断路器与隔离开关异常与事故处理

断路器与隔离开关异常与事故处理
断路器与隔离开关异常与事故处理

断路器及隔离开关异常处理

一、断路器异常处理

1.SF6断路器SF6气体压力低的处理

①断路器SF6气体泄漏引起

如断路器SF6气体漏气,压力不低于闭锁值时,但发出“SF6气体压力过低”报警信号,则说明有压力异常,应记录记录压力值,此时应并加强监视,并通知相关部门处理。

如断路器SF6气体严重漏气,压力低于闭锁值并发出闭锁信号时,不能对断路器进行分合闸。应立即断开该断路器操作电源,与调度联系将负荷转移出去,并采取措施将故障断路器隔离。处理前室应开启通风装置,待15min后可进入,接近设备时应戴防毒面具及穿防护服。

②SF6气体密度继电器或表计失灵引起

将表计的数值与当时环境温度折算到标准温度下的数值比较判断,确认SF6断路器压力低因密度继电器故障原因、表计指示不正确原因引起,应通知专业人员处理。

2.断路器拒绝合闸的处理

①控制或合闸电源消失:如果是控制电源空开(熔断器)或合闸电源空开(熔断器)跳开(熔断),应合上(更换)控制电源空开(熔断器)或合闸电源空开(熔断器),正常后,对断路器进行合闸;如果是控制或合闸回路其他原因引起,且不能查找到故障或查到故障后运行人员不能处理的,应通知专业人员处理。

②就地操作切换开关在“就地”位置:将操作切换开关由“就地”位置切换至“远方位置。

③直流母线电压过低:调节蓄电池组端电压,使电压达到规定值。

④SF6压力过低闭锁:确认SF6气体压力过低后,应通知专业人员处理,在未处理正常前,严禁对断路器进行合闸操作。

⑤液压压力过低闭锁:确认液压压力过低后,应通知专业人员处理,在未处理正常前,严禁对断路器进行合闸操作。

⑥弹簧未储能:若是储能电源空开跳开,应立即合上储能电源空开进行储能,如其他原因不能查找但又及需送电的,应断开储能电源开关后进行手动储能,储能正常后即可进行合闸,若弹簧储能系统零部件故障不能手动储能则通知专业人员处理。

⑦其他不能处理的故障:作缺陷上报调度及相关部门,通知相关专业人员处理。

3.断路器拒绝分闸的处理

①控制电源消失:如果是控制电源空开(熔断器)跳开(或熔断),应合上(更换)控制电源空开(熔断器),正常后,对断路器进行分闸;如果是控制回路其他原因引起,且不能查找到故障或查到故

障后运行人员不能处理的,应通知专业人员处理。

②就地操作切换开关在“就地”位置:将操作切换开关由“就地”位置切换至“远方位置。

③直流母线电压过低:调节蓄电池组端电压,使电压达到规定值。

④SF6压力过低闭锁:确认SF6气体压力值低于闭锁值后,应通知专业人员处理,在未处理正常前,严禁对断路器进行分闸操作,并断开该断路器的操作电源空开或取下操作电源熔断器,以防该断路器跳闸时因灭弧能力达不到要求,损坏该断路器或该断路器产生爆炸。

⑤液压压力过低闭锁:确认液压压力过低后,应通知专业人员处理,在未处理正常前,严禁对断路器进行分闸操作。

⑥弹簧未储能:若是储能电源空开跳开,应立即合上储能电源空开进行储能,如其他原因不能查找的,应断开储能电源开关后进行手动储能,储能正常后即可进行分闸,若弹簧储能系统零部件故障不能手动储能则通知专业人员停电进行处理。

⑦其他不能处理的故障:作缺陷上报调度及相关部门,通知相关专业人员处理。

4.断路器分合闸闭锁的处理

①油泵电动机交流失压引起:检查电机电源回路是否有故障,如是电机电源空开跳开,应立即合上。并用万用表检查电动机三相交流电源是否正常。正常后,使电动机打压至正常值;若是电动机烧坏、机构损坏或其他故障,值班员不能处理时,应通知专业人员处理。

②弹簧机构未储能引起:应检查其电源是否完好,如电源空开跳开,应立即合上并进行电动储能;如电机烧坏或电源回路引起的故障,在不能进行电动储能时,应在断开电机电源后,进行手动储能;如属于弹簧机构问题,不能手动储能时,应通知专业人员处理。

③SF6气体压力低引起;确认SF6气体压力值低于闭锁值后,应通知专业人员处理,在未处理正常前,严禁对断路器进行分闸操作,并断开该断路器的操作电源空开或取下操作电源熔断器,以防该断路器跳闸时因灭弧能力达不到要求,损坏该断路器或该断路器产生爆炸。

④保护动作闭锁断路器合闸回路使其不能合闸:应查明原因,复归保护动作信号解除闭锁,根据调度的命令进行处理。

⑤控制回路故障引起:

?若断路器就地控制箱“远方/就地”切换开关置于“就地”位置或触点接触不良,则可将“远方/就地”切换开关切至“就地”位置或将控制开关重复操作两次,若触点回路仍不通,应通知专业人员处理。

?若是控制回路问题,应重点检查控制回路易出现故障的位置,如同步回路、控制开关、合闸线圈、分相操作箱继电器等,对于二次回路问题,一般应通知专业人员进行处理。

5.断路器误跳闸的处理:

若系统无短路或直接接地现象,发生断路器自动跳闸,则称为断路器偷跳或误跳。断路器误跳的原因及处理方法如下:

①保护误动或误整定:确认设备、线路及电网系统无故障、直流系统无接地的情况下,检查保护装置是否有异常,如有异常,则判断为保护装置误动作。应通知专业人员处理;如保护装置正常,应打印保护装置定置与调度下发且正在执行的保护定置书核对,检查保护装置设置的定置是否正确,定置错误时应通知专业人员处理。

②电流、电压互感器回路发生故障:确认电流、电压互感器回路发生故障引起断路器误跳时,应通知专业人员处理。

③直流系统发生两点接地:确认断路器误跳为直流两点接地引起时,应查找直流接地点并消除,向调度申请对该断路器进行合闸送电;查找时应做好安全措施,接地点不能找到时应通知专业人员来处理。

④机械故障引起:排除断路器故障原因,立即向调度申请对该断路器进行合闸送电。无法排除故障的向调度申请停电检修。

⑤人为误碰、误动、误操作或受机械外力引起:应排除断路器故障原因,立即申请对该断路器进行合闸送电。

6.液压机构压力异常的处理

①油泵启动频繁,压力不能保持:若查明机构部或外部有明显漏油,其油位箱低于下限,应停电处理或采取措施后带电处理;若机构没有明显漏油,检查确认漏氮气时,应停电处理或采取措施后带电处理。

②压力表指示不断升高:说明高压油串入氮气中,应通知专业人员处理。

③打压超时:检查液压部门有无漏油,油泵是否有机械故障,压力是否升高超过规定值,若液压异常升高,应立即切断油泵电源,并通知专业人员处理。

④液压机构突然失压:立即断开电机电源及断路器操作电源。严禁操作。汇报调度,如能倒负荷的,根据命令,将负荷倒换出去,并采取措施后将故障断路器隔离。利用断路器上的机械闭锁装置,将断路器锁紧在合闸位置上。

7.断路器合闸直流电源消失的处理

①合闸电源空开跳开或合闸电源熔断器熔断;重新合上合闸电源空开或更换合闸电源熔断器。

②其它原因:检查合闸回路有无明显故障(如合闸线圈、合闸继电器、辅助开关等)现象,可将直流电源开关试合一次。如试合成功,则说明正常。如合闸电源再次跳开或合闸熔断器再次熔断,则说明直流回路确有问题,应申请调度停用该断路器重合闸,并通知专业人员进行处理。

二.隔离开关接触部分发热

1.隔离开关接触部分发热

(1)隔离开关发热的判断:在巡视设备时,对隔离开关接触部分,可根据其触头部分的热气流、发热或变色,并没测得其触头部分的温度是否超过70℃等方法来判断其发热的情况。

(2)隔离开关发热的处理

造成发热的原因通常是压紧的弹簧式螺柱式松动或表面氧化等。根据不同的接线方式分别进行处理。

①双母线接线方式时

若系母线侧隔离开关发热,则应将该回路倒至另一组母线运行,然后拉开发热的隔离开关。

在检修发热的隔离开关时,应将母线停电,同时其回路的断路器也应停电,可以用旁路断路器代其运行,若无旁路断路器时,则应将该回路停电。

②单母线接线方式时

若系母线侧隔离开关发热,应汇报调度,要求减轻负荷。若有旁路断路器,应用旁路断路器代其运行,若无旁路断路器,最好将该线路停电。若因负荷关系不能停电又不能减轻负荷时,须加强监视,当其发热到比较严重的程度时,应将其作事故处理,即断开其断路器。

当检修发热的隔离开关时,应将该母线停电,即造成该母线上的回路全部停电,或者该母线不停电,采取带电作业的办法。

2.隔离开关瓷瓶有裂纹、破损

其损坏程度不严重时,可以继续运行,但是隔离开关瓷瓶有放电现象或者其损坏程度严重时,应将其停电。在该隔离开关操作中,应注意不要带电拉开,防止操作时瓷瓶断裂造成母线或线路事故。例如,其回路的母线侧隔离开关瓷瓶严重损坏,应该将其所在母线停电,断开该回路断路器和线路侧隔离开关,最后拉开该隔离开关。

3.隔离开关不能分、合闸

出现这种情况,应分析其原因,禁止盲目强行操作,不同的故障原因应采取不同的方法处理。

(1)若系防误装置(电磁锁、机械闭锁、电气回路闭锁、程序锁)失灵,运行人员应检查其操作程序是否正确。若其程序正确应停止操作,汇报站长,站长判断确系防误装置失灵,方可解除其闭锁进行操作,或作为缺陷处理,待检修人员处理正常后,方可操作。

(2)若系操作开关操动机构(如电动机控制电源回路故障)问题,应将其处理恢复正常后进行操作,不能处理或电动操作机构的电机故障时,可以改为手动操作。但应注意,在手动操作时,应将电机电源断开后进行。避免电机突然转动伤到操作人员。

