氢原子光谱

氢原子光谱
氢原子光谱

实验7.3氢原子光谱

摘要

光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构

的一种重要方法。本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光

谱巴尔末线系的波长,求出了里德伯常数。最后对本实验进行了讨论。

关键词:近代物理实验,氢原子,光谱

一、引言

光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里(H.C.Urey)根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素——氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。

WGD-3型光栅光谱仪用于近代物理实验中的氢(氘)原子光谱实验,一改以往在大型摄谱仪上用感光胶片记录的方法,而使光谱既可在微机屏幕上显示,又可打印成谱图保存,实验结果准确明了。

二、实验目的:

一、熟悉光栅光谱仪的性能与用法。

二、用光栅光谱仪测量氢原子光谱巴尔末线系的波长,求里德伯常数。

三、实验仪器

实验中用的仪器室WGD-3型组合式多功能光栅光谱仪,其主要由光栅单色仪、接

收单元、扫描系统、电子放大器、A/D采集单元、计算机组成。其光学原理图如

图1所示,入射狭缝、出射狭缝均为直狭缝,宽度范围0~2.5mm连续可调,光

源发出的光束进入入射狭缝,位于反射式准光镜的焦面上,通过入射

的光束经反射成平行光束投向平面光栅G上,衍射后的平行光束经物镜成

像在上和上,通过可以观察光的衍射情况,以便调节光栅;光通过后用

光电倍增管接收,送入计算机进行分析。

图1 光栅光谱仪光学原理图

图2 闪耀光栅示意图

在光栅光谱仪中常使用反射式闪耀光栅。如图2所示,锯齿形是光栅刻痕形状。现考虑相邻刻槽的相应点上反射的光线。PQ和P′Q′是以I角入射的光线。QR和Q′R′是以I′角衍射的两条光线。PQR和P′Q′R′两条光线之间的光程差是b(sin I+sin I′),其中b是相邻刻槽间的距离,称为光栅常数。当光程差满足光栅方程

b(sin I+sin I′)=kι, k=0,±1,±2,… 时,光强有一极大值,或者说将出现一亮的光谱线。 对同一k,根据I、I′可以确定衍射光的波长ι,这就是光栅测量光谱的原理。闪耀光栅将同一波长的衍射光集中到某一特定的级k上。

为了对光谱扫描,将光栅安装在转盘上,转盘由电机驱动,转动转盘,可以改变入射角I,改变波长范围,实现较大波长范围的扫描,软件中的初始化工作,就是改变I的大小,改变测试波长范围。

四、实验原理

氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式

(2.5-1)

式中ιH 为氢原子谱线在真空中的波长。 ι0=364.57nm是一经验常数。 n取3,4,5等整数。 若用波数

表示,则上式变为

42

2

0-=n n H λλ

(2.5-2) 式中RH 称为氢的里德伯常数。

根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得

(2.5-3)

式中M为原子核质量,m为电子质量,e为电子电荷,c为光速,h为普朗克常数,ε0为真空介电常数,z为原子序数。

当M→∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数)

(2.5-4) 所以

(2.5-5) 对于氢,有

(2.5-6)

这里MH 是氢原子核的质量。

??? ??-==221211~n R v H H H λ)/1()4(23202

42M m ch z me R z +=

πεπ3202

42)4(2ch z me R πεπ=

∞)/1(H H M m R R +=

由此可知,通过实验测得氢的巴尔末线系的前几条谱线的波长,借助(2.5-6)

式可求得氢的里德伯常数。

里德伯常数R

是重要的基本物理常数之一,对它的精密测量在科学上有重要意

义,目前它的推荐值为R

=10973731.568549(83)m-1表2.5-1为氢的巴尔末线系的波长表。

图2.5-1是氢原子能级图。

表2.5-1

值得注意的是,计算R

H 和R

时,应该用氢谱线在真空中的波长,而实验是在空

气中进行的,所以应将空气中的波长转换成真空中的波长。即ι

真空=ι

空气

+Δι,

氢巴尔末线系前6条谱线的修正值如表2.5-2所示。

五、实验步骤

1.氢原子光谱波长的测量和里德伯常数的计算

(1)准备

①系统按图2.5-4接线。

接通电源前,认真检查接线是否正确。并检查转换开关的位置。如用光电倍增管接收,将扳手置“光电倍增管”档;如目视,将扳手置“观察缝”档。然后接通电箱电源,并将电压调到500~900V。

②狭缝调整

根据光源等实际情况,调节S

1、S

2

、S

3

狭缝。顺时针旋转为狭缝宽度加大,反

之减小。每旋转一周狭缝宽度变化0.5mm。为保护狭缝,最大不超过2.5mm。不要使狭缝刀口相接触。用力要轻。

③开启计算机。启动WGD-3型组合式光栅光谱仪控制处理软件。软件操作方法可参阅《WGD-3型组合式多功能光栅光谱仪使用说明书》8-10页。

④初始化。屏幕上显示工作界面后,弹出对话框,让操作者确认当前的波长位置是否有效,是否重新初始化。如果选择取消,则初始化,波长位置回到200nm处。

软件工作界面主要由菜单栏、主工具栏、辅工具栏、工作区、状态栏、参数设置区以及寄存器信息提示区等组成。

菜单栏有文件、信息/视图、工作、读取数据、数据图形处理等项。与一般的Windows应用程序类似。

(2)氢原子发射光谱的测量

①选定光谱光源,打开放电管电源。将光源对准光谱仪入射狭缝,通过螺旋测微器调节狭缝宽度。必要时可在光源前加聚光镜,移动聚光镜,均匀照亮入射狭缝。将扳手置“观察缝”,由出射狭缝目视入射狭缝是否均匀照明。

