基于波前探测的视网膜图像半盲解卷积复原

基于波前探测的视网膜图像半盲解卷积复原
基于波前探测的视网膜图像半盲解卷积复原

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

图像复原方法综述

图像复原方法综述 1、摘要 图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。 本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。 关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、 2、图像复原概述 在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。 图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。 图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。 由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。 图像复原算法是整个技术的核心部分。目前,国内在这方面的研究才刚刚起步,而国外

【CN110020684A】一种基于残差卷积自编码网络的图像去噪方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910276255.3 (22)申请日 2019.04.08 (71)申请人 西南石油大学 地址 610500 四川省成都市新都区新都大 道8号 (72)发明人 罗仁泽 王瑞杰 张可 李阳阳  马磊 袁杉杉 吕沁  (51)Int.Cl. G06K 9/62(2006.01) G06N 3/04(2006.01) G06T 5/00(2006.01) (54)发明名称 一种基于残差卷积自编码网络的图像去噪 方法 (57)摘要 本发明公开了一种基于残差卷积自编码网 络的图像去噪方法,为了克服传统浅层线性结构 特征提取能力有限,现有基于深度学习的图像去 噪模型存在泛化能力弱等问题。以残差块、批归 一化层和自编码器组成的残差卷积自编码块为 基本去噪网络结构,提出了多功能去噪残差卷积 自编码神经网络。本发明公开的图像去噪方法, 在保持较高去噪质量和去噪精度的同时,不仅拥 有盲去噪能力,还能去除与训练集类型不相同的 噪声。权利要求书2页 说明书5页 附图2页CN 110020684 A 2019.07.16 C N 110020684 A

1.一种基于残差卷积自编码网络的图像去噪方法,其特征在于包括如下步骤: 步骤1、将预处理后的原图和对应含噪声的图像作为训练集和测试集,具体步骤如下: (1)将m*m像素的三通道原图预处理为单通道灰度图像,并对图像进行切割; (2)将预处理切割后的灰度图像加入相应噪声; (3)将原图的灰度图像及其对应的加噪图像作为一组数据,以原图像的灰度图像作为标签,制作训练集和测试集; 步骤2、构建残差卷积自编码块,主结构由n+2层卷积层组成,恒等映射部分由卷积自编码结构组成,残差卷积自编码块输出为: x n+2=f(x)+x cae x cae 为输入x经过卷积自编码器提取的潜在特征,f(x)为输入x经过n+2层卷积层输出的结果,n为大于1的正整数,其中,主结构第1层卷积核大小为1*1,激活函数为Swish;第2到第n+1层结构相同,均添加批归一化层,卷积核大小为3*3,激活函数为Relu;第n+2层卷积核大小为1*1,激活函数为Swish; 其中Relu激活函数为: Swish激活函数为: 式中β为x的缩放参数,β>0; 步骤3、网络结构主要由步骤2提出的残差卷积自编码块组成,网络共(n+2)*a+8层,a为大于2的正整数,第一层是一个用来降维的卷积层,中间层由残差卷积自编码块和残差卷积块组成,最后一层为一个全连接层; 步骤4、将步骤1预处理后的训练集,通过列队输入到步骤3搭建的网络模型中,采用误差反向传播,并以均方误差损失函数来衡量真实值与预测值的距离,通过数据集的每次迭代,使用梯度下降来调整神经元之间的权重以降低代价函数,进而优化网络,并以定量的峰值信噪比和定性的视觉感受判断网络去噪效果,初次保存网络模型的各个参数; 均方误差损失函数为: 式中,y i 为通过列队读入的标签数据,z i 为输出去噪后的数据,均方误差越小代表去噪后的数据与标签数据越接近,网络准确率越高; 峰值信噪比公式为: 其中M MSE 是原图和处理图像之间的均方误差,PSNR数值越大表示失真越小; 步骤5、将步骤1预处理后的测试集,输入到步骤4优化训练好的网络模型中,并通过定 权 利 要 求 书1/2页2CN 110020684 A

