Matlab的语音信号处理

Matlab的语音信号处理
Matlab的语音信号处理

课程设计论文

姓名:姜勇

学院:机电与车辆工程学院

专业:电子信息工程2班

学号:1665090208

语音信号分析与处理系统设计

一、语音信号分析与处理系统设计摘要

语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。

Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。

本论文主要介绍的是的语音信号的简单处理。本论文针对以上问题,运用数字信号学基本原理实现语音信号的处理,在matlab7.0环境下综合运用信号提取,幅频变换以及傅里叶变换、滤波等技术来进行语音信号处理。我所做的工作就是在matlab7.0软件上编写一个处理语音信号的程序,能对语音信号进行采集,并对其进行各种处理,达到简单的语音信号处理的目的。

二、关键字:

1.Matlab;

2.语音信号;

3.傅里叶变换;

4.信号处理。

三、语音信号处理的总体方案

1 系统基本概述、要求

本文是用Matlab对含噪的的语音信号同时在时域和频域进行滤波处理和分析,在MATLAB应用软件下设计一个简单易用的图形用户界面(GUI),来解决一般应用条件下的各种语音信号的处理。

2 系统框架及实现

1)语音信号的采集

2)使用电脑的声卡设备采集一段语音信号,并将其保存在电脑中。

3)语音信号的处理

Ⅰ.语音信号的时域分析

①提取:通过图形用户界面上的菜单功能按键采集电脑设备上的一段音频信号,完成音频信号的频率,幅度等信息的提取,并得到该语音信号的波形图。

②调整:在设计的用户图形界面下对输入的音频信号进行各种变化,如变化幅度、改变频率等操作,以实现对语音信号的调整。

Ⅱ.语音信号的频域分析

①变换:在用户图形界面下对采集的语音信号进行Fourier等变换,并画出变换前后的频谱图和变换后的倒谱图。

②滤波:滤除语音信号中的噪音部分,可采用低通滤波、高通滤波、带通滤波和帯阻滤波,并比较各种滤波后的效果。

4)语音信号的效果显示

通过用户图形界面的输出功能,将处理后的信号的语音进行播放,试听处理后的效果。

3系统初步流程图

图1列出了整个语音信号处理系统的工作流程:

图1 语音信号处理系统的工作流程

其中信号调整包括信号的幅度和频率的任意倍数变化。如下图2

图2 信号调整

信号的滤波采用了四种滤波方式,来观察各种滤波性能的优缺点:

图3 语音信号滤波的方式

在以上三图中,可以看到整个语音信号处理系统的流程大概分为三步,首先要读入待处理的语音信号,然后进行语音信号的处理,包括信息的提取、幅度和频率的变换以及语音信号的傅里叶变换、滤波等;滤波又包括低通滤波、高通滤波、带通滤波和带阻滤波等方式。最后对处理过的语音信号进行处理后的效果显示。以上是本系统的工作流程,本文将从语音信号的采集开始做详细介绍。

四、语音信号处理实例分析

1图形用户界面设计

在MATLAB主窗口中,选择File菜单中的New菜单项,再选择其中的GUI命令,就会显示图形用户界面的设计模板。MATLAB为GUI设计一共准备了4种模板,分别是Blank GUI(默认) 、GUI with Uicontrols (带控件对象的GUI模板) 、GUI with Axes and Menu(带坐标轴与菜单的GUI模板)与Modal Question Dialog(带模式问话对话框的GUI 模板)。

设计语音信号处理系统的用户图形操作界面(GUI)SoundProcess,其中菜单主要

包括File、Process和Output三大主要部分,其中File菜单包括输入(Input)、保存(Save)和退出(Quit)等功能;Process菜单主要包括提取(Extract)、调整(Extract)、变换(Transform)和滤波(Filter)菜单,其中调整(Extract)包括幅度调整(Range)和频率调整(Frequency),滤波(Filter)菜单包含低通滤波(LowpassFilter)、高通滤波(HighpassFilter)、带通滤波(BandpassFilter)和帯阻滤波(BandstopFilter)等功能菜单。