②选择参数设置区的“参数设置”项,设置工作方式、范围及状态。

工作方式→模式:所采集的数据格式,有能量、透过率、吸光度、基线。测光谱时选能量。间隔:两个数据点之间的最小波长间隔,根据需要在0.1~1nm之间选择。

工作范围:在起始、终止波长和最大、最小值4个编辑框中输入相应的值。

工作状态→负高压:提供给光电倍增管的负高压,设1—8共八档。增益:设置

放大器的放大率,设1—8共八档。采集次数:在每个数据点上采集数据取平均的次数。拖动滑块,在1~1000次之间选择。

在参数设置区中,选择“数据”项,在“寄存器”下拉列表框中选择某一寄存器,在数值框中显示该寄存器的数据。参数设置区中,“系统”、“高级”两个选项,一般不要改动。

③待初始化完毕,用鼠标点击文件→新建,并点击工具栏中的“单程”扫描,开始显示图像。

建议先测定标光源(如汞、氖、氦、氮灯)的谱线,在“读取数据”项下对曲线进行寻峰,读出波长,和定标光源的已知谱线(附后)波长相比较,对波长进行修正。

④如果在扫描过程中发现峰值超出最高标度,可点击“停止”。然后寻找最高峰对应的波长,进行定波长扫描(在“工作”菜单内)。同时调节倍增管前面的狭缝宽度,将峰值调到合适位置。调节完毕,将波长范围设置成200~800nm,重新初始化,再单程扫描。扫描完毕,保存文件。

⑤将光源换成氢灯,测量氢光谱的谱线。注意,换光源前,先关闭先前光源,选择待测光源,再开启电源。

进行单程扫描,获得氢光谱的谱线,通过“寻峰”或“读取谱线数据”求出巴尔末线系前3-4条谱线的波长。

六、实验结果与数据记录

1.将氢谱线空气中的波长修正为真空波长。

2.由(2.5-2)式计算各谱线的里德伯常数R

H ,求R

H

的平均值。

3.由(2.5-6)式计算普适里德伯常数R

,并与推荐值比较,求相对误差。给出结果照片:

七、数据分析

里德伯常数的平均值为

()7171711

1.097 1.096 1.096 1.09710 1.0965104

1.09710H H R m m R m ---=

+++?=?=?取三位有效数字 推荐值1.09737*10^7 σ1=

|R H ?R H 推荐|

H 推荐

×100%=0.037%

计算普适里德伯常数R ∞:

R ∞=R

H (1+m /M H ) 其中m =9.109×10?31kg ,M H =1.673×10?27kg ,所以 R ∞=1.00054R

H =1.09759238×107m ?1 推荐值是R ∞=10973731.568549(83)/m ,故相对误差为

σ2=

|R ∞?R ∞推荐|

R ∞推荐

×100%=0.0219%

为了保证本实验结果测量的准确性,笔者打算再采用另方法处理数据,下面的办法是直接用曲线拟合,用拟合结果来求出Rh 。

此时得到值为1.09668*10^7,虽然保留三位有效数字依旧是1.097*10^7,但显然离标准值1.09737*10^7更为接近。

故曲线拟合再由斜率求得的结果更为精确

八、误差分析

一,数据处理过程中难免会有四舍五入,产生误差

二,仪器精度有限,操作者熟练度有限,如狭缝宽度与表示读数并不相同或操作者光路调节失误,产生误差

三,未进行真空中的谱线修正,从而产生误差。

四,实验室有自然光干扰

九、注意事项

1.光谱仪是精密贵重仪器,需倍加爱护,单色仪和电箱不得擅自打开,狭缝调

节须小心,不可用力拧。

2.氢灯等放电管都用了高压电源,使用时务必注意安全。换灯前先关闭电源,再拨旋钮。

3.仪器断电和先启动软件再给仪器通电,均可能造成波长混乱。此时应关闭软件,在先给仪器通电情况下,对仪器重新初始化。

4.实验中应采取防噪声和干扰的措施。例如,实验室尽量暗一些,防止实验桌的振动,狭缝勿开太大,对供电电源进行稳压,等。

十、实验思考与问答

(1)氢光谱巴尔末线系的极限波长是多少?

实验原理已经给出:

对于极限波长, n →∞时,

==4/Rh=364.5nm

(2)谱线计算值具有唯一的波长,但实测谱线有一定宽度,其主要原因是什么?

虽然在能量上说电子不同轨道之间的能量差应该是确定值,原子的谱线应该是非常细的细线,但是由于量子不确定性的存在,归根结底也就是量子真空涨落的存在,由海森伯不确定原理,?E ?t>h ,由于测量时间是有限的,故测得的能级有一定展宽.

另外,电子在轨道上也会出现不规律的振动,导致轨道之间跃迁的能量差也不断振动,所以就有谱线宽度的存在。

原子之间可能产生碰撞,原子之间的相互作用、原子核与电子的相互作用致使谱线宽度的产生。

最后,仪器自身精度也是有限的,测量仪器摆放位置也不可能做到完完全全的精准。

十一、参考资料

黄润生等,近代物理实验第二版,南京大学出版社

杨福家,原子物理,高等教育出版社,1990:62

戴乐山等,近代物理实验,复旦大学出版社,1995:100

天津市港东科技发展有限公司,WGD-3型光栅光谱仪使用说明书,2001

42

2

0-=n n H λλ

氢原子光谱_实验报告

氢原子光谱 摘 要:本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长,求出了里德伯常数。最后对本实验进行了讨论。 关键词:氢原子光谱,里德伯常数,巴尔末线系,光栅光谱仪 1. 引言 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 2. 氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 (1) 式中λH 为氢原子谱线在真空中的波长。 λ0=364.57nm是一经验常数。 n取3,4,5等整数。 若用波数表示,则上式变为 (2) 式中RH 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 (3) 式中M为原子核质量,m为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,ε0为真空 42 2 0-=n n H λλ??? ??-==22 1211~n R v H H H λ)/1()4(23202 42M m ch z me R z += πεπ