(3)若系隔离开关本身传动机械故障而不能操作时,应汇报调度,要求将其停电处理。

(4)若冰冻或锈蚀影响正常操作时,不要用很大的冲击力量,而应用较小的推动力量去克服不正

常的阻力。

(5)在操作时,发现隔离开关的刀刃与刀嘴接触部分有抵触时,不应强行操作,否则可能造成支持瓷瓶的破坏而造成事故,此时应将其停用进行处理。

线路事故处理

第1条线路保护原理

线路的保护有纵联保护(包括光纤差动保护、高频保护)、距离保护、接地保护、三段式电流电压保护。

线路的纵联保护:当线路发生故障时,使两侧开关同时快速跳闸的一种保护装置,是线路的主保护。它以线路两侧判别量的特定关系作为判据。即两侧均将判别量借助通道传输到对侧,然后,两侧分别安装对侧与本侧判别量之间的关系来判别区故障或区外故障。

1.1 纵联电流差动保护

线路的各侧保护将CT输入的各电流按600Hz采样经滤波后换算为数字数据,通过复用通道(或者专用光缆)送至对侧保护。各侧保护利用本地和对侧电流数据按相进行电流差动计算。根据电流差动保护的制动特性方程进行判断,判为部故障时动作跳闸,判为外部故障时保护不动作。如下图采用专用光纤通道时,装置的同步通信时钟采用“主-从”时钟方式。即两侧保护中一侧采用部时钟(主时钟),另一侧保护则设置成从时钟。

采用复用数字通信系统数据通道或直接复接2M接口到时,两侧电流差动保护装置的时钟均应设置为从时钟方式,均取系统同步时钟。

不论通信通道采用专用光纤通道还是复用数字通道,两侧的电流差动保护必须一侧设为参考端,另一侧设为同步端。

数字式电流差动保护系统构成示意图

光纤作为继电保护的通道介质,具有不怕超高压与雷电电磁干扰、对电场绝缘、频带宽和衰耗低等优点。而电流差动保护原理简单,不受系统振荡、线路串补电容、平行互感、系统非全相运行、单侧电源运行方式的影响,差动保护本身具有选相能力,保护动作速度快,最适合作为主保护。

光纤保护按原理划分,主要有光纤电流差动保护和光纤闭锁式、允许式纵联保护两种。

1.2 光纤电流差动保护

光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,提高了运行的可靠性,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点,是其他保护形式所无法比拟的。光纤电流差动保护在继承了电流差动保护优点的同时,以其可靠稳定的光纤传输通道,保证了传送电流的幅值和相位正确可靠地传送到对侧。时间同步和误码校验问题,是光纤电流差动保护面临的主要技术问题。在复用通道的光纤保护上,保护与复用装置时间同步的问题,对于光纤电流差动保护的正确运行起到关键的作用,因此目前光纤差动电流保护都采用主从方式,以保证时钟的同步。

1.3 光纤闭锁式、允许式纵联保护

光纤闭锁式、允许式纵联保护是在目前高频闭锁式、允许式纵联保护的基础上演化而来,以稳定可靠的光纤通道代替高频通道,从而提高保护动作的可靠性。光纤闭锁保护的鉴频信号能很好地对光纤保护通道起到监视作用,这比目前高频闭锁保护需要值班人员定时交换信号,以鉴定通道正常可靠与否灵敏了许多,提高了闭锁式保护的动作可靠性。此外,由于光纤闭锁式、允许式纵联保护在原理上与

目前大量运行的高频保护类似,在完成光纤通道的敷设后,只需更换光收发讯号机即可接入目前使用的高频保护上,因此具有改造方便的特点。与光纤电流纵差保护比较,光纤闭锁式、允许式纵联保护不受负荷电流的影响,不受线路分布电容电流的影响,不受两端TA特性是否一致的影响。如光纤网络能有效解决双重化的问题,光纤闭锁式、允许式纵联保护就将逐步代替高频保护,在超高压电网中得到广泛应用。

1.4 高频保护

在高压和超高压输电线路上发生任何类型的短路,都必须无时限地快速切除。一般的电流、电压保护和距离保护,由于它们只反映被保护线路一侧的电量,不可能无时限快速地切除全线路上的短路。高频保护就可以做到这一点。

1.4.1 高频保护的概念

高频保护:就是故障后将线路两端的电流相位或功率方向转化为高频信号,然后利用输电线路本身构成一高频电流通道,将此信号送至对端,以比较两端电流相位或功率方向的一种保护。

1.4.2 高频保护的组成

高频保护由继电保护部分,高频收、发信机和高频通道组成。

(1) 继电保护部分的作用:对由被保护线路输入的电气量根据高频保护的原理进行处理,如把电气量处理成相位、方向、大小等,以达到继电保护的各种目的;

(2) 高频收发信机:发送和接受高频信号。为了使保护所需的信号由高频通道进行传送,高频发信机必须将保护所需要的信号进行调制,变成高频信号,经通道传送到到对侧,在收信机中再将高频信号调解为保护所需的信号;

(3) 高频通道:将被保护线路一侧反映其运行特征的高频信号,传输到被保护线路的另一侧。

在电力系统中,高频通道通常由输电线路本身兼任。

正常监视通道的完好性,以保证一旦在外部出现短路时,通道能及时发送闭锁信号,这是至关重要的。

1.5 高频保护的类型

相差高频保护、高频方向保护、高频闭锁距离保护、高频远方跳闸保护。

1.6 高压输电线载波通道的构成

1.6.1输电线路用来作载波通道时必须在输电线路上装设专用的加工设备,将同时在输电线路上传送的工频和高频电流分开,并将高频收、发信机与高压设备隔离,以保证二次设备和人身的安全。高频收、发信机通过结合电容器接入输电线路的方式有两种,一种连接方式是高频收、发信机通过结合电容器连接在输电线路两相导线之间,称为“相—相”制,另一种连接方式是高频收、发信机通过结合电容器连接在输电线一相导线与之间,称为“相—地”制。

1.6.2 目前,我国一般采用“相—地”制。它的高频加工设备包括高频阻波器、耦合电容器、结合滤波器、高频电缆等。

(1) 高频阻波器

串接在输电线路的工作相中,要求它对工频的阻抗很小,一般小于0.04Ω,使工频电流畅通;而对高频载波电流具有很高阻抗,其值大于1000Ω,从而防止高频信号外流,并有效地送到对方,以免产生不必要的损耗和造成对其他高频通道的干扰。高频阻波器是由电感和电容组成的并联谐振回路,当调谐在所选用的载波频率时,可达到上述要求;

(2) 结合滤波器和耦合电容器

结合滤波器和耦合电容器构成一个带通滤波器,连接于高压输电线路与高频电缆之间。当在其带通围的高频信号通过时,所产生的衰耗应为最小;当工频电流通过时,则产生的衰耗应尽量大,从而能使工频电流截止,而高频信号能高效率地通过;

(3) 高频电缆

高频电缆是将位于主控室的高频收、发信机与户外变电站的带通滤波器连接起来的导线,以便用最小的衰耗传送高频信号。从主控室到室外带通滤波器这段距离虽然不远,但因高频电缆所传送的信号频率很高,因此要采用单芯式同轴电缆。

(4) 接地刀闸

是高频通道的辅助设备,在调整或检修高频收发信机和连接滤波器时,将其接地,以保证人身安全。

1.7 方向高频保护

1.7.1 工作原理

方向高频保护是通过高频通道间接地比较被保护线路两侧的功率方向,以判别是被保护线路部短路还是外部短路。被保护线路两侧都装有方向元件。当被保护线路部故障时,两侧短路功率方向都由母线指向线路,方向元件均反应为正方向,两侧都不发高频闭锁信号,线路两侧的断路器立即跳闸。当被保护线路外部故障时,近短路处一侧的短路功率方向由线路指向母线,方向元件反应为反方向,它不仅使该断路器拒跳,而且发出高频闭锁信号送至线路的对侧;对侧的短路功率方向则由母线指向线路,方向元件虽反应为正方向,但由于收到了近短路侧发出的高频闭锁信号,这一侧断路器也不跳闸。这种方向高频保护,由于反应反向短路的一侧发出的高频闭锁信号,闭锁了反应为正方向短路一侧保护的断路器跳闸回路,所以称之为闭锁信号原理构成的方向保护,简称高频闭锁方向保护。

1.7.2 高频闭锁方向保护的优缺点

(1) 构成简单,在全相运行的情况下,能正确反应各种不对称短路;

(2) 保护不反应系统全相振荡;

(3) 在有串联补偿电容的线路上,保护的动作情况与串补电容的位置、补偿程度以及串补电容的保

护间隙不对称击穿有关;

(4) 超高压远距离输电线路上的分布电容,对高频闭锁方向保护的正确工作有较大影响。特别是自一侧空载合闸时的电容电流,使负序方向元件往往误动作;

(5) 电压回路断线时,将影响高频闭锁方向保护的正确工作;

(6) 负序方向元件在两侧同一相断线线路上发生短路时,拒动的可能性很大。

1.8 高频闭锁距离保护

1.8.1 工作原理

利用距离保护的起动元件和距离方向元件控制收发信机发出高频信号,闭锁两侧保护的原理构成的保护,即构成高频闭锁距离保护。

当线路部故障时,两侧起信元件都动作,两侧停信元件均感受到故障在正方向而动作,发信机无输出,两侧发信机处在停信状态。两侧收信机均收不到高频电流信号因而无输出,两侧距离保护动作并开放高频闭锁,两侧保护瞬时动作切除故障。

当线路外部故障时,两侧起信元件都动作。近故障侧停信元件感受到故障在正方向而动作,发信机无输出,该侧发信机处在停信状态。而离故障较远的一侧的停信元件感受故障在反方向,故不动作,起动发信机发信。近故障侧的本侧距离保护虽已动作,但因收信机收到了对侧发信机发来的高频电流信号,故高频速跳回路不动作;而离故障较远的一侧的收信机同时又收到本侧发信机发出的高频信号,因此,高频速跳回路也不动作。

1.8.2 高频闭锁距离保护的优缺点

(1) 能足够灵活和快速地反应各种对称或不对称故障;

(2) 高频保护退出,仍可保持后备保护的功能;