2信号的采集

该系统是以一段简短的的语音信号做为分析样本,通过计算机系统将一段“主人,信息收到了”的语音信号保存到到计算机中,并且保存格式为“*.wav”。

3语音信号的处理设计

3.1 语音信号的提取

在Matlab中使用Wavread函数,可得出信号的采样频率为22500,并且声音是单声道的。利用Sound函数可以清晰的听到“主人,信息收到了”的语音。采集数据并画出波形图。

其中声音的采样频率Fs=22050Hz,y为采样数据,NBITS表示量化阶数。

部分程序如下:

fn=input(' Enter WAV filename:','s'); %获取一个*.wav的文件[x,fs,nb]=wavread(fn);

ms2=floor(fs*0.002);

ms1

ms20=floor(fs*0.02);

ms30=floor(fs*0.03);????

t=(0:length(x)-1)/fs; %计算样本时刻

subplot(2,1,1); %确定显示位置

plot(t,x); %画波形图

legend('Waveform');

xlabel( 'Time(s)');

ylabel('Amplitude');

运行后弹出语音信号处理系统的操作界面如图4:

图4 语音信号处理系统的操作界面

然后点击File菜单中的子菜单Input,回到Matlab软件的输入界面如图5:

图5 输入界面

输入要处理的语音信号的名称,便可得到语音语音的波形图如图6:

图6 语音语音的波形图

如图中提取的语音的波形图所示,整段音频数据中得声音高低起伏与录入的声音信号基本一致,并且可以观察到其中包含部分高频噪声。

3.2 语音信号的调整

在语音信号的研究中,经常会对语音信号进行进行多倍频率以及多倍幅度变换调整,日常应用中,这种变换调整也经常要用到。所以在设计中也添加了这种功能,并能够观察调整后的信号的波形图得变化,而且能通过语音处理界面的输出功能试听处理后的语音信号。

3.2.1 语音信号的频率调整

在设计中,可以将语音信号的采样频率提高或降低,来实现语音信号的调整,得到理想的语音信号。例如将采样频率提高一倍,即可得到语音信号频率为原频率2倍新的语音信号。运行Process→Adjust→Frequency,得到如图7的信号波形图,并试听调整后的效果。

图7频率调整后波形图

与原语音信号相比,经过调整后的信号周期变为原来的1/2,此时的语速明显变快,即实现了信号的2倍频功能。

3.2.2语音信号的振幅调整

在设计中,可以将语音信号的幅度进行提高或降低操作,来实现语音信号的调整,得到声音音量大小不同的语音信号,例如将原语音信号的幅度提高一倍,得到如下图8的信号波形图,可以通过GUI操作界面的输出功能试听调整后的效果。

图8 幅度调整后波形图

此时听到的调整后声音声调变高,但不是很明显,可以将幅度的变化值设置的比较大,那样的话就可以得到效果相当明显的语音信号了。

3.3 语音信号的傅里叶变换

倒谱分析是指信号短时振幅谱的对数进行傅里叶反变换。它具有可近似地分离并提取出频谱包络信息和细微结构信息的特点。

对语音信号进行频谱分析,在Matlab中可以利用函数fft对信号行快速傅里叶变换,

得到信号的频谱图,并进行倒谱分析,得到倒谱图。

傅里叶变换的部分程序如下:

x=y(44101:55050,1); %提取原语音信号的一部分

t=(0:length(x)-1)/fs; %计算样本时刻

subplot(3,1,1); %确定显示位置

plot(t,x); %画波形图

legend('波形图');

xlabel( 'Time(s)');

ylabel('Amplitude');

Y=fft(x,hamming(length(x))); %做加窗傅里叶变换

fm=5000*length(Y)/fs; %限定频率范围

f=(0:fm)*fs/length(Y); %确定频率刻度

subplot(3,1,2);

plot(f,20*log10(abs(Y(1:length(f)))+eps));

legend('频谱图'); %画频谱图

ylabel('幅度(db)');

xlabel('频率(Hz)');

c=fft(log(abs(x)+eps)); %倒频谱计算

ms1=fs/1000;

ms20=fs/50

q=(ms1:ms20)/fs; %确定倒频刻度

subplot(3,1,3);

plot(q,abs(c(ms1:ms20))); %画倒谱图

legend('倒谱图');

xlabel('倒频(s)');

ylabel('倒频谱幅度(Hz)');