高考经典课时作业15-2 原子结构、氢原子光谱

高考经典课时作业15-2 原子结构、氢原子光谱 (含标准答案及解析) 时间:45分钟 分值:100分 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A .光电效应实验 B .伦琴射线的发现 C .α粒子散射实验 D .氢原子光谱的发现 2.关于巴耳末公式1λ =R ????122-1n 2的理解,下列说法正确的是( ) A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱 C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱 D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 3.(2012·高考北京卷)一个氢原子从n =3能级跃迁到n =2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加 D .吸收光子,能量减少 4.(2012·高考江苏卷)如图所示是某原子的能级图,a 、b 、c 为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( ) 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢原子( )

高中物理第2章原子结构4氢原子光谱与能级结构学案鲁科版选修

第4节氢原子光谱与能级结构 [目标定位]1.知道氢原子光谱的实验规律,了解巴尔末公式及里德伯常量.2.理解玻尔理论对氢原子光谱规律的解释. 一、氢原子光谱 1.氢原子光谱的特点: (1)从红外区到紫外区呈现多条具有确定波长的谱线; (2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性. 2.巴尔末公式: 1 λ =R ? ?? ??1-1n 2(n =3,4,5,…)其中R 叫做里德伯常量,其值为R =1.096 775 81×107 m -1 . 二、玻尔理论对氢原子光谱的解释 1.巴尔末系 氢原子从n ≥3的能级跃迁到n =2的能级得到的线系. 2.玻尔理论的局限性 玻尔理论解释了原子结构和氢原子光谱的关系,但无法计算光谱的强度,对于其他元素更为复杂的光谱,理论与实验差别很大. 一、氢原子光谱的实验规律 1.氢原子的光谱 从氢气放电管可以获得氢原子光谱,如图1所示. 图1 2.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性. 3.巴尔末公式 (1)巴尔末对氢原子光谱的谱线进行研究得到了下面的公式: 1 λ =R (1-1 n 2) n =3,4,5…该公式称为巴尔末公式. (2)公式中只能取n ≥3的整数,不能连续取值,波长是分立的值. 4.赖曼线系和帕邢线系:氢原子光谱除了存在巴尔末线系外,还存在其他一些线系.例

如: 赖曼线系(在紫外区):1λ=R ? ????112-1n 2(n =2,3,4,…) 帕邢线系(在红外区):1λ=R ? ?? ??132-1n 2(n =4,5,6,…) 例1关于巴耳末公式1λ=R (1-1 n 2)的理解,下列说法正确的是() A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱 C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱 D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 答案C 解析只有氢原子光谱中可见光波长满足巴耳末公式,氢原子光谱在红外和紫外光区的其他谱线不满足巴耳末公式,满足的是与巴耳末公式类似的关系式,A 、D 错;在巴耳末公式中的n 只能取不小于3的整数,不能连续取值,波长也只能是分立的值,故氢原子光谱不是连续谱而是线状谱,B 错,C 对. 二、玻尔理论对氢原子光谱的解释 1.理论导出的氢光谱规律:按照玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量hν=E n -E 2,又E n =E 1E 2 ,E 2=E 1 ,由此可得hν= -E 1? ?? ??1-1n 2,由于ν=c λ,所以上式可写作1λ=-E 1hc ? ?? ??1-1n 2,此式与巴尔末公式比较,形 式完全一样.由此可知,氢光谱的巴尔末线系是电子从n =3,4,5,…等能级跃迁到n =2的能级时辐射出来的. 2.玻尔理论的成功之处 (1)运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了氢原子的能级图. (2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合得很好,由于能级是分立的,辐射光子的波长是不连续的. (3)导出了巴尔末公式,并从理论上算出了里德伯常量R 的值,并很好地解释甚至预言了氢原子的其他谱线系. (4)能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分. 例2氢原子光谱的巴尔末公式是1λ =R ? ?? ??1-1n 2(n =3,4,5,…),对此,下列说法正确的是() A .巴尔末依据核式结构理论总结出巴尔末公式

氢原子光谱

摘要:本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长, 求出了里德伯常数。最后对本实验进行了讨论。 关键词:氢原子光谱,里德伯常数,巴尔末线系 正文 一、引言 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里(H. C. Uery )根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素——氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 WGD-3型光栅光谱仪用于近代物理实验中的氢原子光谱实验,一改以往在摄谱仪上用感光胶片记录的方法,而使光谱仪既可在微机屏幕上显示,又可打印成谱图保存,实验结果准确明了。 二、实验目的 1、熟悉光栅光谱仪的性能和用法; 2、用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数; 三、实验原理 氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 2 024 H n n λλ=?- 式中H λ为氢原子谱线在真空中的波长,ι0=364.57nm 是一经验常数;n 取3,4,5等整数。 若用波数表示,则上式变为 式中H R 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 ??? ??-==221211~n R v H H H λ)/1()4(23202 42M m ch z me R z += πεπ

2019第2章第4节氢原子光谱与能级结构语文

第4节氢原子光谱与能级结构 理解玻尔理论对氢原子光谱规律的解.2) 释.(重点 )(难点3.了解玻尔理论的局限性.谱子光氢原] 先填空[ 氢原子光谱的特点1.个波长~H的这n(1)从红外区到紫外区呈现多条具有确定波长的谱线;Hδα只要它里面含有这些波数值成了氢原子的“印记”,不论是何种化合物的光谱,长的光谱线,就能断定这种化合物里一定含有氢.等谱线间的距离越来越小,(2)从长波到短波,H~H表现出明显的规律性.δα2.巴尔末公式1111.096 775 叫做里德伯常量,数值为,其中RR=,…)(-=R(n=3,4,5)22λn217-. 81×10 m] 再判断[) .氢原子光谱是不连续的,是由若干频率的光组成的.1(√.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是2) ×相同的.() (由于不同元素的原子结构不同,3.所以不同元素的原子光谱也不相同.√] 后思考[ 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同?它在可见光区的谱线满足巴耳末公【提示】氢原子光谱是分立的线状谱.式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.] 核心点击[页 1 第