(3) 电压二次回路断线时,保护会误动作,需采取断线闭锁措施,使保护退出运行。

1.8.3 距离保护

(1)距离保护:反应故障点倒保护安装处的距离,并根据该距离的远近确定动作时间的一种继电保护装置。Ⅰ、Ⅱ段可做为线路的主保护。一般采用三段式阶梯时限特性,但各段保护围基本不随运行方式而改变。

是利用阻抗元件来反应短路故障的保护装置。因阻抗元件反应接入该元件的电压与电流的比值(U/I=Z),即反应短路故障点至保护安装处的阻抗值,而线路的阻抗与距离成正比,所以称这种保护为距离保护或阻抗保护。

(2)距离保护Ⅰ段只能保护线路的80%~85%,不能保护线路全长。动作阻抗按线路末端短路的条件来整定。

(3)距离保护Ⅱ段可以保护线路全长,而且保护下一线路的一部分。动作阻抗按躲过最小负荷阻

抗整定。

(4)距离保护Ⅲ段保护线路全长,甚至下一线路的全长。

1.8.4 接地保护

大电流接地系统中,输电线路的接地保护主要有纵联保护(相差高频、高频方向)、接地距离、零序保护等。

(1)接地距离保护:

接地距离保护的最大优点,是瞬时段的保护围固定,还可以比较容易获得有较短延时和足够灵敏度的第二段接地保护。特别适合于短线路的一、二段保护。对短线路说来,一种可行的接地保护方式,是用接地距离保护一、二段再辅之以完整的零序电流保护。两种保护各自配合整定,各司其责:接地距离保护用以取得本线路的瞬时保护段和有较短时限与足够灵敏度的全线第二段保护;零序电流保护则以保护高电阻故障为主要任务,保证与相邻线路的零序电流保护间有可靠的选择性。

(2)零序保护:

零序电流方向保护是反应线路发生接地故障时零序电流分量大小和方向的多段式电流方向保护装置,这种接地保护装置作为基本保护。零序电流方向保护具有原理简单、动作可靠、设备投资小,运行维护方便、正确动作率高等一系列优点。

零序保护有全相时的灵敏Ⅰ段、Ⅱ段、Ⅲ段、Ⅳ段;非全相时的瞬时动作的不灵敏Ⅰ段和带延时的不灵敏Ⅱ段。

(3)Ⅰ段、Ⅱ段、Ⅲ段、Ⅳ段的整定原则

零序Ⅰ段按躲过下一线路出口处单相或两相接地短路时可能出现的最大零序电流来整定的。

零序Ⅱ段的起动电流首先考虑和下一线路零序电流Ⅰ段相配合,并长一个时限,以保证动作的选择性。

零序Ⅲ段的起动电流原则上是按躲过下一线路出口处相间短路时所出现的最大不平衡电流来整定,同时还必须要求各保护之间在灵敏系数上逐级配合,即本保护零序Ⅲ段不超过相邻线路上零序Ⅲ段的保护围。

零序Ⅳ段的保护围实际上已进入了区外围,它是作为相邻线路的远后备保护以及保证本线路经较大的过渡电阻接地仍有足够的灵敏度,其定值一般整定得很小。在线路重合的过程中非全相运行时,在较大负荷电流的影响下,非全相零序电流有可能超过其定值而引起保护动作,因此零序Ⅳ段时间元件的整定值必须使保护躲过重合闸周期。零序Ⅳ段定值低,有足够的灵敏度,在微机保护中常用该段整定值作为保护的零序辅助起动元件,它与相电流差突变量元件一起担负保护起动功能。

1.8.5 失灵保护

断路器失灵保护:当系统发生故障,故障元件的保护动作而断路器操作失灵拒绝跳闸时,通过故障

元件的保护作用于本变电站相邻断路器跳闸,有条件的还可以利用通道,使远端有关断路器同时跳闸的接线称为断路器失灵保护。失灵保护动作必须有两个条件:对应断路器保护动作出口,断路器任一相存在故障电流(即断路器未跳闸)。

失灵保护应首先动作于断开母联或分段开关,然后断开与拒动开关连在同一母线上的所有电源支路的开关。失灵保护有负序、零序、低电压闭锁。失灵保护动作后,应闭锁相应设备的重合闸。

1.8.6 三段式电流保护

三段式电流保护反映相间短路故障,1、2段是主保护,3段是后备保护。

电流保护的保护围随系统运行方式的变化而变化,在某些运行方式下,电流速断或带时限电流速断保护的保护围很小,电流速断甚至没有保护区,不能满足电力系统稳定对快速切除故障的要求。

(1)速断I段保护(即过流一段)

瞬时电流速断保护(即速断I段保护),动作电流按大于本线路末端短路时流过的最大短路电流来整定,并且不带时限的电流保护称为瞬时电流速断保护。由于它不反应下线路的故障,它的动作时间不受下一线路保护时限的限制。在最大运行式下,它的保护区达线路的50%,在最小运行方式下,它的保护围是线路全长的15%~20%。

(2)速断II段保护(即过流二段)

限时电流速断保护即速断II段保护,动作电流下一线路瞬时电流速断的动作电流来整定。它能保护本线路全长及下一线路的一部分。其动作时限比下一线路的1段保护长,时间级差为0.5S。

(3)过流保护(即过流三段)

动作电流按躲过该线路的最大负荷电流整定,它能保护线路的全长甚至下一条线路,既是本线路的近后备又是下一线路的远后备。

1.9 重合闸

将因故障跳开后的断路器按需要自动投入的一种自动装置。对双侧电源的线路,重合闸需要考虑检定无压或检定同期。

1.9.1 重合闸方式:

(1)单重方式:系统单相故障跳单相,单相重合;多相故障跳三相,不重合。

(2)三重方式:系统任意故障跳三相,三相重合。

(3)综重方式:系统单相故障跳单相,单相重合;多相故障跳三相,三相重合。

(4)停用方式:重合闸停用。

1.9.2 自动重合闸的启动方式:

保护启动,开关的控制开关位置与开关位置不对应。

1.9.3 不允许重合闸动作的情况:

(1)手动跳闸;

(2)开关失灵保护动作跳闸;

(3)远方跳闸;

(4)开关的储能机构闭锁跳闸;

(5)开关的灭弧介质闭锁跳闸;

(6)母线保护动作跳闸;

(7)变压器的差动保护、瓦斯保护动作于跳闸;

(8)重合闸停用时跳闸。

第2条线路保护围

1、光纤差动、差动保护均保护本线路的全长,对线路的各种接地及相间短路均可快速动作,是线路的主保护。

2、距离保护保护本线路全长及下一线路,相间短路时保护动作,是220kV线路的后备保护,是110kV 线路的主保护。

2.1距离Ⅰ段:本线路的80%~85%一部分;

2.2 距离Ⅱ段:本线路全长及相邻线路的一部分;

2.3 距离Ⅲ段:后备保护,本线路及相邻线路的全长。

3、接地距离保护和零序电流保护构成线路的接地保护,在线路各种接地故障时动作,是220kV线路的后备保护,是110kV线路的主保护。

3.1 零序Ⅰ段:本线路的一部分;

3.2 零序Ⅱ段:本线路全长及相邻线路、主变的一部分;

3.3 零序Ⅲ段:后备保护,本线路及相邻线路的全长。

4、三段式电流电压保护是中性点不接地运行的配电线路的常用保护,在相间短路时动作。保护围小,动作时间长。其中Ⅰ、Ⅱ段是主保护,Ⅲ段是后备保护。

4.1过流Ⅰ段:本线路的一部分;

4.2过流Ⅱ段:本线路全长及相邻线路、主变的一部分;

4.3过流Ⅲ段:后备保护,本线路及相邻线路的全长。

第3条线路事故处理基本原则

保护动作出口开关跳闸后,不管开关是否重合成功或试送电,也不论试送电成功与否,均应立即对开关进行外观仔细检查。若有开关本体异常、气体泄漏或机构失灵时应汇报调度申请退出运行。

1 单电源线路跳闸的事故处理

1.1 无自动重合闸装置(包括自动重合闸停用或拒动)的开关跳闸后,不待值班调度员的指令立即

强送一次。

1.2 自动重合闸动作而重合不成功时,无法判断线路是永久性故障的,开关外部检查无异常后允许强送一次。

2 双电源联络线开关跳闸

2.1 投无压检定重合闸的一端(试送端)重合闸成功,另一端(并列端)见线路有电压可进行同期并列。

2.2 投无压检定重合闸的一端(试送端)重合未动作,在检查线路确无电压后,可试送一次。并列端见线路有电压可进行同期并列。

2.3 无压检定重合闸动作重合不成功时,应对开关进行外部检查,如未发现异常,对主要联络线可退出重合闸后试送一次。

2.4 线路试送端没有无压检定重合闸,又无法判断线路是否有电压时,由调度员下另后在试送端送电。

3 强送电:

事故跳闸后,无论事故是永久性故障还是瞬时性故障,检查变电站的设备无异常后,电气设备未经处理即行送电的行为。

3.1 强送电端要求

3.1.1 应选择离主要发电厂、中枢变电站以及故障点较远且对系统及重要负荷影响较小的一端作为强送端;

3.1.2 应选择短路容量小、开关遮断故障次数少和开关遮断容量大的一端作为强送端;

3.1.3 强送端必须是线路开关等站设备外观检查完好,线路有完备的主保护;

3.1.4 若开关遮断次数已达规定值,虽开关外部检查无异常,但仍须经运行单位总工程师同意后方能强送。若停电严重威胁人身或设备安全时,调度员可指令强送一次;

3.1.5 在中性点直接接地系统中,强送开关连接母线上必须有变压器中性点直接接地。

3.1.6 强送时应停用自动重合闸装置。

3.2 线路开关跳闸后有下列情况之一者,不可强送:

3.2.1 强送开关及主保护不完好;

3.2.2 线路跳闸时伴随有火光、爆炸、冒烟、喷油等明显的故障特征;

3.2.3 线路并联高压电抗器保护也同时动作;

3.2.4 因带电作业而停用重合闸的线路故障跳闸,在未查明原因前;

3.2.5 引起越级跳闸的开关,上一级开关已再行合闸成功,本开关拒动原因尚未查明并消除;

3.2.6 已知故障点原因,但故障未消除。

3.3 能进行强行送电的操作有:

3.3.1 线路装设有重合闸,故障时,重合闸未动作,可以强行送电一次。

3.3.2 备自投装置未动作。

3.3.3 人员误碰及误操作

4 试送电:

事故跳闸后,对设备外部检查无异常后,通过继电保护的判断,电气设备故障经处理后的首次送电的。

4.1 故障线路试送电的原则

4.1.1 试送前应将试送开关的重合闸退出,试送成功后再将该开关的自动重合闸投入。

4.1.2 试送开关必须有完备的继电保护装置。

4.2 能进行试送电的操作有:

4.2.1后备保护动作;

4.2.2保护误动。

4.3 不可试送的情况

4.3.1 天气正常,开关自动重合不成功;

4.3.2 按频率自动减负荷装置动作而电网频率未恢复正常;

4.3.3 严重短路,开关有冒烟、喷油等现象。

4.3.4 引起开关越级跳闸的开关,上一级开关已再重合成功,本开关拒动原因尚未查明并消除。

4.3.5 已知故障点,但故障未消除的。

第4条线路事故处理实例

220kV 线路1 211线路单相瞬时接地事故处理

一、题目:220kV 线路1 211线路单相瞬时接地事故处理

二、处理过程

1、运行方式:220kV系统的线路1、线路3、线路5、1号主变在Ⅰ母运行,线路

2、线路4、线路6、2号主变在Ⅱ母运行,母联在运行,旁母刀闸均在冷备用;110kV系统的线路1、线路

3、线路5、1号主变在Ⅰ母运行,线路2、线路

4、线路6、2号主变在Ⅱ母运行,母联在运行,旁路在冷备用;10kV 母线分段运行,分段在运行,其余开关均运行。2010、1010地刀在合上,所有设备的保护在投入,220kV 线路重合闸投单重;

2、监控系统信号:211开关位置红灯亮,开关在合闸位置;遥信:收发信机动作,保护跳闸动作;901A保护屏:装置闭锁,装置异常;902B保护屏:重合闸动作、跳A、突变量距离动作、高频方向保护动作、高频零序保护动作、距离Ⅰ段动作;三相电流、有功、无功为零,线路电压、220kV母线电压

正常;报警窗信息:901A——故障时间,EPROM;902B——故障时间,NO:Z++ 0++ DZ Z1 AN 0.2kM ;

3、控制屏光字牌及表计情况:211开关的位置红灯亮,开关在合闸位置;三相电流、有功、无功为零;出口跳闸、保护动作、重合闸动作光字牌亮;

4、跳闸情况:220kV线路1的211开关跳闸,重合成功;

5、保护屏信息:起信、收信黄灯亮;901A屏TA红灯亮,显示EPROM;902B保护:TA、CH红灯亮,显示DZ Z1 D++ 0++ CN 0.2kM,表示突变量距离元件动作、高频主保护动作(距离)、高频主保护动作(零序)、距离Ⅰ段动作,A相间接地,故障点在0.2公里处,重合闸动作;

6、一次设备检查情况:检查220kV线路1的211开关确在合闸位置,刀闸、CT、线路PT、连接导线、开关本体、端子箱、操作箱无异常。

7、处理步骤:

1)事故警铃响后,立即记录事故发生时间;

2)检查监控电脑和控制屏上的信息及表计情况,做好记录;

3)、简明扼要汇报调度事故情况(事故发生的时间、地点,当时当地天气,跳闸的开关,开关、线路和母线有无电压等);

4)详细检查211开关的2个保护屏的各种信号、压板、空气开关、转换开关及按钮,打印故障报告,并做好记录;

5)打印故障录波信息;

6)详细检查一次设备情况:检查220kV线路1的211开关确在合闸位置,开关、刀闸、CT、线路PT、连接导线、开关本体、端子箱、操作箱正常;

7)根据现场设备检查及保护、自动装置动作情况判断故障性质:线路是近端A相瞬时接地故障,高频方向保护动作,A相跳闸,重合成功。

8)向调度汇报详细的检查情况;

9)确认保护屏上的动作信号后,复归211开关保护信号;

10)将211开关由运行转冷备用(注意:在进行保护装置处理时必须退出其出口压板、失灵保护压板);

11)汇报处理后的变电站运行方式及处理结果。

500kV隔离开关故障分析及处理正式样本

文件编号:TP-AR-L9550 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 500kV隔离开关故障分 析及处理正式样本

500kV隔离开关故障分析及处理正式 样本 使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 温州电业局500kV瓯海变电站50522隔离开关型 号为SSBⅢ-AM-550/3150,荷兰MG公司制造,20xx 年出厂,20xx年6月投入运行。这是由国内引进的 第1组西门子公司制造的隔离开关,自投运以后,曾 多次出现分、合闸不到位故障,造成瓯海变电站2号 主变多次停役检修,但仍未能彻底解决所存在的问 题。2004-01-02,该隔离开关在运行中发生触头烧 毁,给电网安全运行造成严重影响。 1 故障经过 2004-01-02,瓯海变电站因扩建工作需要,要求

将运行中的500kVI母、II母均改为母线检修。当时瓯海变电站500kV系统运行方式是一线一变,2号主变、双瓯5463线、5051、5052、5053开关间隔均为运行,500kV系统主接线如图1所示,华东调度要求5051及5053开关由运行改冷备用。瓯海变电站在拉开5051开关后,发现50522隔离开关A相靠开关侧触头出现燃弧,发热温度达到400℃(红外测温),当时负荷为40万kW。瓯海变电站向华东调度汇报并重新合上5051开关,拉开5052开关,07:22将5052开关间隔改为冷备用。 2 故障分析 停电后检查发现,50522隔离开关B、C相完好,A相靠2号主变侧触头完好,A相靠5052开关侧动静触头严重烧毁如图2所示。从烧毁的触头部分可以发现,动触头导向圆盘下侧及静触头下触指靠近导

隔离开关常见故障分析(转载)

隔离开关常见故障分析 高压隔离开关是电力系统中使用量最大、应用范围最广的高压电器设备。为了保证高压设备装置检修时的安全,在需检修的设备和其他带电部分之间,用隔离开关形成一个明显的断开间隔,所以隔离开关不开合负载电流和故障电流,长期处于合闸状态而较少进行操作,并且其结构相对简单、易于制造,因此隔离开关又是最不受重视的电器设备。在长期的运行中隔离开关经常容易出现一些故障,特别是与母线相连的隔离开关在检修时要停母线,这样就扩大了停电范围。 本文介绍隔离开关容易出现的三个方面的故障:导电回路故障、操作部件故障、绝缘子故障,导电回路故障的原因分析 高压隔离开关导电回路过热是长期以来未能彻底解决的问题。根据运行经验,高压隔离开关的工作电流只能用到其额定工作电流的50%~60%,如果超过70%一般会发生过热。即便负荷电流没有增加,但在长时间的运行中设备的各项参数也会发生变化,从而造成发热,如果不及时检修就会使其发生“恶性循环”,发热促进接触面氧化,使接触电阻进一步增加,从而使发热更加严重。 发热的原因有以下几个方面: 触头弹簧长期处于压紧或拉伸的工作状态会发生疲劳,随着运行时间的加长慢慢失去弹性,甚至会产生永久变形,造成接触不良,使电阻增大,接触部分发热。在日常维护中就要调整弹簧拉紧螺栓,使之压力合适,否则更换弹簧。 触指或导电杆的镀银层的厚度、硬度及附着力不足是造成镀银层过早剥落、露铜而发热的原因之一,镀银层的附着力差和厚度不均,容易造成镀银层过早脱落露铜而导致过热,镀银层的硬度低也会造成耐磨性能差而过早出现露铜。对于高压隔离开关来说,其触头系统的镀银质量是关键技术指标,镀银层并非越厚越好,镀硬银提高镀银层的耐磨性能是关键。 合闸不到位或偏位所导致的接触不良,主要是传动系统调试不当的问题,如折叠式隔离开关传动系统调整不好,就会造成合闸后动静触头偏向一边接触而导致接触不良。所以,高压隔离开关的安装和调试质量不但会影响动作可靠性,也会影响其导电性能。在合隔离开关时,操作后应仔细检查触头接触情况,如果合不到位要重新合,直到合到位。 接触面氧化,使接触电阻增大。这时候要及时检查,用“0-0”号砂纸清除触头表面氧化层,打磨接触面,增大接触面,并涂上中性凡士林。 刀片与静触头接触面积太小,或过负荷运行。如果因为在运行过程中电动力或合刀闸过程中用力不当,造成刀片与静触头接触面积太小,要调整刀片与静触头的中心线,使其在一条中心线上,如果过负荷运行则要更换容量更大的隔离开关。 触头系统设计不合理,防污秽能力差、锈蚀、使用凡士林或导电膏等都会影响隔离开关的导电性能。 操作部件故障的原因分析 高压隔离开关在倒闸操作过程中,操作失灵、拒分、拒合、分合闸不到位以及传动部件损坏变形极为常见,而且常常伴有绝缘子断裂而引起扩大事故的危险。为此,不少单位规定,变电站进行隔离开关倒闸操作时,检修人员必须到现场,以便紧急处理可能发生的故障,同时还要预备绝缘操作杆,当合闸不到位时靠人力复位。

隔离开关和断路器操作顺序 (图文) 民熔

隔离开关和断路器 严格规定断路器和两侧隔离开关的操作顺序。停电时,应先跳闸断路器。断路器检查确认断开时,先拉负荷侧隔离开关,再拉电源侧隔离开关;送电时,先合上电源侧隔离开关,再合负荷侧隔离开关,然后是断路器。 有人认为,由于断路器已经断开,先操作该侧的隔离开关并不重要,不会造成带负荷合隔离开关的情况。问题是,当断路器未检测到在合闸位置时,导致隔离开关带负荷误动,后果截然不同。 例如,停电时,在合闸位置没有检测到断路器,先拉负荷侧隔离开关造成短路,则线路发生故障。线路的继电保护动作将使断路器跳闸并隔离故障点,使线路在不影响其他回路供电的情况下被切断。 如果先拉开电源侧的隔离开关,短路是由带负荷拉隔离开关引起的,但故障相当于母线短路,全部电源切断,导致与母线相连的所有负荷都被切断,大大扩大了故障范围,甚至导致通电停电、电网崩溃等严重后果。 同样,如果没有发现断路器处于合闸位置,电源侧的隔离开关先合上,然后负荷侧的隔离开关带负荷合上隔离开关也不会有问题。当发生电弧短路时,线路继电保护动作跳闸,不影响其他设备的运行,如操作顺序相反,当合上电源侧隔离开关时,会引起隔离开关带负荷短路,扩大事故。