运行Process Transform,对语音信号的一部分进行傅里叶变换,并进行倒谱分析,

得到如图9

图9 声音样本波形图、频谱图和倒谱图

从上面的倒谱图可以看出.当读“主人,信息收到了”时,所对应的频率大概在200Hz左右。这与人的语音信号频率集中在200 Hz到4.5 kHz之间是相一致的。而在未发声的时间段内,相对的小高频部分(200500Hz)应该属于背景噪声。

3.4 语音信号的滤波

从图7中发现,语音信号中包含背景噪声,这些噪声的频率一般较高。所以可以利用MATLAB软件中的滤波器进行滤波处理,得到较为理想的语音信号。

3.4.1 语音信号的低通滤波

系统中设计了一个截止频率为200Hz切比雪夫—I型低通滤波器,它的幅频特性如下图10:

图10 低通滤波器的幅频特性

低通滤波器性能指标: wp=0.075pi,ws =0.125pi,Rp=0.25;As =50dB;

经过低通滤波器处理后,比较处理前后的波形图的变化,如下图11:

图11 低通滤波后波形和频谱的变化

低通滤波后,声音稍微有些发闷、低沉,原因是高频分量被低通滤波器衰减。但是很接近原来的声音。

3.4.2 语音信号的高通滤波

运用切比雪夫—Ⅱ型数字高通滤波器,对语音信号进行滤波处理。高通滤波器性能指标: wp=0.375pi,ws =0.425pi,Rp=0.25;As =50dB;然后将其与原信号的比较图如下图12:

图12 高通滤波后波形和频谱的变化

高通滤波后,此时只有少许杂音,原因是低频分量被高通滤波器衰减,而人声部分正好是低频部分,所以只剩下杂音,或者发出高频杂音但人的耳朵听不到。

3.4.3 语音信号的带通滤波

运用椭圆数字带通滤波器函数,对语音信号进行滤波处理后其与原信号的比较图如下图13:

图13 带通滤波后波形和频谱的变化

3.4.4 语音信号的带阻滤波

运用切比雪夫—Ⅱ型数字带阻滤波器,对语音信号进行滤波处理后其与原信号的比较图如下图14:

图14 帯阻滤波后波形和频谱的变化

从以上各种数字滤波器经过滤波后得出的语音信号相比较,低通滤波后,声音稍微有些发闷,但是很接近原来的声音;高通滤波后听不到人的声音;带通滤波后声音有点像机器人小叮当发出的声音。带阻滤波后,声音比较接近原来的声音。从频谱图中我们可以看出声音的能量主要集中在低频(0.2pi即2204.5Hz以内)部分。

4 语音信号的输出

可以将处理后的语音信号在Matlab软件先播放,体验处理后的语音信号的效果。还可以将处理后的语音信号保存在电脑上。

运行File→Save,保存处理后的语音信号。如果没有语音信号被处理,则系统会出现提示如下图15:

图4.12 保存提示界面

如果有语音信号被处理,运行File→Save,系统会出现提示如下图4.13:

图15 保存界面

保存后,整个操作过程就完成了。

五、总结

本文对语音信号处理系统的设计作了详细的介绍,采用一系列图像分析和处理技术,实现了语音信号的基本处理的功能,经过测试运行,本设计圆满的完成了对语音信号的读取与打开;较好的完成了对语音信号的频谱分析,通过fft变换,得出了语音信号的频谱图;在滤波这一块,课题主要是从数字滤波器入手来设计滤波器,基本实现了滤波,完成了各种滤波器的滤波效果比较,与课题的要求十分相符。

本设计主要有以下优点:

1)操作界面简练。在进行语音信号处理的操作界面中,菜单按键明了,每个功能只对

应一个按键,省去了大型软件的操作复杂步骤。

2)处理速度较快。由于整个操作过程存在多个分步骤,并且每个步骤的联系不是很紧

密,所以每个步骤中的运行速度很快。

3)占用内存空间比较小。整个程序仅占用数十KB的物理空间,省去了软件的安装麻烦。本设计还存在许多可以改进的地方,主要有以下几个方面:

1)本程序仅能进行一般应用条件下的语音信号处理,功能比较单一,不能进行复杂的

语音信号处理。

2)由于系统定位于一般条件下的语音信号处理,计算精度比较低,不能进行精度较高

的语音信号处理。

3) 该程序由于编写简单,操作界面较小,对较大物理内存的语音信号文件不能进行处理。

六、参考文献

[1] 李勇、徐震,MATLAB辅助现代工程数字信号处理,西安电子科技大学出版社。

[2] 陈怀琛,数字信号处理教程——Matlab释义与实现 ,电子工业出版社。

[3] 王一世,数字信号处理,北京理工大学出版社。

[4] 程佩青, 数字信号处理教程, 清华大学出版社。

[5] 刘幺和、宋庭新,语音识别与控制技术,科学出版社。

[6] 高西全、丁玉美,数字信号处理,西安电子科技大学出版社。

[7] 苏金明、张莲花、刘波,MATLAB工具箱应用,电子工业出版社。

语音信号处理与及其MATLAB实现分析

目录 摘要 (2) 第一章绪论 (3) 1.1 语音课设的意义 (3) 1.2 语音课设的目的与要求 (3) 1.3 语音课设的基本步骤 (3) 第二章设计方案论证 (5) 2.1 设计理论依据 (5) 2.1.1 采样定理 (5) 2.1.2 采样频率 (5) 2.1.3 采样位数与采样频率 (5) 2.2 语音信号的分析及处理方法 (6) 2.2.1 语音的录入与打开 (6) 2.2.2 时域信号的FFT分析 (6) 2.2.3 数字滤波器设计原理 (7) 2.2.4 数字滤波器的设计步骤 (7) 2.2.5 IIR滤波器与FIR滤波器的性能比较 (7) 第三章图形用户界面设计 (8) 3.1 图形用户界面概念 (8) 3.2 图形用户界面设计 (8) 3.3 图形用户界面模块调试 (9) 3.3.1 语音信号的读入与打开 (9) 3.3.2 语音信号的定点分析 (9) 3.3.3 N阶高通滤波器 (11) 3.3.4 N阶低通滤波器 (12) 3.3.5 2N阶带通滤波器 (13) 3.3.6 2N阶带阻滤波器 (14) 3.4 图形用户界面制作 (15) 第四章总结 (18) 附录 (19) 参考文献 (24)

摘要 数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。 数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。 数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。 数字信号处理的核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。而使数字信号处理从理论走向实用的是快速傅立叶变换(FFT),FFT的出现大大减少了DFT的运算量,使实时的数字信号处理成为可能、极大促进了该学科的发展。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论.............................................................................................................. 错误!未定义书签。 1.1课题背景及意义................................................................................. 错误!未定义书签。 1.2国内外研究现状................................................................................. 错误!未定义书签。 1.3本课题的研究内容和方法................................................................. 错误!未定义书签。 1.3.1 研究内容................................................................................ 错误!未定义书签。 1.3.2 开发环境................................................................................ 错误!未定义书签。 2 语音信号处理的总体方案............................................................................ 错误!未定义书签。 2.1 系统基本概述.................................................................................... 错误!未定义书签。 2.2 系统基本要求与目的........................................................................ 错误!未定义书签。 2.3 系统框架及实现................................................................................ 错误!未定义书签。 2.3.1 语音信号的采样.................................................................... 错误!未定义书签。 2.3.2 语音信号的频谱分析............................................................ 错误!未定义书签。 2.3.3 音乐信号的抽取.................................................................... 错误!未定义书签。 2.3.4 音乐信号的AM调制.............................................................. 错误!未定义书签。 2.3.5 AM调制音乐信号的同步解调............................................... 错误!未定义书签。 2.4系统设计流程图................................................................................. 错误!未定义书签。 3 语音信号处理基本知识................................................................................ 错误!未定义书签。 3.1语音的录入与打开............................................................................. 错误!未定义书签。 3.2采样位数和采样频率......................................................................... 错误!未定义书签。 3.3时域信号的FFT分析......................................................................... 错误!未定义书签。 3.4切比雪夫滤波器................................................................................. 错误!未定义书签。 3.5数字滤波器设计原理......................................................................... 错误!未定义书签。 4 语音信号实例处理设计................................................................................ 错误!未定义书签。 4.1语音信号的采集................................................................................. 错误!未定义书签。

