用于中子测井的CR39中子剂量计的个人剂量监测方法

用于中子测井的CR39中子剂量计的个人剂量监测方法
用于中子测井的CR39中子剂量计的个人剂量监测方法

用于中子测井的CR39

中子剂量计的个人剂量监测方法 GBZ/T 148-2002

1范围

本标准推荐了用于中子测井场所的CR39中子剂量计的个人剂量监测方法。

本标准适用于241Am-Be中子源测井场所工作人员的个人中子剂量监测。

2规范性引用文件

下列文件中的条款通过在本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡不注日期的引用文件,其最新版本适用于本标准。

GB 12714 镅铍中子源

3术语和定义

下列术语和定义适用于本标准。

3.1 固体核径迹探测器 solid state nuclear track detector

核粒子穿过绝缘体时,造成一定密度的辐射损伤,经适当处理,形成可观测的径迹,这种固体称为固体核径迹探测器。

3.2 CR-39径迹探测器CR39 track detector

用烯丙基二甘醇碳酸酯(品名 CR39)制成的核径迹探测器。按照测定程序,利用其在中子场经累积照射形成的可观察径迹,在一定准确度内,可得到相应的当量剂量。它是固体核径迹探测器的一种。

3.3 化学蚀刻 chemical etching

固体核径迹探测器的辐射损伤经过化学试剂蚀刻形成可观察径迹的过程。

3.4 中子注量灵敏度 neutron fluence sensitivity

垂直入射的单位中子注量在剂量计单位面积上产生核径迹的概率。

3.5 中子当量剂量灵敏度 neutron equivalent dose sensitivity

中子探测器单位面积上每单位当量剂量相应的径迹数。

3.6 中子剂量换算系数 neutron dose converson coefficient

在各种照射条件下,用人形体模换算出的单位中子注量的当量剂量。

4测量元件

CR39个人中子剂量计由CR39径迹探测器和包装盒组成。

4.1 CR39径迹探测器应具备对辐射损伤灵敏、高透明度、结构均匀、各向同性、热固性稳定和低本底等特性。CR39呈片状,其典型值厚1mm,面积10mm×20mm。

4.2 包装盒用硬质塑料制成,外形为圆柱体或长方体,一侧装有佩带针(夹),以便使用;其典型值厚度为5mm,面积为55mm×35mm。

1

5 测量程序

5.1 化学蚀刻

5.1.1 蚀刻装置由恒温箱和蚀刻杯组成。蚀刻装置要保持蚀刻液的温度和浓度的恒定, 有一定密封性。恒温箱的温度变化应控制在60℃±1℃内。蚀刻杯由耐腐蚀的不锈钢或玻璃制成。

5.1.2 蚀刻剂通常为氢氧化钠(NaOH)的水溶液和无水乙醇混合液。

5.1.3 常用蚀刻条件为

6.8mol NaOH水溶液,12小时蚀刻,蚀刻温度为60℃。不同批次的材料,用正交法由实验确定蚀刻剂的浓度、蚀刻时间和蚀刻温度。

5.1.4 经蒸馏水浸泡2小时后的径迹片在蚀刻装置蚀刻后,须用适量清洗液(蒸馏水等)清洗 ,经晾干后,放于阴凉、干燥处保存。

5.2 径迹观测

5.2.1 径迹读数装置通常用400倍以上光学显微镜和图象分析系统。CR39个人中子剂量计用光学显微镜读数。

5.2.2 径迹密度通常采用视域读法,适用径迹密度通常在103—106条/ cm2范围内。在径迹密度过高或过低时,径迹识别须按专门统计方法进行读数。

5.2.3 读数的相对误差与读数面积、总径迹数相关。重复探测器读数是检验精密度的一种方法,重复检查量应占10%,误差应小于20%。

5.3 刻度方法

5.3.1 刻度中子源应与测井中子辐射场条件一致,通常用经过锰浴法刻度过的241Am-Be中子源(不确定度小于1%)。241Am-Be中子源应满足GB12714的要求。

5.3.2 CR39个人中子剂量计,应进行本底测定,测定样品数至少10个。蚀刻过的剂量计应在空气中暴露1年以上,其径迹保持稳定;在γ吸收剂量大于102Gy情况下,其本底不应有显著影响。 5.3.3 使用241Am-Be源,其中子强度应大于106中子/秒,其准确度应在±2%以内。剂量计与源的距离应与测井现场相符。并应测定中子散射对刻度的影响。刻度放置三个平行样。剂量计的可探测下限为0.1mSv。

5.3.4 应用241Am-Be中子源作为刻度源,其当量剂量表达式为:

H=d H.P/Wφ (1)

式中:H — 受照射的中子当量剂量,Sv;

d H — 241Am-Be中子源的中子剂量换算系数, 3.98×10-10Sv/n·cm-2;

P — 实测的径迹(Tracks)密度,Tracks/cm2;