有人填写操作票时,为节省时间,不宜将隔离开关操作写成“断路器两侧隔离开关分闸”为一步,应分为两步。例如线路停电时,断路器断开后,首先打开负荷侧隔离开关QS2,检查其是否处于分闸位置;其次,拉动电源侧隔离开关QS1,检查其是否处于断开位置。另外,在操作步骤的安排上,应保证断路器操作时回路保护仍有操作电源,当发生上述误操作时,断路器能跳闸。 对于一些资料所列的典型操作规程,当线路停电时,断路器的操作熔断器应放在隔离开关分闸前;当线路上电时,应在隔离开关闭合后办理上断路器的操作保险,这将导致结果开关带负荷合闸时,继电保护不能动作跳闸,造成短路。

隔离开关常见故障处理

隔离开关常见故障处理 发表时间:2019-12-23T10:13:35.587Z 来源:《电力设备》2019年第18期作者:李鲜梅[导读] 摘要:变电站在运行中,隔离开关常见故障有发热和失灵等,对这些常见异常进行分析及采取措施,为变电站安全运行提供可靠保障。 (包头供电局内蒙古包头 014030) 摘要:变电站在运行中,隔离开关常见故障有发热和失灵等,对这些常见异常进行分析及采取措施,为变电站安全运行提供可靠保障。 关键词:隔离开关、发热、失灵 1 隔离开关的作用及相关规定 1.1作用 在设备检修时,用隔离开关来隔离有电和无电部分,造成明显断开点,使检修的设备与电力系统隔离,以保证工作人员和设备的安全。 1.2允许用隔离开关直接进行的操作 (1)在电力网无接地故障时,拉合电压互感器。 (2)在无雷电活动时拉合避雷器。 (3)拉合220kV及以下母线和直接连在母线设备上的电容电流,拉合经试验允许的500kV空载母线和拉合3/2断路器接线的母线环流。 (4)在电网无接地故障时,拉合变压器中性点接地开关。 (5)与断路器并联的旁路隔离开关,当断路器在合好时,可以拉合断路器的旁路电流。 (6)拉合励磁电流不超过2A的空载变压器,线路并联电抗器和电容电流不超过5A的空载线路。 (7)对于3/2断路器接线,某一串断路器出现分、合闸闭锁时,可用隔离开关来解环,但要注意其他串的所有断路器必须在合闸位置。 (8)对于双母线单分段接线方式,当两个母联断路器和分段断路器中某断路器出现分合闸闭锁,可用隔离开关断开回路,操作前必须确认三个断路器在合位,并取下其操作电源熔断器。 1.3隔离开关不允许进行的操作 (1)不准用隔离开关向500kV母线充电。 (2)操作中,如果发现隔离开关支持绝缘子严重破损、隔离开关传动杆严重损坏等严重缺陷时,不准对其进行操作。 (3)操作中,如隔离开关被闭锁不能操作时,应查明原因,不得随意解除闭锁。 (4)操作中,如果隔离开关有振动现象,应查明原因,不要硬合、硬拉。 (5)严禁用隔离开关拉、合运行中500kV电抗器、空载变压器、空载线路。 2 隔离开关常见故障及处理方法 2.1隔离开关常见故障 主要有操作时三相合闸不同期、卡滞、接触部位发热、拉合失灵等。在倒闸操作中处理拒分、拒合等异常时,必须首先核对编号、操作程序是否正确,检查断路器确在分闸位置,确认没有走错位置,确认不是误操作。 2.2处理方法 下面就几种常见故障进行原因分析、可能造成的事故及处理方法进行归类,统计如下: 3 隔离开关常见故障处理流程 3.1 隔离开关在变电站运行中,常见的异常有发热及失灵,对这两种异常进行流程展示,在实际运行中有很好的指导意义。 3.2 发热处理流程

隔离开关分类详细介绍

隔离开关分类详细介绍 1.隔离开关 隔离开关主要用来隔离电路。在分段状态下有明显可见的断口,在关合状态下,导电系统中可以通过正常的工作电流和故障下的短路电流。隔离开关没有灭弧装置,除了能开断很小的电流外,不能用来开断负荷电流,更不能开断短路电流,但隔离开关必须具备一定的动、热稳定性。 隔离开关的主要作用如下: (1) 在设备检修时 , 用隔离开关来隔离有电和无电部分 , 造成明显的断开 点 , 倒修的设备与电力系统隔离 , 以保证工作人员和设备的安全。 (2) 隔离开关和断路器相配合 , 进行倒闸操作 , 以改变运行方式。 (3) 用来开断小电流电路和旁 ( 环 ) 路电流。 (4) 用隔离开关进行 500KV 小电流电路合旁 ( 环 ) 路电流的操作。但须经计算符合隔离开关技术条件和有关调度规程后方可进行。 1.1结构形式 1.1.1隔离开关的分类 M0级隔离开关:具有1000次操作循环的机械寿命,适合输、配电系统中使用且满足一般要求的隔离开关。 M1级隔离开关:具有3000-5000次操作循环的延长机械寿命的隔离开关,主要用于隔离开关和同等级的断路器关联操作的场合。 M2级隔离开关:具有10000次操作循环的机械寿命,主要用于隔离开关和同等级的断路器关联操作的场合。 隔离开关分类见表1.1 表1.1 隔离开关分类

分类方式类别 按装设地点的不同户内式、户外式 按支持绝缘子的数目单柱式、双柱式、三柱式 按隔离开关的运动方式水平旋转式、垂直旋转式、摆动式、插入式按有无接地装置及附装接不接地、单接地、双接地地开关的数量不同 按极数单极、三极 按操动机构手动式、电动式、气动式、液压式 按使用性质一般输配电用、快速分闸用、变压器中性点接地用 户内隔离开关:通常是35kV及以下的电压等级,三相一体装,采用上下(垂直)回转,以GN系列为主要代表。如图1.1所示。 图1.1 户内隔离开关结构(GN2-10) 户外型隔离开关是以35kV及以上电压等级,三相可实现单极独立安装,单相或三相同步操作形式。按其绝缘支柱的不同可分为单柱式、双柱式和三柱式。如图1.2所示。

隔离开关常见故障和处理 (图文) 民熔

隔离开关 在隔离开关的运行和操作中,易发生节点和触头过热、电动操作失灵、三相不同期、合闸不到位等异常情况。 表1.2 隔离开关的故障和处理 1.4.2 运行中的隔离开关可能会出现的异常现象

(1)接触部过热,由于紧固件松动,刀口闭合不严,导致过热或刀口熔焊。 (2)瓷绝缘子损坏、坚硬,柱基断裂。 (3)由于针式瓷绝缘子粘结部位质量差、自然老化,导致瓷绝缘子外盖脱落。 (4)严重污染或过电压时,闪络、放电和接地击穿会产生灼伤痕迹,严重时会造成短路、瓷绝缘子爆炸、开关跳闸等。(5)三相分时合闸。 (6)操作卡阻,拉入失败。 (7)隔离开关自动打开。 (8)辅助节点转换不到位。 (9)操作过程中隔离开关停止在中间位置。 (10)电动机烧坏 ,接触器烧坏。 (11)严重和不到位。 (12)远方不能操作。 1.4.3 误拉合隔离开关情况

(1)带负荷合闸时,即使发现合闸错误,也不允许再次分闸。由于隔离开关带负荷牵引,会引起三相电弧短路事故。 (2)当隔离开关带负荷误拉时,叶片刚离开固定触头时会产生电弧。此时应立即关闭,消除电弧,避免事故发生。但若所有隔离开关均已分闸,则不允许误合隔离开关。 1瓷瓶断裂故障。有GW4、GW5、GW6、gw7、GW16、GW17、gw20、gw21等型号的隔离开关。有的造成严重事故,影响很大。 支柱绝缘子和旋转瓷瓶的断裂问题每年都会发生。大部分老产品已经运行多年,一些新产品已经投入使用。 旋转绝缘子在运行过程中主要受到扭转,如GW6、GW16、GW17、gw20、gw21开关操作时曾发生过旋转瓷瓶断裂事故。瓷瓶断裂事故仍无法有效预防。 支柱瓷瓶的断裂,特别是母线侧瓷瓶的断裂,会引起母线差动保护动作,导致变电站全面停车,造成严重事故。 2传动机构的问题主要是操作故障,如拒动或开关不到位等,在开关操

隔离开关概述

高压隔离开关概述第一部分隔离开关基本知识 第二部分隔离开关分类及运行要点 第三部分隔离开关型号表示方法及含义 第四部分隔离开关结构的基本组成 第五部分户外隔离开关结构形式

第一部分隔离开关基本知识 一、隔离开关设备术语 1.隔离开关 在分位置时,触头间符合规定要求的绝缘距离和明显的断开标志;在合位置时,能承载正常回路条件下的电流及规定时间内异常条件(例如短路)下的电流开关设备。 2.接地开关 释放被检修设备和回路的静电荷以及为保证停电检修时检修人员人身安全的一种机械接地装置。它可以在异常情况下(例如短路)耐受一定时间的电流,但在正常情况下不通过负载电流,它通常是隔离开关的一部分。 3.快分隔离开关 分闸时间等于或小于0.5s的隔离开关称为快分隔离开关。 4.断口距离 隔离开关的主隔离开关在正常分闸位置时,同相两极触头之间的最短距离,对多断口隔离开关而言,最短距离是指全部断口最短绝缘距离之和。 5.合闸不同期性 合闸不同期性是指两相或多相隔离开关的主隔离开关不同时接触时的差异,通常以距离表示。 6.接线端机械负荷 在考虑母线的自重、张力、风力、覆冰和雪施加于隔离开关接线端的情况下的最大拉力。 二、隔离开关作用 (1)将电气设备与运行中电网隔离,以保证被隔离的电气设备能安全地进行检修维护。 (2)改变运行方式。在双母线运行的电路中,利用隔离开关可将电气设备或线路从一组母线切换到另一组母线上运行。 (3)接通和断开小电流电路。