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名: 实验一基于MATLAB的语音信号时域特征分析(2学时)

1)短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if(i==2) ,legend('N=32'); elseif(i==3), legend('N=64'); elseif(i==4) ,legend('N=128'); elseif(i==5) ,legend('N=256'); elseif(i==6) ,legend('N=512'); end end

00.51 1.52 2.5 3 x 10 4 -1 1 x 10 4 024 x 10 4 05 x 10 4 0510 x 10 4 01020 x 10 4 02040 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if(i==2), legend('N=32'); elseif(i==3), legend('N=64'); elseif(i==4) ,legend('N=128');

语音信号处理试验教程

语音信号处理试验 实验一:语音信号时域分析 实验目的: (1)录制两段语音信号,内容是“语音信号处理”,分男女声。 (2)对语音信号进行采样,观察采样后语音信号的时域波形。 实验步骤: 1、使用window自带录音工具录制声音片段 使用windows自带录音机录制语音文件,进行数字信号的采集。启动录音机。录制一段录音,录音停止后,文件存储器的后缀默认为.Wav。将录制好文件保存,记录保存路径。男生女生各录一段保存为test1.wav和test2.wav。 图1基于PC机语音信号采集过程。 2、读取语音信号 在MATLAB软件平台下,利用wavread函数对语音信号进行采样,记住采样频率和采样点数。通过使用wavread函数,理解采样、采样频率、采样位数等概念! Wavread函数调用格式: y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。

[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(hz),nbits表示采样位数。 y=wavread(file,N),读取前N点的采样值放在向量y中。 y=wavread(file,[N1,N2]),读取从N1到N2点的采样值放在向量y中。 3、编程获取语音信号的抽样频率和采样位数。 语音信号为test1.wav和test2.wav,内容为“语音信号处理”,两端语音保存到工作空间work文件夹下。在M文件中分别输入以下程序,可以分两次输入便于观察。 [y1,fs1,nbits1]=wavread('test1.wav') [y2,fs2,nbits2]=wavread('test2.wav') 结果如下图所示 根据结果可知:两端语音信号的采样频率为44100HZ,采样位数为16。 4、语音信号的时域分析 语音信号的时域分析就是分析和提取语音信号的时域参数。进行语音分析时,最先接触到并且夜市最直观的是它的时域波形。语音信

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,

利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是: 2.1.采集语音信号。 2.2.对原始语音信号加入干扰噪声,对原始语音信号及带噪语音信号进行时频域分析。 2.3.针对语音信号频谱及噪声频率,设计合适的数字滤波器滤除噪声。 2.4.对噪声滤除前后的语音进行时频域分析。 2.5.对语音信号进行重采样,回放并与原始信号进行比较。 2.6.对语音信号部分时域参数进行提取。 2.7.设计图形用户界面(包含以上功能)。 3 设计方案论证 3.1语音信号的采集 使用电脑的声卡设备采集一段语音信号,并将其保存在电脑中。 3.2语音信号的处理 语音信号的处理主要包括信号的提取播放、信号的重采样、信号加入噪声、信号的傅里叶变换和滤波等,以及GUI图形用户界面设计。 Ⅰ.语音信号的时域分析 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法。 Ⅱ.语音信号的频域分析 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更