Wφ — 剂量计对241Am-Be中子源的中子注量灵敏度,Tracks/n。

6测量要求

6.1 中子测井场所工作人员在现场工作时必须佩带CR39个人中子剂量计于左胸。

6.2 非作业时间,CR39个人中子剂量计应放在不受人工辐射源照射干扰的地点,并在该地点存放一定量的剂量计作为本底剂量计。

2

孔隙度测井

孔隙度测井 (一)体积密度测井 1、原理: 加屏蔽的贴井壁滑板上的伽玛放射性源,定向地层发射等量的伽玛放射线,在与地层中的电子碰撞发生康普顿散射的过程中,采用与源距固定距离的探测器记录散射的伽玛射线。因此,密度测井读数主要取决于地层的电子密度,对于由低原子量的元素法组成的大多数沉积岩石来说,电子密度与体积密度有很好的正比关系,所以密度测井可以直接测量地层的体积密度。 2、应用: (1)求地层孔隙度:ρb---ρma φ=――――――ρf----ρma φ―――――孔隙度 ρb――――地层体积密度 ρf――――地层孔隙度中水的密度ρma――――岩石骨架密度 (2)划分岩性界面:划在曲线的半幅点处。(3)判断岩性 泥质岩:成岩较好的泥质岩的体积密度大于含水砂岩的体积密度,即ρb泥>ρb水。碳酸岩:ρb云>ρb灰。硬石膏:ρb膏>ρb云。 盐膏:ρb盐膏<ρb泥,ρb盐膏<ρb砂。ρb云――白云岩密度2.86 ρb灰――灰岩密度2.71 ρb盐――岩盐密度2.16 ρb膏――硬石膏密度2.96 ρb砂――砂岩密度2.65 ρb 泥――泥岩密度2.2-2.8 ρb膏――石膏密度2.32 (4)判断油气水层油层:ρb油<ρb泥气层:ρb气<ρb泥水层:ρb水≤ρb泥ρb油――油层密度ρb气――气层密度(5)识别裂缝发育带 碳酸岩剖面,ρb缝<ρb围ρb缝――裂缝带密度,ρb围――围岩密度。(二)补偿中子测井 1、原理: 中子源向地层连续发射的中子流,发射出的中子流分布在中子源周围,似一个同心球,这种径向分布的状况除了介质性质之外,主要是含氢量的函数。当地层孔隙度中的流体是地层中氢的主要来源时,中子测井值就和孔隙中的流体体积相对应。若岩石骨架不含氢,则中子测井的读数就等于孔隙度。 2、应用 (1)测定地层孔隙度。(2)测定矿物含量。(3)划分岩性(定性)。 泥质岩:中子孔隙度高,一般泥岩的束缚水含量比砂岩高。碳酸岩、盐膏岩,中子孔隙度低。(4)判断油气水层油层:φN油<φN泥 气层:φN泥>φN气<φN油水层:φN泥>φN水>φN油φN油----油层中子孔隙度φN 泥----泥岩中子孔隙度φN水----水层中子孔隙度φN气-----气层中子孔隙度 (5)识别裂缝发育带 碳酸岩:φN缝>φN围φN缝----裂缝中子孔隙度φN围----围岩中子孔隙度 (三)声波时差测井 1、原理: 声波测井是记录初至波通过1米地层所需的时间△t(微秒/米)。沉积岩中声波速度与许多因素有关,主要与岩石的骨架以及孔隙度分布和孔隙度中的流体性质有关。在固结而压实的砂岩地层中,从粒间孔隙概念出发,可以导出威利公式求解纯砂岩的孔隙度△t-△tma φ=-------------- △tf-△tma φ------孔隙度 △t------测量的砂岩地层声波时差,△tma----砂岩骨架的声波时差,△tf------孔隙中流体的声波时差。 2、应用 (1)求取地层孔隙度。 (2)划分岩性界面,半幅点处。 (3)定性划分岩性:泥质岩:声波时差大盐膏岩:声波时差小碳酸岩:声波时差小 油层:比泥岩和致密砂岩声波大,出现平台。气层:声波时差大,出现周波跳跃。