111) ,…n=3,4,5,6-=R()(22λn2 巴尔末公式17-m10只能取整数,最小值为3,里德伯常量R=1.10×式中n 巴尔末线系的14条谱线都处于可见光区1对应的=3时,值越大,对应的波长λ越短,即n在巴尔末线系中n规2波长最长律除了巴尔末系,氢原子光谱在红外区和紫外区的其他谱线也都满足3与巴尔末公式类似的关系式能级自发跃迁至低能级发出的谱线中属于巴尔末线系=3一群氢原子由1.n ________条.的有能级发光的谱线=2【解析】在氢原子光谱中,电子从较高能级跃迁到n条谱线属巴尔末线能级的1能级跃迁至n=2属于巴尔末线系.因此只有由n=3 系.1 【答案】.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所2 ,并计算其波长.对应的n时,氢原子发光所对应的3n越小,波长越长,故当n=【解析】对应的波长最长.111??17-??m×1.10=×10当n=3时,-22 32λ??17m.λ=6.55×10解得-11111??-??R×,=n当=∞时,波长最短,=R22n2λ4??447=λ103.64m=×=m. - 7R101.1×7-m ×时,波长最长为=当【答案】n36.5510页 2 第 7-m 10=∞时,波长最短为3.64×当n巴尔末公式的应用方法及注意问题 (1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子. (2)公式中n只能取整数,不能连续取值,因此波长也是分立的值. (3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用. (4)应用时熟记公式,当n取不同值时求出一一对应的波长λ. 玻尔理论对氢光谱的解释 [先填空] 1.理论推导 按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n=2的能级上E1时,辐射出的光子能量应为hν=E-E,根据氢原子的能级公式E=可得E222nn n -E11111E????11--????,所以上式可写成=,由于c=λν,=由此

南京大学-氢原子光谱实验报告

氢原子光谱 一.实验目的 1.熟悉光栅光谱仪的性能和用法 2.用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数 二.实验原理 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 2 024 H n n λλ=- (1) 式中H λ为氢原子谱线在真空中的波长。0364.57nm λ=是一经验常数。n 取3,4,5等整数。 若用波数表示,则上式变为 221 112H H R n νλ?? = =- ??? (2) 式中H R 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 () () 242 2 3 0241/Z me Z R ch m M ππε= + (3) 式中M 为原子核质量,m 为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,0ε为真空介电常数,Z 为原子序数。 当M →∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数)

() 242 2 3 024me Z R ch ππε∞= (4) 所以 () 1/Z R R m M ∞ = + (5) 对于氢,有 () 1/H H R R m M ∞ =+ (6) 这里H M 是氢原子核的质量。 由此可知,通过实验测得氢的巴尔末线系的前几条谱线j 的波长,借助(6)式可求得氢的里德伯常数。 里德伯常数R ∞是重要的基本物理常数之一,对它的精密测量在科学上有重要意义,目前它的推荐值为()=10973731.56854983/R m ∞ 表1为氢的巴尔末线系的前四条波长表 表1 氢的巴尔末线系波长 值得注意的是,计算H R 和R ∞时,应该用氢谱线在真空中的波长,而实验是在空气中进行的,所以应将空气中的波长转换成真空中的波长。即1λλλ?真空空气=+,氢巴尔末线系前6条谱线的修正值如表2所示。 表2 真空—空气波长修正值

2014届高考物理 15-2原子结构、氢原子光谱领航规范训练

2014届高考物理领航规范训练:15-2原子结构、氢原子光谱 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A.光电效应实验B.伦琴射线的发现 C.α粒子散射实验D.氢原子光谱的发现 解析:光电效应实验说明光的粒子性,伦琴射线的发现说明X射线是一种比光波波长更短的电磁波,氢原子光谱的发现促进了氢原子模型的提出.故C正确. 答案:C 2.关于巴耳末公式1 λ=R? ? ?? ? 1 22 - 1 n2的理解,下列说法正确的是( ) A.所有氢原子光谱的波长都可由巴耳末公式求出 B.公式中n可取任意值,故氢原子光谱是连续谱 C.公式中n只能取不小于3的整数值,故氢原子光谱是线状谱 D.公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 解析:巴耳末公式是经验公式,只适用于氢原子光谱,公式中n只能取n≥3的整数,故C正确. 答案:C 3.(2012·高考北京卷)一个氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A.放出光子,能量增加B.放出光子,能量减少 C.吸收光子,能量增加D.吸收光子,能量减少 解析:根据玻尔原子理论知,氢原子从高能级n=3向低能级n=2跃迁时,将以光子形式放出能量,放出光子后原子能量减少,故B选项正确. 答案:B 4.(2012·高考江苏卷)如图所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )

解析:由h ν=h c λ=E 初-E 末可知该原子跃迁前后的能级差越大,对应光线的能量越大, 波长越短.由图知a 对应光子能量最大,波长最短,c 次之,而b 对应光子能量最小,波长最长,故C 正确. 答案:C 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 解析:氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确. 答案:BD 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2 ,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 解析:依题意可知第一激发态能量为E 2=E 1 22,要将其电离,需要的能量至少为ΔE =0 -E 2=h ν,根据波长、频率与波速的关系c =νλ,联立解得最大波长λ=-4hc E 1 ,C 正确. 答案:C 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢 原 子( ) A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到n =2能级辐射出电磁波的波长长 B .从n =5能级跃迁到n =1能级比从n =5能级跃迁到n =4能级辐射出电磁波的速度大