《语音信号处理》实验报告材料

实用 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

语音信号处理matlab实现

短时能量分析matlab源程序: x=wavread('4.wav'); %计算N=50,帧移=50时的语音能量 s=fra(50,50,x);%对输入的语音信号进行分帧,其中帧长50,帧移50 s2=s.^2;%一帧内各种点的能量 energy=sum(s2,2);%求一帧能量 subplot(2,2,1); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=50'); axis([0,500,0,30]) %计算N=100,帧移=100时的语音能量 s=fra(100,100,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,2); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=100'); axis([0,300,0,30]) %计算N=400,帧移=400时的语音能量 s=fra(400,400,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,3); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=400'); axis([0,60,0,100]) %计算N=800,帧移=800时的语音能量 s=fra(800,800,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,4); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=800'); axis([0,30,0,200]) 分帧子函数: function f=fra(len,inc,x) %对读入语音分帧,len为帧长,inc为帧重叠样点数,x为输入语音数据 fh=fix(((size(x,1)-len)/inc)+1);%计算帧数 f=zeros(fh,len);%设一个零矩阵,行为帧数,列为帧长 i=1;n=1; while i<=fh %帧间循环 j=1; while j<=len %帧内循环 f(i,j)=x(n); j=j+1;n=n+1; end n=n-len+inc;%下一帧开始位置 i=i+1; end

大学本科语音信号处理实验讲义8学时

语音信号处理实验讲义 时间:2011-12

目录 实验一语音信号生成模型分析 (3) 实验二语音信号时域特征分析 (7) 实验三语音信号频域特征分析 (12) 实验四语音信号的同态处理和倒谱分析 (16)

实验一 语音信号生成模型分析 一、实验目的 1、了解语音信号的生成机理,了解由声门产生的激励函数、由声道产生的调制函数和由嘴唇产生的辐射函数。 2、编程实现声门激励波函数波形及频谱,与理论值进行比较。 3、编程实现已知语音信号的语谱图,区分浊音信号和清音信号在语谱图上的差别。 二、实验原理 语音生成系统包含三部分:由声门产生的激励函数()G z 、由声道产生的调制函数()V z 和由嘴唇产生的辐射函数()R z 。语音生成系统的传递函数由这三个函数级联而成,即 ()()()()H z G z V z R z = 1、激励模型 发浊音时,由于声门不断开启和关闭,产生间隙的脉冲。经仪器测试它类似于斜三角波的脉冲。也就是说,这时的激励波是一个以基音周期为周期的斜三角脉冲串。单个斜三角波的频谱表现出一个低通滤波器的特性。可以把它表示成z 变换的全极点形式 12 1()(1) cT G z e z --= -? 这里c 是一个常数,T 是脉冲持续时间。周期的三角波脉冲还得跟单位脉冲串的z 变换相乘: 112 1 ()()()1(1)v cT A U z E z G z z e z ---=?= ?--? 这就是整个激励模型,v A 是一个幅值因子。 2、声道模型 当声波通过声道时,受到声腔共振的影响,在某些频率附近形成谐振。反映在信号频谱图上,在谐振频率处其谱线包络产生峰值,把它称为共振峰。 一个二阶谐振器的传输函数可以写成 12 ()1i i i i A V z B z C z --= -- 实践表明,用前3个共振峰代表一个元音足够了。对于较复杂的辅音或鼻音共振峰要到5个以上。多个()i V z 叠加可以得到声道的共振峰模型 12 1 11 ()()11R r r M M i r i N k i i i i k k b z A V z V z B z C z a z -=---======---∑∑∑ ∑ 3、辐射模型 从声道模型输出的是速度波,而语音信号是声压波。二者倒比称为辐射阻抗,它表征了

语音信号处理实验报告实验二

通信工程学院12级1班 罗恒 2012101032 实验二 基于MATLAB 的语音信号频域特征分析 一、 实验要求 要求根据已有语音信号,自己设计程序,给出其倒谱、语谱图的分析结果,并根据频域分析方法检测所分析语音信号的基音周期或共振峰。 二、 实验目的 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 三、 实验设备 1.PC 机; 2.MATLAB 软件环境; 四、 实验内容 1.上机前用Matlab 语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5.依次给出其倒谱、语谱图的分析结果。 6. 根据频域分析方法检测所分析语音信号的基音周期或共振峰。 五、 实验原理及方法 1、短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: 其中w(n -m)是实窗口函数序列,n 表示某一语音信号帧。令n -m=k',则得到 ()()()jw jwm n m X e x m w n m e ∞-=-∞= -∑