中子剂量与防护

中子剂量和防护-正文 中子剂量通常指中子吸收剂量或中子剂量当量(见辐射剂量)。不同能量的中子同人体组织中的元素(氢、氮、氧、碳等)发生不同的相互作用(见中子核反应和宏观中子物理),所产生的具有一定能量的次级带电粒子能够引起电离和激发,从而使肌体受到损伤。剂量学涉及的主要物理问题是散射、核裂变和辐射俘获等. 研究中子在生物组织中不同深度的吸收剂量和剂量当量的模型有:半无穷大板块、有限圆柱体(直径为30厘米,高为60厘米)和椭圆柱体(长半轴为18厘米,短半轴为12厘米,高为60厘米)模型。模型的材料组成应同软组织的相当,密度为1g/cm3。能量范围从10-2eV延伸至 2000MeV。其中对半无穷大板块模型和有限圆柱体模型研究的结果,是目前确定中子注量率-剂量当量率换算系数的基础。 平行中子束垂直入射到一块物质上时,该物质的吸收剂量D随深度的分布(示意图见图1)同γ辐射的情形相似:吸收剂量的最大值并不出现在表面,而是出现在某个深度处,这个深度取决于中子的能量。医学上就是通过调节辐射的能量,把这个最大值对准病变组织的部位进行放射治疗。 放射防护规定:对个人所受剂量的限制是由剂量当量决定的。不同能量中子的有效品质因数坴(见辐射剂量)的数值示于图2。此外,由测得的中子注量率可以换算到剂量当量率。目前各国都采用图3所示的数值。 中子剂量测定主要指中子吸收剂量和剂量当量的测量。此外还包括表示剂量分布的微剂量测量。通常使用组织等效电离室,乙烯-聚乙烯正比计数器,硫酸亚铁剂量计以及量热计等测量吸收剂量。在多数情况下,组织等效电离室是测定快中子吸收剂量最准确的装置仪器。剂量当量测量仅适用于辐射防护,所采用的方法分场所监测和个人监测两类,其响应正比于最大剂量当量。微剂量测定的目的在于从实验上研究辐射在直径为微米量级或更小的球体内能量沉积的空间分布和谱分布。微剂量学所考虑的体积应同生物细胞的大小相当,借以模拟辐射在生物细胞、细胞组分和生物大分子中的能量沉积。常用的测量仪器是低压组织等效气体的“无壁”计数器,但测量方法和数据处理牵涉到很复杂的技术。 中子防护目的在于减少工作人员所受的辐射剂量,并尽可能将它控制在放射防护标准规定的限值以下。职业性放射性工作人员每年所受的剂量当量限值为50mSv(5rem)。表中给出对不同能量的中子相当于25μSv(2.5mrem)每小时的中子注量率以及1mSv(0.1rem)的中子注量。 减少防护工作人员受中子照射的措施除了尽量缩短受照时间、尽可能远离中子源以外,还需对中子源进行有效的屏蔽。 不同能量的中子同物质相互作用有不同的特点(见中子核反应和宏观中子物理)。因此屏蔽热中子要用含吸收截面大、俘获辐射γ光子能量低的材料,如硼、锂以及它们的化合物等。屏蔽快中子时首先需要用慢化能力强的材料将快中子的能量降低,然后用吸收截面大、俘获辐射γ光子能量低的材料加以吸收。快中子慢化的主要过程对于重核及中重核是非弹性散射;对于轻核是同原子核发生弹性散射。对于一次弹性散射,靶原子核的质量越接近中子的质量,中子损失的能量也就越大。因此屏蔽能量不很高的快中子最有效的元素是氢,通常采用的是含氢成分较多的水、石蜡、聚乙烯等轻材料。对于几兆电子伏以上能量的中子,可以用含重核或中重核的材料通过非弹性散射使其能量迅速降低然后再用含氢材料进一步使其慢化,最后被含10B或6Li材料吸收。因此,在规划屏蔽层的布局和确定屏蔽层厚度时必须知道中子能谱及各类材料的不同中子能量的有关反应截面数据,并根据上述特点对屏蔽层填料作合理安排,据某种理论模型进行数学运算。对大型中子源常用的屏蔽计算方法有双群法、多群法和移出扩散法等。放射性同位素中子源的屏蔽计算常用分出截面法和半(或1/10)值层减弱法。 若屏蔽层足够厚,又含有足够量的氢时,可用分出截面法进行计算。在近似计算中,可用裂变中子谱的分出截面。 半(或1/10)值层减弱系指将辐射量(注量、吸收剂量或剂量当量等)降至1/2(或1/10)时所需的屏蔽层厚度。半值层厚度(HVT)同1/10值层厚度(TVT)的换算关系式是:H VT=0.301TVT。 普通混凝土对单能中子的1/10值厚度示于图4。 屏蔽放射性中子源,可以单独使用水、石蜡等;也可兼用其他慢化材料和吸收材料,或将慢化材料和吸收材料混合使用(如含硼聚乙烯、含硼石蜡等)。对大型中子源(如加速器、反应堆)的屏蔽比较复杂,常以普通混凝土和重混凝土等屏蔽材料为主,还要采用铁一类的物质屏蔽γ辐射和快中子。 在中子辐射防护中,除了中子以外还应当特别注意对γ辐射的防护。这是因为反应堆、加速器和很多放射性同位素中子源都伴有很强的γ辐射。在很多情况下,γ辐射的剂量当量大大超过中子的剂量当量。例如,镭-铍中子源的γ剂量当量率约比中子剂量当量率高50倍。即使是被认为γ剂量较少的镅-铍中子源,γ辐射剂量当量率也占总剂量当量率的百分之几十。 在使用放射性同位素中子源时,要严格防止放射性物质的泄漏。特别是使用镭-铍中子源时应经常检查是否有氡气漏出。一旦发现有漏出,就应及时采取措施。 辐射剂量-正文

(完整word版)测井方法原理及应用分类

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

中子源的注量率测量

龙源期刊网 https://www.360docs.net/doc/838040811.html, 中子源的注量率测量 作者:谢菊英程品晶赵越 来源:《科技资讯》2011年第33期 摘要:通过进行中子源注量率测量后,为保证进入中子源库的实验人员的安全范围提供第一手参考资料。进行中子研究具有巨大的科学价值和社会影响力。本文阐述了对238Pu-Be 20ci 中子源的注量率测量方法,测得离中子源距离约半径R=60cm辐射场的中子的注量率为 0.0682cm-2.s-1,并对实验测得的结果进行了分析。 关键词:中子源注量率安全范围 中图分类号:O571.54 文献标识码:A 文章编号:1672-3791(2011)11(c)-0167-01 中子源的辐射危害早就已经被人们所认识,随着中子源在工业生产中的广泛应用,必须做好中子的监测和评价工作。粒子剂量学是辐射防护监测的基础,在辐射防护中占有特殊重要的地 位[1~4]。而中子注量率是描述中子场或中子束的基本量,因此,中子注量率的测量始终是中子 实验方法的基本内容之一,中子注量率的准确程度,直接影响各种参数诸如反应截面、角分布等测量的准确度。 因此,关于中子以及与中子有关问题的研究,已经发展成为一门专门的学科—中子物理学。而中子的探测也成为一个专门的应用和研究课题。 1 测量原理与装置 238Pu-Be中子源是利用放射性核素衰变时,放出的一定能量的射线,去轰击某些靶物质,产生核反应而放出中子。 测量中子注量率的方法是多种多样的。但是依靠基本原理归类可概括成:标准截面发,包括n-p散射截面,及其他中子俘获的截面;伴随粒子法;次级标准法,包括标准中子源与标准探测器等[5]。 工作原理中子的探测方法基于核反应法。中子入射到仪器的探头内,被探测器中的10B或6Li核俘获,导致闪烁体发光。该闪烁光被光电倍增管放大并转换成电信号。该信号由后续电子学线路进一步处理后送单片机处理系统,由单片机处理系统完成数据采集的处理,并实现显示(见图1)。仪器连接使用时首先把探头和主机连接好,注意电缆插头缺口的方向。