使用卷积神经网络的图像样式转换

《使用卷积神经网络的图像样式转换的研究》 院系信息工程学院 专业电子与通信工程 班级信研163 提交时间:2016年11月28日

使用卷积神经网络的图像样式转换的研究 湖北省武汉,430070 摘要:以不同的风格样式渲染图像的内容一直都是一个十分困难的图像处理任务。也可以说,以前主要限制因素是不知如何明确表示内容信息。在这里我们使用图像表示导出优化的能够识别对象的卷积神经网络,这使得高级图像信息显示。我们引入了一种可以分离和重组自然图像的图像内容和艺术风格的神经算法。这个算法允许我们生成高质量的新目标图像,它能将任意照片的内容与许多众所周知的艺术品的风格相结合。我们的结果提供了对卷积神经网络学习的深度图像表示的新理解,并且展示了他们的高水平图像合成和操纵的能力。 关键词:卷积神经网络;图像处理;神经算法 The Study of Image Style Transfer Using Convolutional Neural Networks LiWenxing School of Science,Wuhan University of Technology,Wuhan 430070,China Abstract: Rendering the content of an image in a different style has always been a difficult image processing task. It can also be said that the main limiting factor in the past is that I do not know how to clearly express the content information. Here we use an image representation to derive an optimized, object-aware convolutional neural network, which allows advanced image information to be displayed. We introduce a neural algorithm that can separate and reconstruct the image content and artistic style of natural images. This algorithm allows us to generate high-quality new target images that combine the content of any photo with the style of many well-known works of art. Our results provide a new understanding of the depth image representation of convolution neural network learning and demonstrate their ability to synthesize and manipulate high-level images. Keywords: Convolutional Neural Network;Image Processing;Neural algorithm

水下图像目标识别的预处理综述

水下图像目标识别的预处理综述 【摘要】图像预处理是对水下图像目标识别处理的一项关键技术,也是一项经典难题。文章分析归纳了基本的预处理技术,以及目标识别方法和应用,提出了一些发展思路和要点。【关键词】目标识别;水下图像;预处理 0、引言 自主式水下机器人(AUV-Autonomous Underwater Vehicle,本文简称水下机器人)是新一代水下机器人,由于其在军事和商业上的重要应用价值和在高技术运用上面临的众多挑战,它越来越多的受到军事工程师和技术人员的重视,并进行了大量的研究与试验工作。在军用领域则可用于侦察、布雷、灭雷和援潜救生等;在民用领域,它可应用于数据收集,海底头探测,海底考察,管道铺设,水下设备的维护与维修等。鉴于水下机器人的诸多重要的应用领域,其视觉分辨能力又是其执行各种任务,获取水下信息的重要途径,所以对水下机器人的图像采集,水下目标的图像处理与识别就显得越来越重要,是水下机器人能够正常工作的不可或缺的技术保障。 水下图像采集的复杂性: 1、江、河、海洋等水体环境复杂。水体流动噪声的波纹、浮游生物以及水中微粒等都会造成成像背景不单一,总会有噪声出现。 2、光源不稳定。入射到摄像头里面的光会因不同类型的物体在水下反射在水下的反射程度不同而不均匀。 3、所采集到的图像是三维景物的二维投影,所以一幅图像本身不具备完全复现三维景物的全部几何信息的能力,造成空间几何失真。 总之,水下目标识别是目前智能机器人技术发展的关键能力之一,既要发挥光学成像技术的分别率高的优势,又要克服噪声相对复杂的一些技术难点。 在对国内外大量的相关文献进行查阅的基础上,进行归纳总结发现近些年的水下目标识别主要采取的方法有以下几个方面:(1)数理统计方法的应用;(2)神经网络方法的应用;(3)数学形态学的处理与识别方法;(4)声图像的阴影暗区方法的应用;(5)Markov 随机场模型理论应用到识别领域。 一般来说,目标识别是在对图像目标进行预处理之后,选取一定的特征量加以识别和分类,然后输出结果。