三、隔离开关的基本要求 (1)隔离开关应具有明显断开点,便于确定被检修的设备或线路是否与电网断开。 (2)隔离开关断开点之间应有可靠的绝缘,以保证在恶劣的气候条件下也能可靠工作,并在过电压及相间闪络的情况下,不致从断开点击穿而危及人身安全。 (3)隔离开关应具有足够的热稳定性和动稳定性,尤其不能因电动力的作用而自动断开,否则将引起严重事故。 (4)隔离开关的结构要简单,动作要可靠。 (5)带有接地隔离开关的隔离开关必须有连锁机构,以保证先断开隔离开关后,再合上接地隔离开关,先断开接地隔离开关后,再合上隔离开关的操作顺序。 (6)隔离开关要装有和断路器之间的连锁机构,以保证正确的操作顺序,杜绝隔离开关带负荷操作的事故发生。

隔离开关操作注意事项

隔离开关操作注意事项 1.隔离开关操作的规定 (1)隔离开关操作前应检查断路器、相应接地开关确已拉开并分闸到位,确认送电范围内接地线已拆除。 (2)隔离开关电动操动机构操作电压应在额定电压的85%~110%之间。 (3)手动合隔离开关应迅速、果断,但合闸终了时不可用力过猛。合闸后应检查动、静触头是否合闸到位,接触是否良好。 (4)手动分隔离开关开始时,应慢而谨慎;当动触头刚离开静触头时,应迅速。拉开后检查动、静触头断开情况。 (5)隔离开关在操作过程中,如有卡滞、动触头不能插入静触头、合闸不到位等现象时,应停止操作,待缺陷消除后再继续进行。 (6)在操作隔离开关过程中,要特别注意若绝缘子有断裂等异常时应迅速撤离现场,防止人身受伤。 (7)电动操作的隔离开关正常运行时,其操作电源应断开。 (8)禁止使用隔离开关进行下列操作:①带负荷分、合操作;②配电线路的停送电操作;③雷电时拉合避雷器;④系统有接地(中性点不接地系统)或电压互感器内部故障时,拉合电压互感器;⑤系统有接地时拉合消弧线圈。 2.隔离开关操作中的注意事项 (1)停电操作必须按照断路器负荷侧隔离开关电源侧隔离开关的顺序依次进行,送电操作应按与上述相反的顺序进行。严禁带负荷拉合隔离

开关。 (2)发生误合隔离开关,在合闸时产生电弧也不准将隔离开关再拉开。发生误拉隔离开关,在闸口刚脱开时,应立即合上隔离开关,避免事故扩大。如果隔离开关已全部拉开,则不允许将误拉的隔离开关再合上。 (3)拉、合隔离开关后,应到现场检查其实际位置,以免因控制回路(指远方操作的)或传动机构故障,出现拒分、拒合现象。同时应检查隔离开关触头位置是否符合规定要求,以防止出现不到位现象,例如合闸时检查三相同期且接触良好,分闸时检查断口张开角度或拉开距离符合要求。 (4)操作中如果发现隔离开关支持绝缘子严重破损、隔离开关传动杆严重损坏等严重缺陷时,不准对其进行操作。 (5)隔离开关操动机构的定位销,操作后一定要销牢,防止滑脱引起带负荷切合电路或带地线合闸。 (6)隔离开关、接地开关和断路器之间安装有防误操作的电气、电磁和机械闭锁装置,倒闸操作时,一定要按顺序进行。如果闭锁装置失灵或隔离开关和接地开关不能正常操作时,必须严格按闭锁要求的条件,检查相应的断路器、隔离开关的位置状态,核对无误后才能解除闭锁进行操作。禁止随意解锁进行操作。 (7)隔离开关操作时所发出的声音,可用来判断是否误操作及可能发生的问题。如何判断声音是否正常,可参考以下几方面的内容:

运行中的隔离开关触头发热原因分析与异常处理

摘要:根据变电站设备运行实际,探讨了隔离开关常见故障。研究了隔离开关触头过热事故的原因及应采取的措施。为变电站实施反事故技术措施提供了依据。 关键词:隔离开关;电弧侵蚀;收缩电阻;过热事故 隔离开关在高压电气设备序列中属通断类设备。由于其工作频繁,使用范围广泛,过热故障时有发生。我们有必要对隔离开关的过热故障进行分析研究,使其安全、可靠的发挥应有的作用。 1隔离开关过热故障的分析 由于隔离开关各结构部件基本外露,所以它的故障大体上属于外部故障。隔离开关一部分过热故障集中在导电罩、主触头和刀口压指等处,一部分过热故障集中在隔离开关接线端,线夹与导线的连接处。 隔离开关过热故障的原因主要有以下几种: ①隔离开关接线端与导体触头长期裸露于大气中运行,极易受到水蒸气、腐蚀性尘埃和化学活性气体的侵蚀,在连接件接触面上形成氧化膜,使导电体表面电阻增加,造成接触不良而发热。 ②导线在风力舞动下或因负荷变化,引起连接件因周期性热胀冷缩,造成连接螺丝松动减小了连接件有效接触面积,增大接触处的收缩电阻。受风力影响的故障,一般是发热触头处在隔离开关的出线侧,引线过长(3m以上)处于悬垂状态。大风时严重摇摆,滚动触头受力后,使各滚动触指接触压力失衡,造成接触电阻增大发热。还有GW10-220W 隔离开关因管母摆动,使刀闸夹件松弛,造成动静触头处弧光放电。 ③安装检修不符合工艺要求,使倒闸操作中隔离开关触头合不到

位,或过止点。 ④设计结构不合理。 2 隔离开关触头在运行中的过热机理分析 触头是隔离开关中的一个元件,其性能好坏对高压电器整体性能起着关键作用。 隔离开关触头过热的主要因素: ①机械磨损。触头在不断的闭合过程中,承受着机械闭合力的冲击,从而造成触头的变形、龟裂与剥落,统称为机械磨损。 ②接触电阻。接触电阻产生的原因有两个:一是表面膜影响,二是收缩电阻。当动静触头相互接触时,仅有少数突出点真正接触,结果使电流收缩至有限的几个载流点,这种现象叫收缩电阻。我公司一台JYN2-10-31D型手车开关隔离插头主回路动、静隔离触头烧损就是收缩电阻造成的。现场巡视设备中也发现该JYN2-10-31D型手车开关隔离插头放电现象与理论分析相吻合。我们在变电站巡视设备,亲眼目睹了一次事故过热过程:1)隔离插头触头间出现兰色、红色的放电火花及“呲呲”的放电声。2)电弧侵蚀的过程中声响变大,动静触头烧熔后,烧坏有机质绝缘护罩产生弧光飘移,发展为相间短路烧坏开关。这样在现场发现事故前兆的几率一般是很低的,因此对其进行分析就显得更加重要。 ③电弧侵蚀。隔离开关开闭过程中电弧作用,能使触头表面的金属熔融,蒸气飞溅而散失,这种现象称为电弧侵蚀。它决定触头的使用寿命。

隔离开关分类详细介绍

隔离开关分类详细介绍 1. 隔离开关 隔离开关主要用来隔离电路。在分段状态下有明显可见的断口,在关合状态下,导电系统中可以通过正常的工作电流和故障下的短路电流。隔离开关没有灭弧装置,除了能开断很小的电流外,不能用来开断负荷电流,更不能开断短路电流,但隔离开关必须具备一定的动、热稳定性。 隔离开关的主要作用如下: (1) 在设备检修时,用隔离开关来隔离有电和无电部分,造成明显的断开点,倒修 的设备与电力系统隔离,以保证工作人员和设备的安全。 (2) 隔离开关和断路器相配合,进行倒闸操作,以改变运行方式。 (3) 用来开断小电流电路和旁(环)路电流。 (4) 用隔离开关进行500KV 小电流电路合旁(环)路电流的操作。但须经计算 符合隔离开关技术条件和有关调度规程后方可进行。 1.1 结构形式 1.1.1 隔离开关的分类 M0级隔离开关:具有1000 次操作循环的机械寿命,适合输、配电系统中使 用且满足一般要求的隔离开关。 M1级隔离开关:具有3000-5000 次操作循环的延长机械寿命的隔离开关, 主要用于隔离开关和同等级的断路器关联操作的场合。 M2级隔离开关:具有10000 次操作循环的机械寿命,主要用于隔离开关和同 等级的断路器关联操作的场合。 隔离开关分类见表1.1 表1.1隔离开关分类 分类方式类别 按装设地点的不同户内式、户外式 按支持绝缘子的数目单柱式、双柱式、三柱式

图 1.1 户内隔离开关结构( GN2-10) 户外型隔离开关是以35kV 及以上电压等级,三相可实现单极独立安装,单相或三相同步操作形式。按其绝缘支柱的不同可分为单柱式、双柱式和三柱式。如图 1.2 所示。 按隔离开关的运动方式 水平旋转式、垂直旋转式、摆动式、插入式 按有无接地装置及附装接 地开关的数量不同 不接地、单接地、双接地 按极数 单极、三极 按操动机构 手动式、电动式、气动式、液压式 按使用性质 一般输配电用、快速分闸用、变压器中性点接地用 户内隔离开关: 通常是 35kV 及以下的电压等级, 三相一体装, 采用上下(垂 直)回转,以 GN 系列为主要代表。如图1.1 所示。