第九章__中子测井

第九章中子测井(Neutron log) 利用中子与地层相互作用的各种效应,来研究钻井地质剖面的一类测井方法统称中子测井。它是利用岩石的另一种特性,即岩石中的含氢量来研究岩石性质和孔隙度等地质问题。这种测井方法在于将装有中子源和探测器的井下仪器下入井中,由中子源→中子→进入岩层,同物质的原子核发生碰撞将产生减速、扩散和被俘获几个过程,到达探测器。 在这些过程中,探测器周围的中子分布状况,以及中子被俘获后所放出的伽马射线强度,与仪器周围的岩石性质,特别是岩石的含氢量有关。 而储集层的含氢量又取决于它的孔隙度,因此,中子测井是目前广泛使用的一种孔隙度测井。根据中子测井的记录内容:可以将它分为中子-中子测井和中子-伽马测井。根据仪器的结构特点,中子—中子测井又可分为中子-超热中测井(SNP)—井壁中子测井中子-热中子测井(CNL)—补偿中子测井 一、中子测井的核物理基础 1 中子和中子源 中子是组成原子核的一种不带电荷的中性粒子,其质量与氢核的质量相近。中子与物质作用时,能穿过原子的电子壳层而与原子核相碰撞,所以它对物质的穿透能力较强。 通常中子与质子以很强的核力结合在一起,形成稳定的原子核。要使中子从原子核里释放出来,就必须供给一定的能量。如果使原子核获得的能量大于中子结合能,中子就可能从核中发射出来。 可以用α粒子、氘核d、质子p或γ光子轰击原子核,引起各种核反应,使中子从核内释放出来。这种产生中子的装置称中子源。 一、中子测井的核物理基础 因为不同能量的中子与原子核作用时有着不同的特点,所以通常根据中子的能量大小,可以把它分成几类: ?高能快中子:能量大于10万电子伏特; ?中能中子:能量在100电子伏特—10万电子伏特之间; ?慢中子:能量小于100电子伏特; 其中0.1—100电子伏特的中子为超热中子; 能量等于0.025电子伏特的中子为热中子。 一、中子测井的核物理基础 1 中子和中子源 中子测井所用的中子源有两类: 即同位素中子源和加速器中子源。 ?同位素中子源:如镅—铍(Am-Be)中子源,利用镅衰变产生的α粒子去轰击铍原子核,发生核反应而放出中子。产生的中子的平均能量约5MeV。 该类中子源的特点是连续发射中子。 ?加速器中子源:(亦称脉冲中子源),如D-T加速器中子源,用加速器加速氘核(D)去轰击氚核(T)产生快中子,其能量是14MeV。 该类中子源的特点是人为控制脉冲式发射中子。 二、中子与物质作用几种作用形式: (1)非弹性作用:高能快中子与原子核碰撞 (2)弹性散射:高能快中子经一、二次非弹性散射后,能量降低,继续碰撞原

补偿中子测井仪器

补偿中子测井仪器

补偿中子测井仪属于放射性强度测井仪器。是(密度、声波。中子)等三大孔隙度测井仪器的其中之一。今天我准备从下面5个方面来介绍补偿中子测井仪器: a)仪器简介 b)仪器测井原理 c)探测器 d)电路简介 e)仪器的刻度 1. 仪器简介 补偿中子测井仪是一种通过测量地层含氢指数来确定地层孔隙度以及判断岩性的放射性测井仪器。 仪器的用途: a)确定地层孔隙度 b)判断岩性 c)确定泥质含量 仪器特点 a)仪器的推靠器: b)仪器的重量: c)由于中子射线可以很容易穿透钢管,因此补偿中子测井仪不仅可以在裸眼井中 测量,还可以在套管井中测量。 d)自然界存在伽马射线,但不存在中子射线,所以仪器在正常情况下,本底为零。 仪器主要技术指标: a)仪器最大外压:100Mpa b)仪器使用电缆长度:≤7000m c)仪器最大测速:560m/h 测速与源强有关。 d)仪器测量范围:0~100P.u. e)仪器测量精度:

当地层孔隙度为: 0 ~ 10 P.u. 时,仪器误差为:±1P.u. 当地层孔隙度为:10 ~ 45 P.u. 时,仪器误差为:±3P.u. 当地层孔隙度: > 45 P.u. 时,仪器误差为:±7P.u. 2.仪器原理: 中子测井核物理基础 补偿中子测井仪上装载着20居里的Am—Be中子源,能量约为几百万电子伏特。每秒钟将产生4?107个快中子,这些快中子射入地层,与地层的物质发生一系列的核反应。其中包括:快中子的非弹性散射、快中子对原子核的活化、快中子的弹性散射及减速。快中子经过一系列的非弹性碰撞及弹性碰撞,能量逐渐减小,最后当中子能量与地层的原子处于热平衡状态时,中子不再减速。这种能量状态的中子叫热中子。标准热中子的能量为:0.025ev,速度为2.2×105厘米/秒。根据碰撞学说,中子碰撞中的能量损失与被碰撞物质的质量和入射角有关,与中子质量相当的物质碰撞(弹性碰撞),中子损失的能量最大。在地层中,氢原子具有与中子非常接近的质量,因此地层对快中子的减速能力主要决定于地层的含氢量含氢量高的地层宏观减速能力强,减速长度小。经过几次碰撞后,快中子将被减速,能量从快中子的平均能量5.6MeV衰减到0.025eV的热中子。这些热中子部分进入探测器,撞击He-3核,引起核反应,产生H3(氚)子,该质子使其它一部分He-3电离,产生带电的离子和电子,在高压电场的作用下,电子向阳极运动,产生一负脉冲,该脉冲被电子线路放大并记录下来,探测器接受中子的多少直接反映了地层中氢原子的多少。因此He-3探测器及其电子线路组成的下井仪可以测量地层中的含氢量。地层孔隙是充满流体的细微空间,水及碳氢化合物中含有氢原子,无油地层与矿岩中极少或根本没有氢。这样仪器的相应基本上反映了充满流体的地层的细微空间,即孔隙度。 在这部分内容中,主要讲了3个方面的问题: 1:中子从发射到吸收的具体过程为: 20居里的Am—Be中子源―――――――――― 4?107个快中子、能量约为几百万电子伏特、快中子――――――-――― 非弹性散射、快中子对原子核的活化、快中子的弹性散射及减