图像盲复原

一、图像复原的变分方法 图像在形成传输和存储的过程中都会产生失真,造成图像质量的退化,图像复原就是解决这些问题。 (1)图像复原的变分方法 一般来讲,图像的退化过程一般可描述为:f=Ru+n 1-(1) 其中n 表示加性Gauss 白噪声,R 表示确定退化的线性算子,通常是卷积算子。 图像复原就是要尽可能的降低或消除观察图像f (x )的失真,得到一个高质量图像,根据最大似然原理,通过求解如下变分问题可以得到真实图像u 的一个最小二乘逼近: {} 2inf (x)(x)u f Ru dx Ω-? 1-(2) 但该问题是一个典型的病态问题,解决该问题的常用的方法是正则化方法,其中最典型的模型是全变差(TV )模型,该模型在2001年被法国数学家完善,提出了卡通-纹理分解的变分模型。 TV 模型的正则化模型为:() 222()()inf L u H f Ru u dx λΩΩ∈Ω-+?? 1-(3) 第一项是残项,或称忠诚项,保证恢复图像u 保留观察图像f 的主要特征,第二项是正则项,保证恢复图像的光滑,以去除噪声,同时保证极小化问题是良态的,λ>0是尺度参数,平衡忠诚项和正则项的作用,该模型的唯一解满足以下方程: *(f Ru)u 0R λ-+?= 1-(4) 该模型对均匀区域来讲,能很好的去除噪声,但同时磨光了边缘的重要特征,对1-(3)的方程加上适当的初、边值条件,可构成最速下

降法来求解。 该方法可以去除光滑部分的噪声,但同时边缘和纹理也被模糊了,此模型对图像的光滑性要求高,不允许图像中出现不连续或奇异特征,由此改进了有界变差函数或分布空间-BV 空间将图像的梯度看成一种测度而不是函数,允许图像存在边缘、纹理等重要的不连续特征 ,用BV 空间刻画全局正则性更合适。 在图像复原中,为了在去噪的同时能够有效的保留边缘,提出如下正则化模型:2 2()()1inf 2L TV u BV f Ru u λΩ∈Ω??-+ ??? 1-(5) 它利用了BV 空间的半范数—全变差来作为正则项,加上同样的初、值条件,用最速下降法求解,它是Sobolev 空间的一种改进。 (2)变换域变分模型 上述TV 模型只利用了图像的空域信息,没有利用图像的频域或其他变换域信息,另一方面需要大量的迭代,而且没有一个好的停止准则,而变换域变分模型,其求解简单,无需迭代。 DT 模型: 112()1,1()22,inf (v,u)(v u)2f L H B u v F f v u γα-ΩΩΩ=-+++ 1-(6) 利用该模型和Besov 半范数和小波系数的等价关系可以建立基于小波变换的快速算法,避免了求解非线性偏微分方程。 图像的复原也可在基于Besov 和负hilbert-sobolev 空间进行,以及在基于Besov 和齐次Besov 空间进行。 二、 基于Besov 空间的图像盲复原

盲复原

一、引言 图像恢复是图像处理中的一大领域,有着广泛的应用,正成为当前研究的热点。图像恢复的主要目的是使退化图像经过一定的加工处理,去掉退化因素,以最大的保真度恢复成原来的图像。传统的图像恢复假设图像的降质模型是己知的。而许多情况下,图像的降质模型未知或具有较少的先验知识,必须进行所谓的盲恢复。其重要性和艰巨性而成为一个研究热点。目前所能获取的观测图像是真实图像经过观测系统成像的结果。由于观测系统本身物理特性的限制,同时受观测环境的影响,观测图像和真实图像之间不可避免地存在着偏差和失真,称观测系统对真实图像产生了降质。图像恢复的目的就是根据降质的观测图像分析和计算得出真实图像。 二、图像盲恢复算法的现状 总体来说, 图像盲复原方法主要分为以下两类: 一是首先利用真实图像的特别特征估计PSF,然后借助估计得到的PSF,采用经典的图像复原方法进行图像的复原。这类方法将PSF的估计与图像的复原过程分为2个不同的过程,因而具有较少计算量的特点;二是PSF辨识和真实图像估计相结合,同时辨识PSF和真实图像。这类算法较为复杂,计算量较大。另外,对于点扩展函数也考虑了空间变化的复杂情况。针对目前的盲复原算法的现状,根据退化模型的特点, 重新将算法分为空间不变的单通道盲复原算法、空间不变多通道盲复原算法和空间变化图像盲复原算法3类。 (一)单通道空间不变图像盲复原算法 在这类算法中, 最为常用的是参数法和迭代法。 1)参数法。所谓参数法, 即模型参数法, 就是将PSF和真实图像用某一类模型加以描述, 但模型的参数需要进行辨识。在参数法中, 典型的有先验模糊辨识法和ARMA 参数估计法, 前者先辨识PSF的模型参数,后辨识真实图像, 属于第1 种类型的图像盲复原算法, 因而计算量较小;后者同时辨识PSF和真实图像模型参数, 属于第2种类型图像盲复原算法。 2)迭代法。所谓的迭代法, 不是通过建立模型而是通过算法的迭代过程, 加上有关真实图像和PSF的约束来同时辨识PSF和真实图像的方法。迭代法是单通道 图像盲复原算法中应用最广泛的一类算法, 它不需建立模型, 也不要求PSF 为最小相位系