第4节氢原子光谱与能级结构

光电效应、原子结构、原子构练习题 (适用于高中物理各种版本教材) 一、光电效应 1、概念:在光(电磁波)的照射下,从物体表面逸出的 的现象称为光电效应,这种电子被称之为 。使电子脱离某种金属所做功的 ,叫做这种金属的逸出功,符号为W 0。 2、规律: 提出的“光子说”解释了光电效应的基本规律,光子的能量与频率的关系为 。 ①截止频率:当入射光子的能量 逸出功时,才能发生光电效应,即:0____W hv ,也就是入射光子的频率必须满足v ≥ ,取等号时的______0=ν即为该金属的截止频率(极限频率); ②光电子的最大初动能:_________k m =E ,由此可知,对同一重金属,光电子的最大初动能随着入射光的频率增加而 ,随着入射光的强度的增加而 ,光电子从金属表面逸出时的动能应分布在 范围内。 3、实验:装置如右图,其中 为阴极,光照条件下发出光电子; 为 阳极,吸收光电子,进而在电路中形成 ,即电流表的示数。 ①当A 、K 未加电压时,电流表 示数; ②当加上如图所示 向电压时,随着电压的增大,光电流趋于一个饱和值, 即 ;当电压进一步增大时,光电流 。 ③当加上相反方向的电压( 向电压)时,光电流 ;当反向电压达 到某一个值时,光电流减小为0,这个反向电压U c 叫做 ,即使最有可能 到达阳极的光电子刚好不能到达阳极的反向电压,则关于U c 的动能定理方程 为 。 【练习1】某同学用同一装置在甲、乙、丙光三种光的照射 下得到了三条光电流与电压之间的关系曲线,如右图所示。则可 判断出( ) A .甲光的频率大于乙光的频率 B .乙光的波长大于丙光的波长 C .乙光对应的截止频率大于丙光的截止频率 D .甲光对应的光电子最大初动能大于丙光的光电子最大初 动能 二、原子结构 1、物理学史: 通过对 的研究,发现了电子,从而认识到原子是 有内部结构的; 基于 实验中出现的少数α粒子发生 散射,提出了原子的核式结构模型; 在1913年把物理量取值分立(即量子化)的观念应用到原子系统,提出了自己的原子模型,很好的解释了氢原子的 。 2、波尔理论: ①原子的能量是量子化的,这些量子化的能量值叫做 ;原子能量最低的状态叫做 ,其他较高的能量状态叫做 ; ②原子在不同能量状态之间可以发生 ,当原子从高能级E m 向低能级E n 跃迁时 光子,原子从低能级E n 向高能级E m 跃迁时 光子,辐射或吸收的光子频率必须满足 。 ③原子对电子能量的吸收:动能 两个能级之差的电子能量能被吸收,

高中物理氢原子跃迁与氢原子光谱

氢原子跃迁与氢原子光谱 玻尔原子理论第三条假设的“跃迁’指出:原子从一个定态(设能量为En )跃迁到 )时.它輻射和吸收一定频率的光于.光子能量由这两个定态另一种定态(没能量为E K 能量差决定,即hυ=En-Ek 若原于原来处于能级较大的定态——激发态.这时原子处于不稳定的能量状态,一有机会让会释放能量.回到能量较小的激发态或基态(能级最小的定态).这一过程放出的能量以放出光于的形式实现的,这就是原于发光原因。可见原子发光与能级跃迁有必然联系。对于氢原子它们对应关系如上图所示,从图可知当电子从n=3、4、5、6这四个激发态跃迁到n=2的激发态时,可得到可见光区域的氢原子光增,其波长"入"用下列公式计算 hc/入=E (1/n2-1/n2) 1 其中n=3,4,5,6.相应波长依次为: h α=656.3nm,hβ=486.1nm,hδ=434.1nm,hγ=410.1nm. 它们属于可见光,颜色分别为红、蓝、紫、紫。组成谱线叫巴耳末线系;若从n>1的激发态 跃迁到基态,放出一系列光子组成谱线在紫外区,肉眼无法观测,叫赖曼线系.....。 当原子处于基态或能级较低的激发态向高能级跃迁,必须吸收能量。这能量来源有

两种途径。 其一、吸收光子能量、光子实质上是一种不连续的能量状态。光的发射与吸收都是一份一份的,每一份能量E=hυ叫光子能量.光子能量不能被分割的。因此原子所吸收的光子只有满足hυ=En-Ek时,才能被原子吸收,从En定态跃迁到Ek定态。若不满足hυ=En-Ek的光子均不被吸收,原子也就无法跃迁。 例如用能量为123eV的光子去照射一群处于基态的氢原子.下列关于氢原子跃迁的说法中正确的是() 1)原子能跃迁到n=2的轨道上;2)原子能跃迁到n=3的轨道; 4)原子能跃迁到n=4的轨道上;3)原子不能跃迁。 通过计算可知E 1-E 2 =10.2eV<I2.3ev;E 3 -E 1 =12.09ev<12.3eV,E 4 一E 1 =12.75eV >12.3eV,即任意两定态能级差均不等于12.3eV.此光子原子无法吸收。答案D)正确。 其二、吸收电子碰撞能量。夫兰克——赫兹实验指出:当电子速度达到一定数值时,与原子碰撞是非弹性的,电子把一份份能量传给原子,使原子从一个较低能级跃迁到较高能级,原子从电子处获得能量只能等于两定态能量差。电子与光子不同.其能量不是一份一份的只要人射电子能量大于或等于两定态能量差. 均可使原子发生能级跃迁。 例如,已知汞原子可能能级如下图所示,一个自由电子总能量为9.0电子伏与处 于基态的汞原子发生碰撞,已知碰撞过程中不计汞原子动能变化,则电子剩余能量为()(A)0.2eV;(B)1.4eV(C)2.3eV(D)5.5eV. 因为E 2-E 1 =4.9ev<9.0eV,E 3 -E 1 =7.7eV<9.0ev,E 4 -E 1 =8.8ev<9.0ev. 满足人射电子能量大于两定态能量差 .处于基态汞原子分别吸收电子部分能量跃迁到n= 2、3.4能级,而电子剩余能量分别为4.1ev,1.3ev,0.2ev,只选项(A)正确。 摘自《物理园地》

