投光学屏幕、丹麦SVS公司的WA1806背投光学屏幕/vision2000防滑伤光学屏幕、成都FSCREEN菲斯特公司的FL光学屏幕。 丹麦DNP公司是世界最著名的菲涅尔光学屏幕制造商,下面我们主要以DND公司菲涅尔光学屏幕为样本来解释器光学原理,其他公司的基本原理都差不多。 3、光学菲涅尔镜头 传统的镜头与菲涅尔镜头的区别如下图所示:

菲涅尔镜头中只有曲面是镜头中起作用的部分,若将其他部分去掉并拉平有效的镜头部分(如右图所示)就得到了一个菲涅尔镜头。镜头由CAD/CAM加工中心采用钻石切割,一块屏幕上,多达10,000种不同的镜头剖面,背投屏幕模具投资巨大,DNP公司是唯一拥有自己的模具厂的背投屏幕制造商。故DNP每一种系列的产品都有不同的焦距;每个剖面的尺寸=屏幕的点距(分辨率)。 4、菲涅尔镜头与柱状镜头工作原理及结合后工作原理示意图 菲涅尔及柱状镜头结合可达到180度水平观视角,DNP屏幕广角系列因此在全球获得巨大的市场占有率。成为多年来市场上最受欢迎的投影屏幕,适于各种应用场合。 菲涅尔与雾状透镜结合的屏幕也是DNP公司九种屏幕系列中的一种。它是专门为某些特殊应用而开发的,几年前就已投放市场。但由于视角不如广角屏幕系列,适用面较窄,DNP公司仅将其作为一种补充产品。 5、双层屏幕与单层屏幕的区别,双层屏幕具有以下几个特点: 有比单层屏幕更好的中心到边角的亮度均匀性; 非常适用于短距离投影 非常适用于多屏幕拼接。 6、DNP公司双层屏幕增高对比度的两种滤光系统工作原理图

激光振镜场镜原理(精)

光纤激光器原理: 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一 个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介 质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射 的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需 庞大的制冷系统,具有高转换效率,低阈值,光束质量好和窄线宽等优点。并且,光纤激光 器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点;超长的工作寿命和免维 护时间,平均免维护时间在10万小时以上。 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉冲,每单个脉冲有一个持续时间,比如 说 10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用 t 表示。这种激光器可以发出一连 串脉冲,比如,1 秒钟发出 10 个脉冲,或者有的就发出 一个脉冲。这时,我们就说脉冲重复(频)率前者 为 10,后者为 1,那么,1 秒钟发出 10 个脉冲,它的脉冲重复周期为 0.1 秒,而 1 秒钟发出 1 个脉 冲,那么,它的脉冲重复周期为 1 秒,我们用 T 表示这个脉冲重复周期。 如果单个脉冲的能量为 E , 那么 E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦), T = 0.1 秒, 那么, 平均功率 P 平均 = 50 mJ/0.1 s = 500 mW 。 如果用 E 除以 t ,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的 例子中 E = 50 mJ, t = 10 ns, P 峰值 = 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度 t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P 峰值功率=E/t

半导体激光器的设计

半导体激光器设计 半导体激光器产生激光的机理,即必须建立特定激光能态间的粒 子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和 其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广 泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈 发明显,光谱范围宽, 相干性增强,使半导体激光器开启了激光应用 发展的新纪元。 1半导体激光器的工作原理 激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具 备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在 半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处 在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠 给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子 数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内 得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自

然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F—p腔 (法布里一珀罗腔)半导体激 光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面 一[110]面构成F—P腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出. 可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。 1.2 双异质结基本结构 将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm 的半导体激光器在室温下能连续工作。 图表示出双异质结激光器的结构示意图和相应的能带图在正向 偏压下

半导体激光器工作原理

半导体激光器工作原理 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb (锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。

目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 1.波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 2.阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数十毫安。 3.工作电流Iop:激光二极管达到额定输出功率时的驱动电流,此