图像盲恢复的算法研究

图像盲恢复的算法研究 摘要:当点扩展函数未知或不确知的情况下, 从观察到的退化图像中恢复原始图像的过程称为图像盲复原。近年来, 图像盲复原算法得到了广泛的研究。本文在介绍了盲图像恢复算法的现状的基础上进一步研究其的发展方向。 关键词: 图像盲恢复现状前景 一、引言 图像恢复是图像处理中的一大领域,有着广泛的应用,正成为当前研究的热点。图像恢复的主要目的是使退化图像经过一定的加工处理,去掉退化因素,以最大的保真度恢复成原来的图像。传统的图像恢复假设图像的降质模型是己知的。而许多情况下,图像的降质模型未知或具有较少的先验知识,必须进行所谓的盲恢复。其重要性和艰巨性而成为一个研究热点。目前所能获取的观测图像是真实图像经过观测系统成像的结果。由于观测系统本身物理特性的限制,同时受观测环境的影响,观测图像和真实图像之间不可避免地存在着偏差和失真,称观测系统对真实图像产生了降质。图像恢复的目的就是根据降质的观测图像分析和计算得出真实图像。 二、图像盲恢复算法的现状 总体来说, 图像盲复原方法主要分为以下两类: 一是首先利用真实图像的特别特征估计PSF,然后借助估计得到的PSF,采用经典的图像复原方法进行图像的复原。这类方法将PSF的估计与图像的复原过程分为2个不同的过程,因而具有较少计算量的特点;二是PSF辨识和真实图像估计相结合,同时辨识PSF和真实图像。这类算法较为复杂,计算量较大。另外,对于点扩展函数也考虑了空间变化的复杂情况。针对目前的盲复原算法的现状,根据退化模型的特点, 重新将算法分为空间不变的单通道盲复原算法、空间不变多通道盲复原算法和空间变化图像盲复原算法3类。 (一)单通道空间不变图像盲复原算法 在这类算法中, 最为常用的是参数法和迭代法。 1)参数法。所谓参数法, 即模型参数法, 就是将PSF和真实图像用某一类模型加以描述, 但模型的参数需要进行辨识。在参数法中, 典型的有先验模糊辨识法和ARMA 参数估计法, 前者先辨识PSF的模型参数,后辨识真实图像, 属于第1 种类型的图像盲复原算法, 因而计算量较小;后者同时辨识PSF和真实图像模型参数, 属于第2种类型图像盲复原算法。 2)迭代法。所谓的迭代法, 不是通过建立模型而是通过算法的迭代过程, 加上有关真实图像和PSF的约束来同时辨识PSF和真实图像的方法。迭代法是单