BH3105E型中子剂量当量仪操作规程

BH3105E型中子剂量当量仪操作维护规程 1 设备简介 BH3105E型中子剂量当量仪是BH3105E型中子剂量当量仪的升级产品。主要用于核反应堆、核电站、核潜艇、中子实验室及其它应用中子辐射的场合中,中子辐射的剂量监测。 2 主要技术参数 2.1灵敏度:5cps/(μsv/h) 2.2 响应时间:20S 2.3 测量范围:0.1μsv/h~999.9msv/h 2.4 相对固有误差:-50%~+100% 2.5 测量误差:≤±15%(典型值) 2.6 能量响应范围:热中子~14Mev 2.7 抑制性能:对13?Cs-γ辐射,γ抑制比优于100:1附加误差≤±10%(对1mSv/h) 2.8 角响应:相对于轴对称校准方向,指示值在0o~±90o的变化≤±25% 2.9 使用环境条件 温度范围:5℃-40℃ 相对湿度:≤85%(30℃) 3 操作规程 3.1 开机:打开电源开关,进入时间显示,实时显示当前时间。 3.2 自检:在主画面中,按自检键,仪器开始检查自身的工作状态,如果工作正常,随后自动返回到主画面。 3.3 测量;在主画面中,按测量键,仪器进入计数测试过程,屏幕显示计数正在计数。定时时间自动设定20S,定时时间到,屏幕显示计数结束,并显示出计算结果。在计数过程中经及结束后,按返回键均可回到主画面。测量过程中仪器显示剂量当量率值,显示屏指示条随剂量当量率值大小变化,即指示条长短定性显示剂量当量率值。另外每一次计数蜂鸣器有一个声响,也可根据鸣器声响判断剂量当量率大小。完成一个测量周期。测量结果自动保存到存储器内。 3.4 数据导出:存储数据由RS-232数据线导出到计算机。具体操作见软件

用于中子测井的CR39中子剂量计的个人剂量监测方法

用于中子测井的CR39 中子剂量计的个人剂量监测方法 GBZ/T 148-2002 1范围 本标准推荐了用于中子测井场所的CR39中子剂量计的个人剂量监测方法。 本标准适用于241Am-Be中子源测井场所工作人员的个人中子剂量监测。 2规范性引用文件 下列文件中的条款通过在本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡不注日期的引用文件,其最新版本适用于本标准。 GB 12714 镅铍中子源 3术语和定义 下列术语和定义适用于本标准。 3.1 固体核径迹探测器 solid state nuclear track detector 核粒子穿过绝缘体时,造成一定密度的辐射损伤,经适当处理,形成可观测的径迹,这种固体称为固体核径迹探测器。 3.2 CR-39径迹探测器CR39 track detector 用烯丙基二甘醇碳酸酯(品名 CR39)制成的核径迹探测器。按照测定程序,利用其在中子场经累积照射形成的可观察径迹,在一定准确度内,可得到相应的当量剂量。它是固体核径迹探测器的一种。 3.3 化学蚀刻 chemical etching 固体核径迹探测器的辐射损伤经过化学试剂蚀刻形成可观察径迹的过程。 3.4 中子注量灵敏度 neutron fluence sensitivity 垂直入射的单位中子注量在剂量计单位面积上产生核径迹的概率。 3.5 中子当量剂量灵敏度 neutron equivalent dose sensitivity 中子探测器单位面积上每单位当量剂量相应的径迹数。 3.6 中子剂量换算系数 neutron dose converson coefficient 在各种照射条件下,用人形体模换算出的单位中子注量的当量剂量。 4测量元件 CR39个人中子剂量计由CR39径迹探测器和包装盒组成。 4.1 CR39径迹探测器应具备对辐射损伤灵敏、高透明度、结构均匀、各向同性、热固性稳定和低本底等特性。CR39呈片状,其典型值厚1mm,面积10mm×20mm。 4.2 包装盒用硬质塑料制成,外形为圆柱体或长方体,一侧装有佩带针(夹),以便使用;其典型值厚度为5mm,面积为55mm×35mm。 1

13 理论中子剂量学的一些基本概念

22.54 中子与物质的相互作用及应用(2004年春季) 第十三讲(2004年4月6日) 理论中子剂量学的一些基本概念 参考文献 -- Radiation Dosimetry, G. J. Hine and G. B. Brownell, eds. (Academic Press, New York, 1956). G. S. Hurst and J. E. Turner, Elementary Radiation Physics (Wiley, New York, 1970). J. A. Coderre et al., "Boron Neutron Capture Therapy: Cellular Targeting of High Linear Energy Transfer Radiation", Technology in Cancer Research and Treatment 2, 355 (2003). Monte Carlo Simulation in the Radiological Sciences, R. L. Morin, ed. (CRC Press, boca Rotan, 1988). 除去在核反应堆中的应用之外,中子相互作用的另一个重要应用是在核医学领域。辐射在医学中的应用在Wilhem C. Roentgen(伦琴)于1895年发现x射线(他为此获得了1901年的诺贝尔物理学奖)之后不久就开始了。不仅是因为1899年第一例有记载的成功肿瘤治疗,而且也由于早期的一些失败经历,使得人们认识到:理解和控制射线反应对人体的定量效果是多么的重要和困难。辐射剂量问题包括物理和生物方面的因素,二者难以很明确地区分;对于中子剂量学来说,挑战既来自于科学,又来自于技术——控制辐射的效果,并利用中子反应的特点来为人体健康尽可能造福(或造成最小损伤)。 1. 一些基本的辐射剂量学概念 从最基本的层面上讲,核心问题是被照射物中的能量沉积。如何描述这个过程,包括辐射的特性、射线与物质相互作用的一般知识,初看起来非常简单,但是稍作思考就会发现事情没有这么容易。对射线的反应过程方面是没有什么问题的,但我们还是不清楚射线在介质中造成的生物响应是怎样的。换句话说,如何将能量沉积的物理特性与随之而来的生物效应、破坏或者治疗结合起来,是一个令人感到畏惧的挑战。我们在本课程中不会研究这个问题。 在剂量学中,沉积能量(辐射损失)和吸收能量(局部或者分散)不完全是一回事。当我们谈到单位体积内沉积了多少能量的时候,我们也应该意识到生物效应或许也依赖于射线在其径迹上释放能量的空间分布。能量沉积不是一个点函数,而是与其路径有关的,这使得它很难去量化。在辐射剂量学中,分布式的过程为我们早先讨论过的关于中子反应的情况又提供了一个例子,即由特定反应截面决定的单个反应事件与包含许多次碰撞、由分布函数描述的作用是不同的。 在考虑介质中吸收能量与其所导致生物效应之间的关系时,吸收的局部范围起到了关键的作用。直观地,我们会觉得有必要考虑一些有关生物系统内能量传输的描述。仅仅考虑吸收剂量来反映从原子、分子的电离到临床症状的复杂过程是不合理的。除了吸收能量的多少,吸收的速率(剂量率)也是很重要的。另外,在射线轨迹上能量的沉积方式,即阻止能力,也对最终的生物效应有影响。我们在(cf. 22.101)中已经讨论过物质与射线反应时的阻止能力,现在可以用到这些知识了。 剂量的单位 能量沉积这个概念使我们很自然地将物理剂量与被照射物体单位质量所吸收的能量联系起