基于MATLAB的有噪声语音信号处理毕设

大学本科毕业设计论文 基于MATLAB的有噪声语音信号处理

摘要 滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。Matlab功能强大、简单易学、编程效率高,深受广大科技工作者的欢迎。特别是Matlab还具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行信号分析、处理和设计。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB 有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词?数字滤波器;MATLAB;窗函数法;巴特沃斯; 切比雪夫; 双线性变换

Abstract ?Filterdesignin digital signal processingplaysan extre melyimportant role, FIR digital filters and IIR filter is an importan tpart of filter design.Matlab is powerful,easy to learn,programming efficiency,which was welcomed bythemajority ofsc ientists. Matlab alsohas a particular signalanalysis toolbox,it need nothave strongprogrammingskills can be easily signal analysis, processing and design. Using MATLAB Signal Processing Toolbox can quickly andefficiently design avarietyof digitalfilters. MATLAB basedon the noise issuespeech signal processing design and implementation of digital signalprocessing integrated use of the theoretical knowledge ofthe speechsignal plus noise, time domain, frequencydomainanalysis andfiltering. Thecorrespondingresults obtainedthroughtheoreticalderivation, and then use MATLAB as a programming toolfor computer implementation.Implemented inthe design process,usingthewindow function methodtodesign FIR digital filters with Butterworth, Chebyshev andbilinear Reform IIR digital filter design and use ofMATLAB as asupplementary tool to complete thecalculation and graphic design Drawing. Throughthesimulation of thedesigned filter and the frequency analysis shows thatusingMatlabSignal Processing Toolbox can quickly and easily design digital filters FIR andIIR,the processis simple and convenient, the results of the performance indicators to meetthe specifiedrequirements. ? Keywords: digital filter; MATLAB;Chebyshev;Butterworth;

数字语音信号处理实验报告

语音信号处理实验报告 专业班级电子信息1203 学生姓名钟英爽 指导教师覃爱娜 完成日期2015年4月28日 电子信息工程系 信息科学与工程学院

实验一语音波形文件的分析和读取 一、实验学时:2 学时 二、实验的任务、性质与目的: 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验 (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 三、实验原理和步骤: WAV 文件格式简介 WAV 文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV 文件的头四个字节就是“RIFF”。WAV 文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV 文件标识段和声音数据格式说明段两部分。常见的WAV 声音文件有两种,分别对应于单声道(11.025KHz 采样率、8Bit 的采样值)和双声道(44.1KHz 采样率、16Bit 的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8 位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16 位的整数(int),高八位和低八位分别代表左右两个声道。WAV 文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV 文件中,道0 代表左声道,声道1 代表右声道;在多声道WAV 文件中,样本是交替出现的。WAV 文件的格式 表1 wav文件格式说明表

语音信号处理实验报告实验一

通信工程学院12级1班罗恒2012101032 实验一语音信号的低通滤波和短时分析综合实验 一、实验要求 1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号; 2、辨别原始语音信号与滤波器输出信号有何区别,说明原因; 3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因; 4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响; 5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。 二、实验目的 1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。 2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。 三、实验设备 1.PC机; 2.MATLAB软件环境; 四、实验内容 1.上机前用Matlab语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5. 改变滤波带宽,辨别与原始信号的区别。 6.依据曲线对该语音段进行所需要的分析,并且作出结论。 7.改变窗的宽度(帧长),重复上面的分析内容。 五、实验原理及方法 利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws 的转换,对ap和as指标不作变化。边界频率的转换关系为∩=2/T tan(w/2)。接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。之后,通过双线性变换法转换公式s=2/T((1-1/z)/(1+1/z))得到所要设计的IIR滤波器的系统函数H(z)。