断路器和隔离开关在作用上的区别

隔离开关的作用是: 1)分闸后,建立可靠的绝缘间隙,将需要检修的设备或线路与电源用一个明显断开点隔开,以保证检修人员和设备的安全。 2)根据运行需要,换接线路。 3)可用来分、合线路中的小电流,如套管、母线、连接头、短电缆的充电电流,开关均压电容的电容电流,双母线换接时的环流以及电压互感器的励磁电流等。 4)根据不同结构类型的具体情况,可用来分、合一定容量变压器的空载励磁电流。 断路器又称空气开关,它是一种既有手动开关作用,又能自动进行失压、欠压、过载、和短路保护的电器。它可用来分配电能,不频繁地启动异步电动机,对电源线路及电动机等实行保护,当它们发生严重的过载或者短路及欠压等故障时能自动切断电路,其功能相当于高压熔断器式开关与过欠热继电器等的组合。而且在分断故障电流后一般不需要变更零部件,获得了广泛的应用。 断路器(或称开关)是变电所主要的电力控制设备,具有灭弧特性,当系统正常运行时,它能切断和接通线路及各种电气设备的空载和负载电流;当系统发生故障时,它和继电保护配合,能迅速切断故障电流,以防止扩大事故范围。因此,高压断路器工作的好坏,直接影响到电力系统的安全运行;高压断路器种类很多,按其灭弧的不同,可分为:油断路器(多油断路器、少油断路器)、六氟化硫断路器(SF6断路器)、真空断路器、压缩空气断路器等。 隔离开关的选择和类型:户内高压隔离开关有单极式和三极式两种,一般为刀闸式隔离开关,通常可动触头(闸刀)与支柱绝缘子的轴垂直装设,而且大多采用导体刀片触头,图1所示的为户内GN-10型隔离开关外形结构。由图可知,高压隔离开关的三个共同一个底座上,利用弹簧压力,夹在静触头两边,使动、静触头(一极)为两根平行矩形制成的刀闸,利用弹簧压力,夹在静触头两边,使动、静触头形成良好的线接触。动触头刀闸靠操作绝缘子转动,操作绝缘子与刀闸及主轴臂连接,可以对高压隔离开关进行分、合操作。 通过上述可以看出断路器和隔离开关的主要区别在于断路器具有灭弧的能力,而隔离开关没有。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

隔离开关的常见问题及解决方法 民熔

隔离开关 常见问题 1常见故障有哪些? A:隔离开关常见故障如下: (1)接触部过热。 (2)瓷绝缘损坏和闪络放电。 (3)拒绝拉或打开电源。 (4)拉错了开关。 2是什么原因导致隔离开关触头过热? 答:隔离开关操作时过热主要是由于操作时过载、接触电阻增大、合闸不彻底引起的。 三。隔离开关接触电阻增大的原因是什么? A:接触电阻增大的原因是刀片与刀尖接触处的斥力很大,刀口闭合不严,造成表面氧化,接触电阻增大。其次,当隔离开关被拉或合上时,会产生电弧,接触电阻增大。 4如何判断隔离开关触头是否过热? 答:根据隔离开关接触部位的颜色变化或温度试件的颜色变化,也可根据刀片颜色的暗度来确定。一般根据红外测温结果确定。 5如何处理接触过热和隔离开关接触?

答:当隔离开关触头和触头过热时,应先向调度员报告,尽量减少或转移负荷,加强监视,然后根据不同的接线方式进行处理: (1)双总线连接。如果母线侧闸刀开关过热,过热的隔离开关将因母线倒转而停止运行,并切断电源进行检修。 (2)单总线连接。要降低负荷,加强监测,采取降温措施。如果条件允许,尽量停止使用。 (3)带旁路断路器的旁路断路器可以切换。 (4)如果线路侧隔离开关过热,处理方法与单母线基本相同,应尽快安排停电检修。运行期间应降低负荷,加强监测。 (5)一个半断路器连接的开环操作。 (6)对于母线侧隔离开关的接触过热和接触,在隔离开关分闸后,经现场检查符合带电作业安全距离后,可对母线侧引下线接头进行电解处理。6如何检查和处理隔离开关的电气操作故障? 答:隔离开关电动操作失败后,首先检查操作是否有误,然后检查操作电源电路和电源电路是否完好,保险丝是否熔断或松动。电气闭锁回路是否正常。 7如何处理隔离开关触头焊接变形、绝缘子损坏、严重放电? A:在这种情况下,应立即切断电源,并在停电前加强监测。 8隔离开关拒开拒合如何处理? 答:(1)由于轴销脱落、楔形螺栓脱落、铸铁断裂或电路故障等机械故障,刀杆可能与操作机构断开,导致隔离开关拒合。此时应使用绝缘棒进行操作,或在保证人身安全的情况下,用扳手转动各相隔离开关的转轴。

隔离开关基础知识 (图文)民熔

隔离开关 隔离开关主要用于隔离电路。分段状态下有明显的断口,导电系统在合闸状态下能通过正常工作电流和故障短路电流。 隔离开关无灭弧装置,既能切断负载电流,又能切断短路电流。但是,隔离开关必须是动态和稳定的。 隔离开关的主要功能如下: (1)设备检修时,用隔离开关将带电部分和非带电部分隔离,造成明显的断开点。逆向维修设备的力系是隔离的,以确保人员和设备的安全。 (2)隔离开关与断路器配合切换操作,改变操作方式。 (3)用于切断小电流回路和旁路(回路)电流。 (4)隔离开关用于闭合500kV小电流回路的旁路(回路)电流。但必须在计算满足隔离开关条件和有关调度规定后才能进行。 隔离开关牌子推荐 民熔电气 1.1结构形式 1.1.1隔离开关的分类

M0级隔离开关:机械寿命1000个工作循环,适用于输配电系统,满足一般要求。 M1级隔离开关:具有3000-5000个操作循环,以延长隔离开关的 机械寿命。主要用于隔离开关与同级断路器联动操作的场合。 M2级隔离开关:机械寿命10000个操作循环,主要用于隔离开关 与同级断路器联动操作的场合。隔离开关分类 见表1.1 表1.1隔离开关分类 户内隔离开关:通常是35kV及以下的电压等级,GN系列为主要代表。如图1.1所示。

图1.1户内隔离开关结构 (GN2-10)户外型隔离开关是以35kV及以上电压等级,三相可实现单极独立安装,单相或三相同步操作形式。按其绝缘支柱的不同可分为单柱式、双柱式和三柱式。 如图1 .2所示。

图1.2户外隔离开关结构 1.1.2隔离开关的结构隔离开关都是有开端元件、支持绝缘件、传动元件、基座及操作机构五个基本部分组成,其方框图如图1.3所示,示意图如图1.4。 图1.3隔离开关组成方框图

隔离开关符号,操作,使用及维护 ( 图文) 民熔

隔离开关 隔离开关符号 隔离开关,也称为闸刀开关。一般指高压隔离开关,即额定电压1kV 及以上的隔离开关,通常称为隔离开关。它是高压开关柜中使用最多的一种电器。其工作原理和结构相对简单。但由于其使用量大、可靠性要求高,对变电站、电厂的设计、建设和安全运行有很大影响。 隔离开关操作、使用及维护

(1)隔离开关操作的一般规定: (1)机务段隔离开关操作人员、监护人在河西运输段接受培训,考核合格。只有在河西运输科颁发安全证书后,他们才能从事这项工作。 (2)从事隔离开关操作的人员每年按要求进行考核,安全等级不低于3级。 (3)分、合隔离开关时,必须有两人在场,实行一人操作、一人监护制度。 (4)对有权在机务段操作的隔离开关,在向供电调度申请投切指令前,由车辆段负责人与段负责人办理转换手续。 (2)手动隔离开关操作程序: (1)操作隔离开关前,操作人员必须穿绝缘靴、手套,用绝缘棒站在绝缘板上操作。使用前检查绝缘靴和手套是否有裂缝和漏气。 (2)操作前,必须确认隔离开关和旋转装置的状态正常。接地线完好,接触网正常后,方可按规定操作。 (3)作业时,作业人员身体各部位不得与道具及周围物体或人员接触。操作准确、迅速,开关一次到位,操作过程中不得停车、撞击。 (4)停电前,应检查分段绝缘器内所有电力机车受电弓是否降下。否则,应通知司机在作业前降下车辆。 (5)操作结束后,应确认隔离开关已正确转到规定位置,方可锁闭,并将钥匙交给车站值班员保管。

(6)操作中使用的绝缘手套、绝缘靴、绝缘棒和绝缘板应存放在凉爽、干燥、无尘的容器中。河西运输科负责每6个月进行一次性能试验。每次使用前应进行短暂的漏气测试,以保持良好的绝缘性能。 (7)雷雨天气禁止操作隔离开关。严禁带负荷操作隔离开关。 (3)带接地开关的隔离开关应严格按照下列要求操作: (1)开关断开时,应先断开总开关,再合上接地开关。 (2)合闸时,先断开接地开关,再合上总开关。接地开关闭合时严禁合总开关。 隔离开关工作原理 1室内隔离开关 室内隔离开关有两种:单极式和三级式。一般为隔离开关式结构,常用线接触接触接触。由导电部分、支撑绝缘子和操作绝缘子(或棒形绝缘子)组成及底座等组成。 2、隔离开关的操作原则