基于卷积神经网络的图像识别研究

第14期 2018年7月No.14July,2018 1 算法原理 卷积神经网络的卷积层最重要部分为卷积核[1-2]。卷积核不仅能够使各神经元间连接变少,还可以降低过拟合误 差[3]。 子采样过程就是池化过程。进行卷积过程是将卷积核与预测试图像进行卷积,子采样能够简化网络模型,降低网络模型复杂程度,从而缩减参数。 在图像识别时,首先需要对输入图像初始化,然后将初始化后图像进行卷积和采样,前向反馈到全连接层,通过变换、即可计算进入输出层面,最终通过特征增强效果和逻辑之间的线性回归判断是否符合图像识别期望效果,往复循环,每循环一次就迭代一次,进而对图像进行识别。流程如图1所示。 图1 卷积神经网络模型流程 2 卷积神经网络 卷积神经网络主要包括3个层次[4],它由输入层、隐藏 层、输出层共同建立卷积神经网络模型结构。2.1 卷积层 卷积层的作用是提取特征[2]。卷积层的神经元之间进行 局部连接,为不完全连接[5]。 卷积层计算方法公式如下。()r array M a λ+ 其中λ为激活函数,array 是灰度图像矩阵, M 表示卷积核, 表示卷积, a 表示偏置值大小。G x 方向和G y 方向卷积核。 本文卷积神经网络模型中设定的卷积核分为水平方向和竖直方向。卷积层中卷积核通过卷积可降低图像边缘模糊程度,使其更为清晰,效果更好、更为显著。经过S 型函数激活处理之后,进行归一化后图像灰度值具有层次感,易于突出目标区域,便于进一步处理。2.2 全连接层 该层主要对信息进行整理与合并,全连接层的输入是卷积层和池化层的输出。在视觉特征中,距离最近点颜色等特征最为相似,像素同理。全连接如图2所示。 图2 全连接 3 实验结果与分析 本文采用数据集库是MSRA 数据集,该数据集共包含1 000张图片。实验环境为Matlab2015a 实验环境,Windows 7以上系统和无线局域网络。本文从MSRA 数据集中选取其中一张进行效果分析。卷积神经网络模型识别效果如图3所示。 作者简介:谢慧芳(1994— ),女,河南郑州人,本科生;研究方向:通信工程。 谢慧芳,刘艺航,王 梓,王迎港 (河南师范大学,河南 新乡 453007) 摘 要:为降低图像识别误识率,文章采用卷积神经网络结构对图像进行识别研究。首先,对输入图像进行初始化;然后,初 始化后的图像经卷积层与该层中卷积核进行卷积,对图像进行特征提取,提取的图像特征经过池化层进行特征压缩,得到图像最主要、最具代表性的点;最后,通过全连接层对特征进行综合,多次迭代,层层压缩,进而对图像进行识别,输出所识别图像。与原始算法相比,该网络构造可以提高图像识别准确性,大大降低误识率。实验结果表明,利用该网络模型识别图像误识率低至16.19%。关键词:卷积神经网络;卷积核;特征提取;特征压缩无线互联科技 Wireless Internet Technology 基于卷积神经网络的图像识别研究

基于分层复原方法的水下图像复原

目录 1 绪论................................................................................................................................... 1.1 引言 (1) 1.2 数字图像复原概述 (1) 1.3 图像复原工具MATLAB概述 (2) 2 水下图像处理基本理论与方法 (3) 2.1 水下点扩散函数模型 (3) 2.2 小波分解 (4) 2.2.1 小波变换基本理论 (4) 2.2.2 图像的小波分解 (4) 2.3 维纳滤波器复原 (5) 2.3.1 图像的退化模型 (5) 2.3.2 维纳滤波器简介 (6) 2.3.3 图像的维纳滤波复原 (7) 3 水下图像的分层复原 (9) 3.1 水下图像分层滤波复原方案 (9) 3.2 图像清晰度评价函数 (10) 3.2.1 熵函数 (10) 3.2.2 梯度函数 (11) 3.2.3 高低频图像评价函数的选取 (12) 3.3 分层复原的结果及其分析 (14) 3.3.1 高频复原 (14) 3.3.2 低频复原 (15) 3.3.3 整体复原与分层复原对比 (17) 4 结语 (19) 参考文献 (21) 致谢 (23)