基于matlab的语音信号处理程序

wavefile='a.wav'; [y,fs,nbits]=wavread(wavefile);%读取信号,采样率和采样位数[10000,19999] sound(y,fs,nbits) fs %采样频率这里每秒22050,发现采样频率为音频信号的典型值22050Hz nbits Y=fft(y,1024);%数据点数 whos y figure(1), subplot(2,1,1),plot(y);title('原始信号波形');grid on subplot(2,1,2),plot(abs(Y));title('原始信号频谱'); grid on%横坐标频率,纵坐标振幅%subplot(3,1,3),plot(angle(Y));title('原始信号相位');grid on %双线性变换法设计的低通滤波器 fp=1000;%fp为通带频率 fc=1200;%fc为阻带起始频率 As=100;%As-阻带最小衰减(dB); Ap=1;%Ap-通带波纹(dB); fs1=fs; wp=2*fp/fs1;%wp-椭圆滤波器通带截止角频率; wc=2*fc/fs1;%Ws-椭圆滤波器阻带起始角频率; [n,wn]=ellipord(wp,wc,Ap,As); %n-椭圆滤波器最小阶数; [b,a]=ellip(n,Ap,As,wn);%返回长度为n+1的滤波器系数行向量b和a, b为分子a 为分母 figure(2),freqz(b,a,512,fs1); %数字滤波器的频率响应函数,512表示选取单位圆的上半圆等间距的N个点作为频响输出; x=filter(b,a,y);%一维数字滤波器,y2为滤波前输入,x为滤波结果序列 X=fft(x,1024); figure(3), subplot(2,1,1),plot(x);title('低通滤波后信号波形');grid on subplot(2,1,2),plot(abs(X));title('低通滤波后信号频谱');grid on sound(x,fs); %分析图形,比较滤波前后时域波形和频域频谱。%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %短时能量 y=y*2^nbits/2; frameSize=256; overlap=128; %[y,fs,nbits]=wavReadInt(wavefile); fprintf('length of %s is %g sec.\n',wavefile,length(y)/fs);

语音信号处理实验报告11

实验一 语音信号的时域分析 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握语音信号短时能量和短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 语音是一时变的、非平稳的随机过程,但由于一段时间内(10-30ms)人的声带和声道形状的相对稳定性,可认为其特征是不变的,因而语音的短时谱具有相对稳定性。在语音分析中可以利用短时谱的这种平稳性,将语音信号分帧。 10~30ms 相对平稳,分析帧长一般为20ms 。 语音信号的分帧是通过可移动的有限长度窗口进行加权的方法来实现的。几种典型的窗函数有:矩形窗、汉明窗、哈宁窗、布莱克曼窗。 语音信号的能量分析是基于语音信号能量随时间有相当大的变化,特别是清音段的能量一般比浊音段的小得多。定义短时平均能量 [][]∑∑+-=∞-∞=-=-= n N n m m n m n w m x m n w m x E 122)()()()( 下图说明了短时能量序列的计算方法,其中窗口采用的是直角窗。 过零就是信号通过零值。对于连续语音信号,可以考察其时域波形通过时间轴的情况。而对于离散时间信号,如果相邻的取样值改变符号则称为过零。由此可以计算过零数,过零数就是样本改变符号的次数。单位时间内的过零数称为平

均过零数。 语音信号x (n )的短时平均过零数定义为 ()[]()[]()()[]()[]() n w n x n x m n w m x m x Z m n *--=---= ∑∞ -∞=1sgn sgn 1sgn sgn 式中,[]?sgn 是符号函数,即 ()[]()()()()???<-≥=01 01sgn n x n x n x 短时平均过零数可应用于语音信号分析中。发浊音时,尽管声道有若干个共振峰,但由于声门波引起了谱的高频跌落,所以其语音能量约集中干3kHz 以下。而发清音时.多数能量出现在较高频率上。既然高频率意味着高的平均过零数,低频率意味着低的平均过零数,那么可以认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数。然而这种高低仅是相对而言,没有精确的数值关系。 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的

相关文档
最新文档