高中物理原子结构光谱氢原子光谱教师用书教科版

3.光谱氢原子光谱 学习目标知识脉络 1.了解光谱、连续谱、线状谱等 概念.(重点) 2.知道光谱分析及应用.(重点) 3.知道氢原子光谱的规律.(重 点、难点) 光谱和光谱分析 [先填空] 1.光谱 复色光分解为一系列单色光,按波长长短的顺序排列成一条光带,称为光谱. 2.分类 (1)连续谱:由波长连续分布的彩色光带组成的光谱. (2)发射光谱:由发光物质直接产生的光谱. (3)吸收光谱:连续光谱中某些特定频率的光被物质吸收而形成的谱线. (4)线状谱:由分立的谱线组成的光谱. (5)原子光谱:对于同一种原子,线状谱的位置是相同的,这样的谱线称为原子光谱. 3.光谱分析 (1)定义:利用原子光谱的特征来鉴别物质和确定物质的组成部分. (2)优点:灵敏度、精确度高. [再判断] 1.各种原子的发射光谱都是连续谱.(×) 2.不同原子的发光频率是不一样的.(√) 3.线状谱和连续谱都可以用来鉴别物质.(×) [后思考] 为什么用棱镜可以把各种颜色的光展开? 【提示】不同颜色的光在棱镜中的折射率不同,因此经过棱镜后的偏折程度也不同.

1.光谱的分类 2.光谱分析的应用 (1)应用光谱分析发现新元素; (2)鉴别物体的物质成分;研究太阳光谱时发现了太阳中存在钠、镁、铜、锌、镍等金属元素; (3)应用光谱分析鉴定食品优劣; (4)探索宇宙的起源等. 1.对原子光谱,下列说法正确的是( ) A.原子光谱是不连续的 B.原子光谱是连续的 C.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的 D.各种原子的原子结构不同,所以各种原子的原子光谱也不相同 E.分析物质发光的光谱,可以鉴别物质中含哪些元素 【解析】原子光谱为线状谱,A正确,B错误;各种原子都有自己的特征谱线,故C 错误,D正确;据各种原子的特征谱线进行光谱分析可鉴别物质组成,E正确.故A、D、E. 【答案】ADE 2.关于光谱和光谱分析,下列说法正确的是( ) A.太阳光谱和白炽灯光谱是线状谱 B.霓虹灯和煤气灯火焰中燃烧的钠蒸气产生的光谱是线状谱 C.进行光谱分析时,可以利用线状谱,不能用连续谱

实验2 氢原子光谱的观察与测定

实验2 氢原子光谱的观察与测定 每一种原子都有其特定的线状光谱线。氢原子的光谱线最为简单,且具有明显的规律。测定氢原子可见光谱线的波长对认识原子的分离能级、以及由于能级间的跃迁而产生的光辐射的规律起着重要作用。本实验用读谱仪测量氢原子可见谱线的波长,并通过巴耳末公式推算出氢原子的里德伯常数。 【实验目的】 (1)观察氢原子的可见光谱。 (2)了解读谱仪的结构,掌握读谱仪的调节与使用方法。 (3)通过测量氢原子可见光谱线的波长,验证巴耳末公式的正确性。 (4)准确测定氢原子的里德伯常数。 (5)理解曲线拟合法的意义。 【仪器用具】 WPL —2型读谱仪,氢谱光源,氦氖谱光源,会聚透镜。 【仪器介绍】 整个实验的装置简图如图1所示。 读谱仪是由棱镜摄谱仪改进设计而成。它是利用棱镜分光在物镜上观察光谱的光学仪器。其结构大致可以分为三部分:平行光管系统、色散系统、接收系统。 (1)平行光管系统 平行光管系统包括入射狭缝和入射物镜。入射物镜的作用是使入射狭缝发出的光线变成平行光,所以入射狭缝应放在入射物镜的焦平面上。 (2)色散系统 色散系统实际上就是一个恒偏向棱镜,如图2所示。 它的作用是将光束分解,使不同波长的单色光束沿不同 的方向射出。符合最小偏向角条件的单色光,其入射光束和出射光束的夹角为900。 (3)接收系统 接收系统由出射物镜及放在该物镜焦平面上的目镜组成。不同方向的单色光束经出射物镜聚焦,在其焦平面上得到连续或不连续的依照波长次序排列的入射狭缝的单色像,即光谱。调节光谱的位置时,可以使用水平方向左右移动的手轮、丝杠、滑块、导轨和支架,还包括读出目镜位置用的标尺和100分度的手轮刻度。 手轮转一圈平移mm 1,每分度mm 01.0,要求估读到 1.0分度。目境内的叉丝用来对准被测谱线的中心。 【实验原理】 图 1 图2

钠原子氢原子光谱

实验二十 钠原子光谱 引言 研究元素的原子光谱,可以了解原子的内部结构,认识原子内部电子的运动,并导致电子自旋的发现。钠原子是一个多电子原子,原子序数为11,既有稳定的满内壳层,又有自由电子,既存在着原子核和电子的相互作用,又存在着电子之间的相互作用,还有电子自旋运动与轨道运动的相互作用,其光谱结构比较简单,即可用吸收光谱,也可用发射光谱进行研究,在激光光谱日益发展的今天,钠光谱仍是深入研究的对象之一。 一、实验目的 1、WGD-8型组合光栅光谱仪拍摄钠原子光谱的实验方法; 2、测定钠光谱线的波长,通过里德伯关系计算钠原子能级和量子亏损,并绘出能级图。 二、实验原理 在原子物理中,氢原子光谱的规律告诉我们:当原子在主量子数为2n 与1n 的上下两能级间跃迁时,它们的谱线波数可以用两光谱项之差表示: 22 21~n R n R ?=ν, (1) 式中R 为里德伯常量(109 677.581?cm ).当21=n ,2n =3,4,5,…,则为巴尔末线系。 对于只有一个价电子的碱金属原子(Li ,Na ,K ,…),其价电子是在核和内层电子所组成的原子实的库仑场中运动,和氢原子有点类似。但是,由于原子实的存在,价电子处在不同量子态时,或者按轨道模型的描述,处于不同的轨道时,它和原子实的相互作用是不同的。因为价电子处于不同轨道时,它们的轨道在原子实中贯穿的程度不同,所受到的作用不同。还有,价电子处于不同轨道时,引起原子实极化的程度也不同。这二者都要影响原子的能量。即使电子所处轨道的主量子数n 相同而轨道量子数l 不同,原子的能量也是不同的,因此原子的能量与价电子所处轨道的量子数n 、l 都有关,轨道贯穿和原子实极化都使原子的能量减少,量子数l 越小,轨道进入原子实部分越多,原子实的极化也越显著,因而原子的能量减少得越多。与主量子数n