隔离开关常见故障分析与处理

隔离开关常见故障分析与处理 发表时间:2019-11-20T10:06:51.297Z 来源:《河南电力》2019年5期作者:陈畅 [导读] 由于制造工艺技术、维护和大修、环境等因素的影响,室外高压隔离开关在日常操作中经常会出现分、合闸不到位、卡涩等问题,导电回路的接触不良引起的发热。 (广东电网有限责任公司潮州供电局广东省潮州市 521000) 摘要:由于制造工艺技术、维护和大修、环境等因素的影响,室外高压隔离开关在日常操作中经常会出现分、合闸不到位、卡涩等问题,导电回路的接触不良引起的发热。当隔离开关分合时,刀闸三相分合不同步,拒分或拒合,绝缘子表面污秽导致闪络等一些常见问题。如果这些问题处理不当,将直接影响隔离开关的安全运行,威胁到电力系统的安全性和稳定性。笔者不单独对高压隔离开关工作原理等一些常识性知识进行介绍,而是直接针对隔离开关的常见故障进行分析,并结合工作现场的处理经验,阐述具体的故障处理过程,并提出此类故障的具体防治方案。 关键词:隔离开关;故障分析;维护措施;预防措施。 一、引言 高压隔离开关作为一种较为简单的高压设备,广泛应用在电力系统上,它的稳定可靠的运行,关系着电网的整体安全可靠稳定运行,在电网中发挥着十分重要的作用。隔离开关具有操作灵活,工作原理和结构比较简单,布局方便等特点。隔离开关是变电站高压设备中使用最广泛的开关设备,在电网中的使用量约为断路器的3-4倍。因此,隔离开关的故障更为普遍,隔离开关是变电维护和检修的主要设备之一。其故障主要是由导电主回路的触头的发热,拒分,拒合,机械部件损坏,卡涩以及传动部件锈死等,所有这些故障都会影响电网的安全。 二、常见故障的分析与处理 1.导电回路接触不良: 1.1动触头和静触头的表面氧化。动触头和静触头由于长时间在户外运行,容易被湿气,腐蚀性粉尘和化学气体腐蚀,直接在触头的表面上形成氧化层,从而增加了主触头的接触电阻。处理方法:根据发热部位和状况,采取适当的方法进行处理。触点表面应用砂纸轻轻打磨。注意不要损坏表面镀层,镀银部分禁止用砂纸打磨。应使用酒精擦洗并用百洁布细细打磨,然后用酒精清洁完全,最后在涂层表面上涂抹适量的凡士林。 1.2动触头插入的深度不足或插入角度偏移。如果动触头的插入深度不足或插入角度偏移,则动触头和静触头之间的接触面减小,从而导致主回路的接触电阻过大,引起发热。处理方法:调整动触头和静触头底座的中心位置。使动触头插入静触头的位置正确。 1.3触头的夹紧弹簧性能较差。当触头夹紧弹簧的性能不佳时会降低动触头和静触头之间的接触压力,增加主回路的接触电阻。处理方法:调整或更换弹簧性能较差的夹紧弹簧。 1.4部件和紧固螺栓是否松动。当温度或负载发生变化时,将导致刀闸和紧固螺栓的各个组件发生热膨胀或收缩。当部件和紧固螺栓的热胀冷缩系数不一致时,连接的螺丝就会松动,并引起主回路接触电阻增大。处理方法:检查部件和紧固螺丝的紧固程度,用力矩扳手按照隔离开关厂家给出的力矩值紧固各个连接螺丝。 1.5安装或大修过程不符合要求。接触表面不平整、氧化、接触面位移、接触面清理不干净或铜铝直接接触所造成的离子电位差形成的电化学反应等,从而增加了主回路的接触电阻。处理方法:检查接触面的接触状况。如果接触面不平整,有凸起或凹陷,接触面移位,则应将接触面移开以进行平整,清洁,调节,严重时更换该部件。铜铝接触的部分应使用铜铝过度板或铜铝过渡接头。 2.隔离开关分、合闸不到位或阻力过大: 2.1刀闸转动部位的润滑剂老化。通常高压隔离开关安装于室外,润滑剂在高温,高湿,风化等环境因素下容易引起变质、老化。变质、老化的润滑剂与环境中掉入的灰尘夹杂在一起阻碍机构运动。处理方法:彻底清洁传动、转动部件中的润滑剂,必要时将部件拆下,彻底清洗,干燥后添加新的润滑剂。 2.2辅助开关和行程开关调整不正确。辅助开关的传动杆发生形变将使辅助开关的状态转换不稳定,从而不能保证操作信号的可靠传输,使隔离开关在没有到达分、合闸位置时就切断操作电机的电源;限位开关位置调整不当,固定螺钉的位置松动等也会导致调整后的辅助开关位置发生变化,从而导致隔离开关分合闸未到位。处理方法:首先检查辅助开关传动杆是否发生形变。如果发现传动杆发生形变,则应取下传动杆,整形后装复并进行调整。如严重需更换辅助开关;限位开关的位置调整不正确。它的位置调整至正确并固定可靠。 2.3隔离开关机构箱内的锈蚀。当刀闸机构箱的内部产生锈蚀,机构动作的阻力会增大,另外,刀闸机构的行程会变小,从而使隔离刀闸的分、合闸不到位。处理方法:加强防锈措施,加强机构箱内的密封,选择合适的材料,涂抹润滑脂。如传动阻力过大,应立即更换机构。 2.4机构齿轮啮合不良。机构的动力电机的固定螺丝由于刀闸长时间运行操作振动而松动,导致动力电机的齿轮与机构之间的齿轮啮合不良。或由于磨损等引起机构齿轮的啮合。啮合不良使机构的行程变小,隔离开关将分、合闸不到位。处理方法:将啮合不良的齿轮马上更换。 3.隔离开关拒合、拒分: 3.1对于传动机构造成的拒合、拒分,可能是密封不良使机构箱内进水或各部分的轴销,连杆,拐臂,底盘甚至基础轴承被锈蚀卡死。处理方法:拆卸传动机构和生锈的部件,并更换有故障的部件。加强防锈措施,选择合适的材料,涂抹润滑脂,并安装防雨罩。如果传动机构严重,应立即更换。 3.2隔离开关电气回路故障。电动操作的隔离开关,如动力回路动力熔断器熔断,电机运转不正常或烧坏,电源不正常,控制回路继电器或隔离开关的辅助触点接触不良,隔离开关的行程开关、控制开关切换不良,隔离开关机构箱的门控开关未能接通等会使隔离开关拒分、合闸。处理方法:先按分合闸按钮。如果接触器不工作,先检查回路工作电源是否完好,保险丝是否已经烧断,该回路控制电源是否完好,然后对照图纸逐一检查各相关的元件。若元件损坏时应更换部件。 3.3隔离开关的接地刀未分开到位。接地刀闸与隔离开关之间存在的机械闭锁,当接地刀闸未分到位时,刀闸将被闭锁,从而无法操作

隔离开关GW4详细介绍 (图文) 民熔

隔离开关 民熔GW4隔离开关是发电厂和变电站电气系统中重要的开关电器,需与高压断路器配套使用。 隔离开关适用于三相交流50Hz,额定电压12KV的户内装置。供高压设备的有电压而列负荷载的情况下接通,切断或转换线路之用。其主要功能是: 保证高压电器及装置在检修工作时的安全,起隔离电压的作用,不能用与切断、投入负荷电流和开断短路电流,仅可用于不产生强大电弧的某些切换操作,即是说它不具有灭弧功能 民熔GW4高压隔离开关均采用热镀锌工艺进行防腐处理。不能满足热浸镀锌要求的零件一般采用不锈钢制造。M8以下紧固件采用不锈钢,其余部分采用热浸镀锌。

民荣GW4型高压隔离开关采用双柱中分闸、触头翻转结构。具有自清洁触点的能力,提高了触点的可靠性。接触指采用高强度、高导电性、高弹性的新材料制成。开关采用绝缘钩杆操动机构,部分开关设有自锁装置。 民荣GW4高压隔离开关旋转部分按免维护要求设计。采用不锈钢轴销,无油自润滑轴承结构。钢构件采用热浸镀锌,保证操作灵活、密封结构、轻便可靠、永不生锈 介绍了民用熔断GW4型交流高压隔离开关的基本情况。如果你能注意到这篇文章,编辑会帮你吗 铭荣gw4-12、24、35、40.5、72.5、126系列户外交流高压隔离开关(以下简称隔离开关)。 它适用于频率为50Hz、额定电压为11、24、35、40.5、72.5、126kV 的电力系统,作为电压无载分时电路。防污型隔离头能满足重污染地区用户的要求,能有效解决隔离开关运行中的污闪问题。 隔离开关与产品之间的联锁机构顺序正确。30-110kv接地开关分为I型和II型,15和220kV为II型。II型接地开关动、热稳定值与隔离开关相同。 本产品具有以下规格: 1根据有无接地开关,可分为不接地、单接地和双接地 2按使用面积可分为普通型和防污型。 本系列隔离开关的特点如下: (1)连接端采用软连接过渡,导电接点可靠性如下:

隔离开关正确操作顺序及注意事项 (图文) 民熔

隔离开关 它主要是一种无需关断电源的断弧开关和隔离开关。 隔离开关在分闸位置时,触头间的绝缘距离符合规定要求,并有明显的分断痕迹;在合闸位置时,能在规定的时间内承受正常回路条件下的电流和非正常情况下(如短路)的电流。 一般用作高压隔离开关,即额定电压1kV以上的隔离开关,其工作原理和结构比较简单。但由于其使用量大、可靠性要求高,对变电站、电厂的设计、建设和安全运行有很大影响。 隔离开关的主要特点是没有灭弧能力,只能在没有负载电流的情况下开闭电路。隔离开关操作的关键是防止开关带负荷合闸和接地合闸。 正确的操作顺序是: 送电操作顺序,检查断路器是否处于分闸位置,先合母(电)侧闸刀开关,再合线路(负荷)侧闸刀开关,最后合上断路器。 断电操作顺序:先打开断路器,检查断路器是否处于分闸位置,再打开线路(负荷)侧闸刀开关,最后打开母线(电源)侧闸刀开关。该开关也可用于反向母线运行(等电位运行)。 1隔离开关只能在空载或负载在隔离开关允许范围内操作。也就是说,当隔离开关工作时,断路器必须处于断开状态。

2先拔出定位销,开关动作要果断、迅速。操作结束时不要用力过大。操作完成后,必须用定位销锁紧,目测动触头位置是否符合要求。 三。隔离开关带负荷误操作时,应冷静,避免反方向误操作。 高压隔离开关使所检修的设备与电源有明显的断开点,以保证检修人员的安全,隔离开关没有专1 ]的灭弧装置不能切断负荷电流和短路电流,所以必须在电路在断路器断开电路的情况下才可以操作隔离开关。 1.操作前应确保断路器在相应分、合闸位置,以防带负荷拉合隔离开关。 2.操作中,如发现绝缘子严重破损、隔离开关传动杆严重损坏等严重缺陷时,不得进行操作。 3.如隔离开关有声音,应查明原因,否则不得硬拉、硬合。

隔离开关触头、接点过热故障的处理示范文本

隔离开关触头、接点过热故障的处理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

隔离开关触头、接点过热故障的处理示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 发现隔离开关触头、接点过热时,首先汇报调度,设 法减少或转移负荷,加强监视,然后根据不同接线进行处 理: (1)双母线接线。如果一母线侧刀闸过热,通过倒母 线,将过热的隔离开关退出运行,停电检修。 (2)单母线接线。必须降低其负荷,加强监视,并采 取措施降温,如条件许可,尽可能停止使用。 (3)带有旁路断路器的可用旁路断路器倒换。 (4)如果是线路侧隔离开关过热,其处理方法与单母 线处理方法基本相同,应尽快安排停电检修。维持运行期 间,应减小负荷并加强监视。

(5)一个半断路器接线的可开环运行。 (6)对母线侧隔离开关过热触头、接点,在拉开隔离开关后,经现场检查,满足带电作业安全距离的,可带电解掉母线侧引下线接头,然后进行处理。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

相关文档
最新文档