第三章 中子测井

第三章 中子测井 概述 中子测井利用中子与地层物质相互作用的各种效应,测量地层特性的测井方法的总称。 根据中子测井仪器记录的对象不同可以分为: ??? ?? ? ?—伽马能谱测井—中子—伽马测井—中子—超热中子测井—中子—热中子测井—中子 按仪器结构特征的不同,可以分为普通中子测井,贴井壁中子测井,补偿中子测井等。 从中子源发出的高能中子与地层物质的原子核发生各种作用,其结果是高能中子逐步减弱为超热中子和热中子,或被原子核吸收,发生核反应。中子与物质相互作用的类型有:非弹性散射;弹性散射;核俘获引起的核反应等。 探测仪器记录的低能中子的数量或原子核俘获中子发出的伽马射线的强度与地层对中子的减速能力和吸收特性有关。中子测井正是利用了这些特性对地层进行探测的。 1)中子测井测量地层孔隙度的原理 氢核与中子的质量几乎相等,是最强的减速物质。因此,中子测井的结果将反映地层的含氢量。在油层或水层中,储集空间中被含氢核的油或水充填,这样储集体中含氢量的多少反映岩石孔隙度的大小。因此,中子测井是一种孔隙度测井方法。 2)油层和气层对中子的减速能力的差异非常明显,因此中子测井也是一种指示油气层的测井方法。 3)氯是地层中重要的中子吸收物质,氯是大多数地层水的主要离子成分,可见中子测井对于划分油水层也有重要作用。 4)中子与地层中的原子核发生非弹性散射,使原子核处于激发态,在退激时发出伽马射线。这些伽马射线的能量,反映靶原子核的能级结构。因不同的原子核其能级结构是不同的,因此发出的伽马射线的能量也是不同的。我们把这种不同原子核发生的伽马射线称为特征伽马射线。测量地层发射的伽马射线的能谱,就可以分析地层中元素的成分。 例如:碳核的特征伽马射线为 Er 43 .4= 氧核的特征伽马射线为 Mev Er 13.6= 对于给定的中子源,中子与地层中的碳核和氧核发生非弹性散射次数的多少,取决于地层中相应核素的多少,取决于地层中相应的核素的丰度。即特征伽马射线的强度取决于地层中碳核、氧核的数目。显然,油层与水层单位体积中的碳核和氧核的数目是不同的。 我们通过探测 c r E ,与 o r E ,的强度比,就可以定性判断地层是水层还是油层。这是碳氧比测井的原理。 §1中子测井基本原理 普通中子测井是利用地层中氢核对快中子的减速能力测量地层的含氢指数,进而确定地层孔隙度的测井方法。 一、地层的含氢指数 自然界中,对中子减速能力最强的核素是氢核,岩石中的氢核的多少就决定了地层对中子的主要减速能力。为了度量地层对中子的减速能力,引入几个概念。 1.含氢量,含氢指数 ①含氢量:单位体积中氢核的数目。

(完整word版)测井考试小结(测井原理与综合解释)

一、名词解释 1、测井:油气田地球物理测井,简称测井well logging ,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。 2、电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。 3、声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。 4、核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。 5、储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。例如油气水层。 6、高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO

GBZT148-2002用于中子测井的CR39中子剂量计的个人剂量监测方法

ICS 13.100 GBZ C57 中华人民共和国国家职业卫生标准 GBZ/T 148-2002 用于中子测井的CR39 中子剂量计的个人剂量监测方法 Individual dose monitoring method with CR-39 neutron dosimeter using in neutron logging 2002-04-08发布 2002-06-01 实施 中华人民共和国卫生部 发布

前 言 根据《中华人民共和国职业病防治法》制定本标准。 中子测井技术是核技术在石油工业已广泛使用的技术,在我国也已使用多年。为推进该技术在我国的顺利应用和推广,应进行中子剂量计的监测方法标准化、规范化,以利于放射防护,保障放射工作人员的安全和健康。 本标准按照我国国情,对用于中子测井场所的CR39中子剂量计的个人剂量监测方法,制订了具体要求。 本标准由卫生部提出并归口。 本标准起草单位:中国疾病预防控制中心辐射防护与核安全医学所。 本标准主要起草人:冯玉水 陆杨乔 李俊雯。 本标准由卫生部负责解释。 I