最新人教版高中物理试题 专题练习41 原子结构 氢原子光谱

专题练习(四十一)原子结构氢原子光谱 1.(2011·上海高考)卢瑟福利用α粒子轰击金箔嘚实验研究原子结构,正确反映实验结果嘚示意图是( ) 3.(20 12·北京高考)一个氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A.放出光子,能量增加 B.放出光子,能量减少 C.吸收光子,能量增加 D.吸收光子,能量减少 解析:氢原子由高能级跃迁到低能级要放出光子,能量减少;由低能级跃迁到高能级要吸收光子,能量增加,氢原子从n=3能级跃迁到n=2能级,即从高能级向低能级跃迁,则要放出光子,能量减少,故A、C、D错误,B正确. 答案:B

4.(2011·四川高考)氢原子从能级m 跃迁到能级n 时辐射红光嘚频率为ν1,从能级n 跃迁到能级k 时吸收紫光嘚频率为ν2,已知普朗克常量为h ,若氢原子从能级k 跃迁到能级m ,则( ) A .吸收光子嘚能量为hν1+hν2 B .辐射光子嘚能量为hν1+hν2 C .吸收光子嘚能量为hν2-hν1 D .辐射光子嘚能量为hν2-hν1 解析:由题意可知:E m -E n =hν1,E k -E n =hν2.因为紫光嘚频率大于红光嘚频率,所以ν2>ν1,即k 能级嘚能量大于m 能级嘚能量,氢原子从能级k 跃迁到能级m 时向外辐射能量,其值为E k -E m =hν2-hν1,故只有D 项正确. 答案:D 5.(2011·大纲全国高考)已知氢原子嘚基态能量为E 1,激发态能量E n =E 1/n 2,其中n =2,3,….用h 表示普朗克常量,c 表示真空中嘚光速.能使氢原子从第一激发态电离嘚光子嘚最大波长为 ( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 . 解析:处于第一激发态时n =2,故其能量E 2=E 14,电离时释放嘚能量ΔE=0-E 2=-E 1 4,而 光子能量ΔE=hc λ,则解得λ=-4hc E 1 ,故C 正确,A 、B 、D 均错. 答案:C 6.(2012·江苏高考)如图所示是某原子嘚能级图,a 、b 、c 为原子跃迁所发出嘚三种波长嘚光.在下列该原子光谱嘚各选项中,谱线从左向右嘚波长依次增大,则正确嘚是( )

高中物理 第2章 原子结构 第4节 氢原子光谱与能级结构教师用书 鲁科版选修3-5

第4节氢原子光谱与能级结构 学习目标知识脉络 1.了解氢原子光谱的特点,知道巴尔末公式 及里德伯常量.(重点) 2.理解玻尔理论对氢原子光谱规律的解 释.(重点) 3.了解玻尔理论的局限性.(难点) 氢原子光谱 [先填空] 1.氢原子光谱的特点 (1)从红外区到紫外区呈现多条具有确定波长的谱线;Hα~Hδ的这n个波长数值成了氢原子的“印记”,不论是何种化合物的光谱,只要它里面含有这些波长的光谱线,就能断定这种化合物里一定含有氢. (2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性. 2.巴尔末公式 1λ=R( 1 22 - 1 n2 )(n=3,4,5,…),其中R叫做里德伯常量,数值为R=1.09677581×107m -1. [再判断] 1.氢原子光谱是不连续的,是由若干频率的光组成的.(√) 2.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是相同的.(×) 3.由于不同元素的原子结构不同,所以不同元素的原子光谱也不相同.(√) [后思考] 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同? 【提示】氢原子光谱是分立的线状谱.它在可见光区的谱线满足巴耳末公式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式. [核心点击]

氢光谱 巴尔末公式 1 λ=R (122-1 n 2)(n =3,4,5,6,…) 式中n 只能取整数,最小值为3,里德伯常量R = 1.10×107 m -1 规律 1 巴尔末线系的14条谱线都处于可见光区 2 在巴尔末线系中n 值越大,对应的波长λ越短,即n =3时,对应的波长最长 3 除了巴尔末系,氢原子光谱在红外区和紫外区的其他谱线也都满足与巴尔末公式类似的关系式 1.一群氢原子由n =3能级自发跃迁至低能级发出的谱线中属于巴尔末线系的有________条. 【解析】 在氢原子光谱中,电子从较高能级跃迁到n =2能级发光的谱线属于巴尔末线系.因此只有由n =3能级跃迁至n =2能级的1条谱线属巴尔末线系. 【答案】 1 2.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n ,并计算其波长. 【解析】 对应的n 越小,波长越长,故当n =3时,氢原子发光所对应的波长最长. 当n =3时, 1 λ1=1.10×107 ×? ?? ??122-132m -1 解得λ1=6.55×10-7 m. 当n =∞时,波长最短,1λ=R ? ????122-1n 2=R ×14 , λ=4R =4 1.1×10 7 m =3.64×10-7 m. 【答案】 当n =3时,波长最长为6.55×10-7 m 当n =∞时,波长最短为3.64×10-7 m 巴尔末公式的应用方法及注意问题 (1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子. (2)公式中n 只能取整数,不能连续取值,因此波长也是分立的值. (3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用. (4)应用时熟记公式,当n 取不同值时求出一一对应的波长λ. 玻 尔 理 论 对 氢 光 谱 的 解 释