菲涅尔透镜的原理及应用

菲涅尔透镜的原理及应用 (国防科大理学院光学小组第六组) [摘要] 菲涅尔透镜多是由聚烯烃材料注压而成的薄片,镜片表面一面为光面,另一面刻录了由小到大的同心圆。菲涅尔透镜的在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。菲涅尔透镜可按照光学设计或结构进行分类。菲涅尔透镜作用有两个:一是聚焦作用;二是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。 [关键词] 菲涅尔透镜;原理;分类;应用;研究与发展状况 本文主要从菲涅尔透镜的历史,基本原理,分类,作用,应用以及国内外的研究与发展状况等方面完整介绍了菲涅尔透镜的相关知识。 1.简介 菲涅尔透镜 (Fresnel lens),又称螺纹透镜,是由法国物理学家奥古斯汀·菲涅尔(Augustin·Fresnel)发明的,他在1822年最初使用这种透镜设计用于建立一个玻璃菲涅尔透镜系统——灯塔透镜。菲涅尔透镜多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是利用光的干涉及扰射和根据相对灵敏度和接收角度要求来设计的,透镜的要求很高,一片优质的透镜必须是表面光洁,纹理清晰,其厚度随用途而变,多在1mm左右,特性为面积较大,厚度薄及侦测距离远。

菲涅尔透镜 菲涅尔透镜作用有两个:一是聚焦作用;二是将探测区域内分为若干个明区和暗区,使进入探测区域的移动物体能以温度变化的形式在PIR上产生变化热释红外信号。菲涅尔透镜的在很多时候相当于红外线及可见光的凸透镜,效果较好,但成本比普通的凸透镜低很多。多用于对精度要求不是很高的场合,如幻灯机、薄膜放大镜、红外探测器等。 2.菲涅尔透镜的历史 通过将数个独立的截面安装在一个框架上从而制作出更轻更薄的透镜,这一想法常被认为是由布封伯爵提出的。孔多塞(1743-1794)提议用单片薄玻璃来研磨出这样的透镜。而法国物理学家兼工程师菲涅尔亦对这种透镜在灯塔上的应用寄予厚望。根据史密森学会的描述,1823年,第一枚菲涅尔透镜被用在了吉伦特河口的哥杜昂灯塔(Phare de Cordouan)上;透过它发射的光线可以在20英里(32千米)以外看到。苏格兰物理学家大卫·布儒斯特爵士被看作是促使英国在灯塔中使用这种透镜的推动者。 3.菲涅尔透镜的基本原理 菲涅尔透镜的工作原理十分简单:假设一个透镜的折射能量仅仅发生在光学表面(如:透镜表面),拿掉尽可能多的光学材料,而保留表面的弯曲度。

雷达组成及原理

雷达的组成及其原理 课程名称:现代阵列并行信号处理技术 姓名:杜凯洋 教师:王文钦教授 一.简介 雷达(Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类可分为:脉冲雷达和连续波雷达。 (4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段雷达。 (5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。 二. 雷达的组成 (一)概述 1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状, 波束形状,扫描方式)。

2、收发开关:收发隔离。 3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。 4、接收机:超外差,高频放大,混频,中频放大,检波,视频放大等。(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。 5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测判决之前完成(MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。 6、显示器(终端):原始视频,或经过处理的信息。 7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式)才有)。 (二)雷达发射机 1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件) 图2-1 单级振荡式发射机 (1)定时器提供以 T为间隔的脉冲触发信号 r (2)脉冲调制器:在触发脉冲信号激励下产生脉宽为τ的大功率视频脉冲信号。 (3)功率射频振荡器:产生大功率射频信号。

半导体激光器设计

半导体激光器设计 摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,使半导体激光器开启了激光应用发展的新纪元。 关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器 、八— 0刖言 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD), 是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化傢(GaAs),硫化镉(CdS)等,激励方式主要有电注入式,光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结双异质结,量子阱(单,多量子阱)等多种形式。半导体激光器因其波长的扩展,高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展.半导体激 光器的体积小,重量轻,成本低,波长可选择,其应用遍布临床,加工制造,军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 1半导体激光器的工作原理 1.1激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激

相关文档
最新文档