用于中子测井的CR39 中子剂量计的个人剂量监测方法 GBZ/T 148-2002 1范围 本标准推荐了用于中子测井场所的CR39中子剂量计的个人剂量监测方法。 本标准适用于241Am-Be中子源测井场所工作人员的个人中子剂量监测。 2规范性引用文件 下列文件中的条款通过在本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡不注日期的引用文件,其最新版本适用于本标准。 GB 12714 镅铍中子源 3术语和定义 下列术语和定义适用于本标准。 3.1 固体核径迹探测器 solid state nuclear track detector 核粒子穿过绝缘体时,造成一定密度的辐射损伤,经适当处理,形成可观测的径迹,这种固体称为固体核径迹探测器。 3.2 CR-39径迹探测器CR39 track detector 用烯丙基二甘醇碳酸酯(品名 CR39)制成的核径迹探测器。按照测定程序,利用其在中子场经累积照射形成的可观察径迹,在一定准确度内,可得到相应的当量剂量。它是固体核径迹探测器的一种。 3.3 化学蚀刻 chemical etching 固体核径迹探测器的辐射损伤经过化学试剂蚀刻形成可观察径迹的过程。 3.4 中子注量灵敏度 neutron fluence sensitivity 垂直入射的单位中子注量在剂量计单位面积上产生核径迹的概率。 3.5 中子当量剂量灵敏度 neutron equivalent dose sensitivity 中子探测器单位面积上每单位当量剂量相应的径迹数。 3.6 中子剂量换算系数 neutron dose converson coefficient 在各种照射条件下,用人形体模换算出的单位中子注量的当量剂量。 4测量元件 CR39个人中子剂量计由CR39径迹探测器和包装盒组成。 4.1 CR39径迹探测器应具备对辐射损伤灵敏、高透明度、结构均匀、各向同性、热固性稳定和低本底等特性。CR39呈片状,其典型值厚1mm,面积10mm×20mm。 4.2 包装盒用硬质塑料制成,外形为圆柱体或长方体,一侧装有佩带针(夹),以便使用;其典型值厚度为5mm,面积为55mm×35mm。 1

核测井原理

核测井原理 概述 (2) 第一章自然伽马测井和自然伽马能谱测井 (3) §1 伽马射线及其探测 (3) §2 岩石的自然伽马放射性(自然伽马测井的地质基础) (6) §3自然伽马射线强度沿井轴的分布 (13) §4 自然伽马测井的仪器刻度、井眼校正 (14) §5 自然伽马测井资料的应用 (15) §6 自然伽马能谱测井 (17) §7 自然伽马能谱测井资料的应用 (20) 第二章中子测井 (21) §1中子测井基本原理 (22) §2超热中子测井 (25) 第三章核磁共振 (50) §1顺磁共振的相关结果 (50) §2岩石孔隙中流体的核自旋驰豫及描述这种驰豫的方法 (58)

概述 核测井这门课程是和《原子核物理基础》是相互衔接的一门课程。本课程的重点是自然伽马测井、自然伽马能谱测井,密度测井,中子测井以及核磁测井方法原理的讨论,资料的解释应用只稍作提及。 核测井,在核磁共振测井出现之前,我们又叫做放射性测井。放射性测井主要有三种方法:自然伽马测井测量地层的天然放射性;密度测井测量人工伽马源与地层作用后的 射线;中子测井利用中子作用于地层作用,然后测量经地层慢化后的中子,或中子核反应产生的伽马射线。这些测井方法主要用于了解地层的岩性和测量地层的孔隙度。密度测井与中子测井结合也可用来判别储集层空间中的流体性质。 核磁测井严格地说不是放射性测井方法,核磁测井利用氢核具有核磁矩在外磁场作用下的共振吸收特性,测量地层中的氢核的状态和数目,进而求得地层的孔隙度及孔隙结构,束缚水饱和度等参数。

第一章 自然伽马测井和自然伽马能谱测井 自然伽马测井测量地层中天然放射性矿物放出的伽马射线来了解地层的岩性等方面的特性。本章从五个方面来讨论:1.伽马射线的测量(自然伽马测井的物理基础); 2.岩石的放射性来源(自然伽马测井的地质基础); 3.井中自然伽马的测量; 4. 自然伽马测井资料的应用; 5.最后介绍自然伽马能谱测井的原理及其应用。 §1 伽马射线及其探测 1、 伽马射线及其性质 (1)伽马射线:处于激发态的原子核,回到基态时,放出伽马射线。伽马射线是一种能量很高,波长很短的电磁波。 γ+→X X A Z m A Z △E=h ν=h λ c 式中 h ν是伽马射线的能量,h 是普郎克常数,ν是频率,c 是光速,λ是波长。岩石地层中放出的伽马射线的能量范围为1kev~7Mev. (2)伽马射线与物质的相互作用 如前所述,伽马射线射入物质后主要与物质发生三种相互作用。 光电效应:伽马射线的全部能量转移给原子中的电子,使电子从原子中发射出来,伽马光子本身消失的现象,称为光电效应。 康普顿效应:入射的伽马光子与核外电子发生非弹性散射,光子的一部分能量转移给电子,使原子中的电子被反冲出来,而散射光子的能量和运动方向发生变化的现象。 电子对效应:当伽马光子的能量大于1.02Mev 时,光子与靶原子核的库仑场相互作用,光子转化为正负电子对的现象。 (3)伽马射线的探测 由上面的讨论可知,γ射线与物质相互作用的结果是, 原入射能量的伽马光子消失,把入射γ光子的全部能量或部分能量转移给带电粒子(电子)。也就是说,由于伽马射线的射入,在物质中产生了有运动能的带电粒子。电子通过物质时,使原子产生激发或电离,电子本身在运动过程中逐渐损失能量。如果电子的能量高,则在物质中穿行时,产生激发或电离的原子数目就多。利用上述伽马射线与物质相互作用的机制,我们就可以制作相应的伽马射线探测器。