氢原子光谱实验报告

氢原子光谱和里德伯常量测定

摘要: 本文详细地介绍了氢原子光谱和里德伯常量实验的实验要求、实验原理、仪器介绍、实验内容和数据处理,并从钠黄双线无法区分的现象触发定量地分析了此现象的原因和由此产生的误差,结合光谱不够锐亮和望远镜转动带来的误差提出了创新的实验方案。从理论上论证了实验方案的可行性,总结了基础物理实验的经验感想。 关键字:氢原子光谱里德伯常量钠黄双线 Abstract: This paper introduced the hydrogen atoms spectrum and Rydberg constant experiment from experimental requirements, experimental principle, instruments required, content and Data processing. Considering that the wavelength difference of Na-light double yellow line is indistinguishable from human eyes, we analyze the cause of this phenomenon and the resulting errors quantitatively and propose an innovate experiment method combined with inadequate sharpness and lightness of the spectrum as well as the errors brought during the turning of telescope. We verify the feasibility of this method In theory and summarizes the experience and understanding of basic physics experiment. Key words: hydrogen atoms spectrum, Rydberg constant, Na-light double yellow line

高中物理第2章第4节氢原子光谱与能级结构学案鲁科版选修35053138

高中物理第2章第4节氢原子光谱与能级结构学案鲁科 版选修35053138 氢原子光谱与能级结构 1.氢原子光谱的特点之一是从红外区到紫外区呈现 多条具有确定波长的谱线Hα、Hβ、Hγ、Hδ等,这 些谱线可以帮助我们判断化合物中是否含有氢。 2.氢原子光谱的特点之二是从长波到短波,Hα~ Hδ等谱线间的距离越来越小,表现出明显的规律 性,即1 λ=R? ? ?? ? 1 22 - 1 n2( n=3,4,5,6,…)。 3.玻尔理论的成功之处是引入了量子化的概念,解释了原子结构和氢原子光谱的关系。但在推导过程中仍采用了经典力学的方法,因此是一种半经典的量子论。

1.氢原子光谱的特点 (1)从红外区到紫外区呈现多条具有确定波长的谱线;H α~H δ的这几个波长数值成了氢原子的“印记”,不论是何种化合物的光谱,只要它里面含有这些波长的光谱线, 就能断定这种化合物里一定含有氢。 (2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性。 2.巴尔末公式 1 λ=R ? ?? ??122-1n 2(n =3,4,5,…),其中R 叫做里德伯常量,数值为R =1.096_775_81×107_m -1 。 3.玻尔理论对氢光谱的解释 (1)理论推导 按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n =2的能级上时,辐射出 的光子能量应为hν=E n -E 2,根据氢原子的能级公式E n =E 1n 2可得E 2=E 1 22,由此可得hν=- E 1? ?? ??122-1n 2,由于c =λν,所以上式可写成1λ=-E 1hc ? ????122-1n 2,把这个式子与巴尔末公式比 较,可以看出它们的形式是完全一样的,并且R =-E 1hc ,计算出-E 1hc 的值为1.097×107 m -1 与里德伯常量的实验值符合得很好。这就是说,根据玻尔理论,不但可以推导出表示氢原子光谱规律性的公式,而且还可以从理论上来计算里德伯常量的值。 由此可知,氢原子光谱的巴尔末系是电子从n =3,4,5,6,…能级跃迁到n =2的能级时辐射出来的。其中H α~H δ在可见光区。 (2)玻尔理论的成功和局限性 成功 之处 冲破了能量连续变化的束缚,认为能量是量子化的 根据量子化能量计算光的发射频率和吸收频率 局限性 利用经典力学的方法推导电子轨道半径,是一种半经典的量子论 1.自主思考——判一判 (1)氢原子光谱是不连续的,是由若干频率的光组成的。(√)

氢原子光谱

氢(氘)原子光谱 侯建强 (南京大学匡亚明学院理科强化部2010级,学号:101242015) 1.引言 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 2.实验目的 (1)熟悉光栅光谱仪的性能和用法; (2)用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数。 3.实验原理 1.氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 42 2 0-=n n H λλ (1) 式中λH 为氢原子谱线在真空中的波长。 λ0=364.57nm是一经验常数。 n取3,4,5等整数。 若用波数表示,则上式变为 ??? ? ?-==22 1211~n R v H H H λ (2) 式中RH 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 )/1()4(23202 42M m ch z me R z += πεπ (3) 式中M为原子核质量,m为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,ε0为真空介电常数,z 为原子序数。 当M →∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数) 3202 42)4(2ch z me R πεπ= ∞ (4) 所以

氢原子光谱教案

氢原子光谱教学设计 ★新课标要求 (一)知识与技能 1.了解光谱的定义和分类。 2.了解氢原子光谱的实验规律,知道巴耳末系。 3.了解经典原子理论的困难。 (二)过程与方法 通过本节的学习,感受科学发展与进步的坎坷。 (三)情感、态度与价值观 培养我们探究科学、认识科学的能力,提高自主学习的意识。 ★教学重点 原子光谱的分类 ★教学难点 经典理论的困难 ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 讲述:通过泰坦尼克号中“海洋之心”蓝宝石的鉴定引入新课 (二)进行新课 一、棱镜和光栅的分光原理 1、棱镜的分光原理(结合课件展示) 讨论:为什么用一束很细的光照射三棱镜 2、光栅的分光原理 (1)光栅:由大量等宽等间距的平行狭缝构成的光学器件称为光栅。光栅由两种一种是投射光栅,一种是反射光栅。 (2)白光的单缝衍射图样(中央条纹) 二、光谱 1、光谱:复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。 2、连续光谱:有的光谱是连在一起的光带,称为连续光谱。 (1)思考:连续光谱对复色光的成分有什么要求 (2)由炽热的固体、液体或高压气体所发的光都能形成连续光谱 3、线状光谱:有些光谱是一条一条的亮线,称为线状光谱。 (1)思考:线状光谱对光的成分有什么要求 (2)单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱,也叫原子的发射光谱。 (3)由于特定的原子只能发出特定的现状光谱,所以这种原子的线状光谱,也叫它的特征光谱。 4、吸收光谱:实验表明当用连续光谱照射某种原子时,这种原子也会吸收与自己线状光谱中波长相同的

相关文档
最新文档