1绪论 1.1引言 随着社会的发展,数字图像处理技术作为一门迅速发展的学科,在航天、医药、遥感、雷达等诸多领域都有着广泛的应用, 通过分析采集到的目标图像的质量和特性等,可获取大量重要信息,为科学技术及社会应用提供了重要的有价值的信息,对科学事业的发展起到了极大的作用。此外,数字图像处理技术也已融入到生活中的各个领域,特别是多媒体技术的发展,创造出大量图像和视频素材,给人们带来了一次又一次的视觉享受,极大地丰富了人们的日常生活。 海洋是人类生存和发展的重要领域,不仅能为人类提供丰富的物质资源,而 且在现代战争中具有重要的战略地位。由于海洋的重要性,水下图像也日渐成为人们研究的重要领域和方向。对水下图像的处理主要包括目标识别、图像复原、图像增强和图像压缩等,其中图像复原是水下图像处理中一个非常重要的环节,在近年来得到了越来越多的重视与研究。通过对拍摄到的水下降质图像进行复原处理,最大限度地还原出原始图像,可获取大量对工业、军事等应用方面的重要信息。但由于水下成像过程复杂,包含许多不定干扰因素,所以如何能尽量精确地复原图像就成为一个重要的研究课题。 1.2数字图像复原概述 数字图像复原技术是数字图像处理[1]的重要组成部分,最早的复原技术研究追溯到19世纪50至60年代早期美国和前苏联的空间项目。恶劣的成像环境、设备的振动和飞行器旋转等因素使图像产生不同程度的退化。在当时的技术背景下,这些退化造成了巨大的经济损失。为此,业内人士围绕着解决退化问题展开了复原技术的研究。 数字图像复原早期的成果主要归功于数字信号处理领域中一些技术和方法 的引入,例如逆滤波技术。目前,一些现代方法极大地丰富了复原技术的研究内容,典型的有小波分解,神经网络等。此外,随着人们对数字图像复原的研究,人们提出了一系列的复原准则和数学最优化的方法,从而总结出各种各样的算法。常见的复原方法有:逆滤波复原算法,维纳滤波复原算法,盲卷积滤波复原算法,约束最小二乘滤波复原算法等等。

卷积神经网络

卷积神经网络 摘要:卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强等特点。本文从卷积神经网络的发展历史开始,详细阐述了卷积神经网络的网络结构、神经元模型和训练算法。在此基础上以卷积神经网络在人脸检测和形状识别方面的应用为例,简单介绍了卷积神经网络在工程上的应用,并给出了设计思路和网络结构。 关键字:模型;结构;训练算法;人脸检测;形状识别 0 引言 卷积神经网络是人工神经网络的一种已成为当前语音分析和图像识别领域的研究热点,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 1 卷积神经网络的发展历史 1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。神经认知机能够利用位移恒定能力从激励模式中学习,并且可识别这些模式的变化形,在其后的应用研究中,Fukushima将神经认知机主要用于手写数字的识别。随后,国内外的研究人员提出多种卷积神经网络形式,在邮政编码识别和人脸识别方面得到了大规模的应用。 通常神经认知机包含两类神经元,即承担特征抽取的S-元和抗变形的C-元。S-元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。许多学者一直致力于提高神经认知机的性能的研究:在传统的神经认知机中,每个S-元的感光区中由C-元带来的视觉模糊量呈正态分布。如果感光区的边缘所产生的模糊效果要比中央来得大,S-元将会接受这种非正态模糊所导致的更大的变形容忍性。我们希望得到的是,训练模式与变形刺激模式在感受野的边缘与其中心所产生的效果之间的差异变得越来越大。为了有效地形成这种非正态模糊,Fukushima提出了带双C-元层的改进型神经认知机。 Trotin 等人提出了动态构造神经认知机并自动降低闭值的方法[1],初始态的神经认知机各层的神经元数目设为零,然后会对于给定的应用找到合适的网络规模。在构造网络过程中,利用一个反馈信号来预测降低阈值的效果,再基于这种预测来调节阈值。他们指出这种自动阈值调节后的识别率与手工设置阈值的识别率相若,然而,上述反馈信号的具体机制并未给出,并且在他们后来的研究中承认这种自动阈值调节是很困难的【8】。 Hildebrandt将神经认知机看作是一种线性相关分类器,也通过修改阈值以使神经认知机成为最优的分类器。Lovell应用Hildebrandt的训练方法却没有成功。对此,Hildebrandt解释的是,该方法只能应用于输出层,而不能应用于网络的每一层。事实上,Hildebrandt没有考虑信息在网络传播中会逐层丢失。 Van Ooyen和Niehuis为提高神经认知机的区别能力引入了一个新的参数。事实上,该参数作为一种抑制信号,抑制了神经元对重复激励特征的激励。多数神经网络在权值中记忆训练信息。根据Hebb学习规则,某种特征训练的次数越多,在以后的识别过程中就越容易

相关文档
最新文档