随钻中子孔隙度测井响应特性数值模拟

第39卷第12期 地球科学 中国地质大学学报V o l .39 N o .12 2014年12月 E a r t hS c i e n c e J o u r n a l o fC h i n aU n i v e r s i t y o fG e o s c i e n c e s D e c. 2014 d o i :10.3799/d q k x .2014.174基金项目:国家重大油气专项(N o s .2011Z X 0520-008,2011Z X 05020-002);国家自然科学基金项目(N o .41374125). 作者简介:袁超(1987-),男,博士在读,主要从事核测井方法基础研究二核测井数据处理及应用.E -m a i l :v i p y u a n c h a o @163.c o m 随钻中子孔隙度测井响应特性数值模拟 袁 超1,李潮流1,周灿灿1,张 锋2 1.中国石油勘探开发研究院测井与遥感技术研究所,北京100083 2.中国石油大学地球科学与技术学院,山东青岛266555 摘要:随钻中子孔隙度测井在随钻地层评价中发挥重要作用,对其响应特性研究具有重要意义.利用蒙特卡罗方法建立随钻条件下地层模型,模拟研究随钻中子孔隙度测井响应特性.模拟结果表明:随钻和电缆测井相同条件下中子孔隙度响应变化趋势相同,随钻中子孔隙度曲线反映孔隙度灵敏程度高于电缆测井,但其测井响应受钻铤影响较大;探测深度与地层孔隙度有关,文中条件下探测深度和纵向分辨率分别为28c m 和19c m ;在水平井和大斜度井中,测量方位对中子孔隙度曲线影响较大;相对倾角α越小,中子孔隙度曲线过渡区域中点越接近地层界面;α小于60?时,中子孔隙度曲线受围岩影响可忽略.关键词:随钻测井;中子孔隙度;响应特性;数值模拟. 中图分类号:T E 132 文章编号:1000-2383(2014)12-1896-07 收稿日期:2014-03-04 N u m e r i c a l S i m u l a t i o no fR e s p o n s eC h a r a c t e r i s t i c o f N e u t r o nP o r o s i t y L o g g i n g W h i l eD r i l l i n g Y u a nC h a o 1,L i C h a o l i u 1,Z h o uC a n c a n 1,Z h a n g F e n g 2 1.R e s e a r c hD e p a r t m e n t o f W e l l -L o g g i n g a n dR e m o t eS e n s i n g T e c h n o l o g y ,R I P E D ,P e t r o C h i n a ,B e i j i n g 100083,C h i n a 2.S c h o o l o f G e o s c i e n c e s ,C h i n aU n i v e r s i t y o f P e t r o l e u m ,Q i n g d a o 266580,C h i n a A b s t r a c t :N e u t r o n p o r o s i t y l o g g i n g w h i l e d r i l l i n g (L WD )p l a y s a n i m p o r t a n t r o l e i n f o r m a t i o n e v a l u a t i o nu n d e rL WDe n v i r o n -m e n t ,s o i t h a s a g r e a t s i g n i f i c a n c e t o s t u d y t h e l o g g i n g r e s p o n s e c h a r a c t e r i s t i c .M o n t eC a r l om e t h o d i s e m p l o y e d t ob u i l d f o r -m a t i o nm o d e l i n g u n d e r L WDc o n d i t i o n s ,a n d t h e r e s p o n s e c h a r a c t e r i s t i c i s s i m u l a t e d .T h e r e s u l t s r e v e a l t h a t t h e c h a n g i n g t r e n d o f p o r o s i t y r e s p o n s e o f n e u t r o n l o g g i n g w h i l e d r i l l i n g i s s i m i l a r t o t h a t o fw i r e l i n e u n d e r t h e s a m e c o n d i t i o n s ,t h e s e n s i t i v i t y o f p o r o s i t y c u r v e i nL WD t o p o r o s i t y i s h i g h e r t h a nw i r e l i n e ,b u t t h e n e u t r o n p o r o s i t y l o g g i n g r e s p o n s e o f L WD i s a f f e c t e d s e v e r e -l y b y t h e d r i l l i n g c o l l a r .T h e d e p t ho f i n v e s t i g a t i o n i s r e l a t e d t o f o r m a t i o n p o r o s i t y ,a n d t h e d e p t ho f i n v e s t i g a t i o na n dv e r t i c a l r e s o l u t i o nu n d e r t h e c o n d i t i o n s i n t h i s p a p e r i s 28c ma n d19c m ,r e s p e c t i v e l y .I nh i g ha n g l e a n dh o r i z o n t a lw e l l s ,t h e e f f e c t o f m e a s u r e m e n t a z i m u t ho nn e u t r o n p o r o s i t y c u r v e i s s l i g h t .W h e n t h e r e l a t i v e d i p αi s l o w ,t h em i d p o i n t o f t r a n s i t i o n a r e a o f n e u -t r o n p o r o s i t y c u r v e i s c l o s e t o t h e b o u n d a r y s u r f a c e .I f αi s l e s s t h a n 60?,t h e e f f e c t o f t h e a d j a c e n t f o r m a t i o no n p o r o s i t y c u r v e c a nb e i g n o r e d .K e y w o r d s :l o g g i n g w h i l e d r i l l i n g ;n e u t r o n p o r o s i t y ;r e s p o n s e c h a r a c t e r i s t i c ;n u m e r i c a l s i m u l a t i o n . 近年来, 大斜度井和水平井不断增加,随钻测井技术发展迅速(秦旭英等,2003;邹德江等,2005;张辛耘等,2006),中子孔隙度测井是随钻过程中的必测项目,在地层评价中发挥至关重要的作用(洪有密,2007).T i t t m a n e t a l .(1966)在19世纪60年代提出利用基于贴井壁测量的超热中子测井仪确定地层孔隙度;由于利用单个探测器记录超热中子确定 地层孔隙度受井眼条件影响很大,D a v i s e ta l . (1981 )利用2个热中子探测器,通过不同位置处热中子计数比值获取地层孔隙度;W r a i g h t e ta l .(1989)利用斯伦贝谢的C D N 测井仪器实现联合中子孔隙度和地层密度进行地层评价;随后,H o l e n k a e t a l .(1995 )将中子孔隙度测井应用到随钻环境中,安装在钻铤上的测井仪器在转动过程中实现中子孔

相关文档
最新文档