二氧化碳溶解度的简易测定

二氧化碳溶解度的简易测定
二氧化碳溶解度的简易测定

二氧化碳溶解度的简易测定

[原理]利用医用注射器,可以简易测定二氧化碳气体在水中的溶解度。

[用品]100mL注射器、烧杯、大试管、直角导管、细橡皮管、橡皮塞、棉花、眼药水瓶上的小橡皮帽。

石灰石、6mol/L盐酸。

[操作]

l.用盐酸和碳酸钙制取二氧化碳。

2.约过15s、试管内空气排尽后,把注射器的细管与发生器的橡皮管相连接,使二氧化碳进入注射器。

3.当注射器内气体已超过50mL时,把注射器细管从橡皮管中拔出,小心推动活塞,(注射器管口向上)使气体体积为30mL(或40mL)。

4.把注射器的细管口插入不含有空气的冷开水里,吸入20mL(或30mL)的水,再用眼药水瓶的小橡皮帽把管口封住。

5.振荡注射器约20s(把细管口朝上),读出剩余气体的体积。

6.计算:用30mL减去器内未溶解的气体的体积,此值即为20mL水在常压和该温度下所能溶解二氧化碳的最大体积。由此即可计算1体积水在常压和该温度下能溶解的二氧化碳体积数。此值近似地等于二氧化碳在通常大气压强和该温度下所能溶解的体积数。

[备注]

1.本实验可简易测定二氧化碳在水中的溶解度。用此法测定的实验结果与下面附表中所列的数据较接近。

用同样的方法,可测定氯气在水中的溶解度。氯气可由高锰酸钾加浓盐酸制取。

2KMnO4+16HCl(浓)=2MnCl2+2KCl+5Cl2↑+8H2O

[附表]在通常大气压强及不同温度下,l体积水能溶解二氧化碳和氯气的体积数(已换算成标准状况下的体积)。

2.不含空气水的制法,把热开水灌满烧瓶或其它瓶中,塞好塞子,放冷备用。若水中溶有空气,实验误差会很大。

3.注射器内要干燥,否则也会影响实验的准确性。

4.为了减小误差,实验前可用二氧化碳气冲洗注射器。

5.本实验中当吸进20mL水后也可用手指堵住细管口,再把注射器插入水中。6.手握装有液体或气体的注射器时,必须同时用手卡住活塞,以防活塞自由滑动。

水质--溶解性总固体的测定-生活饮用水标准检验方法-(GBT-5750.4-2006-8.1)-称量法-方法确认

水质溶解性总固体的测定生活饮用水标准检验方法(GB/T 5750.4-2006 8.1) 称量法方法确认 1 目的 通过精密度测试来验证水样中的溶解性总固体GB/T 5750.4-2006 8.1,判断本实验室的检测方法是否合格。 2适用范围 本标准试用于饮用水及水源水中溶解性总固体。 3 方法原理 3.1水样经过过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶性微粒等。 3.2 烘干温度一般采用105℃+3℃。但105℃的烘干温度不能彻底除去高矿化水样中盐类所含的结晶水。采用180℃+3℃的烘干温度,可得到较为准确的结果。 3.3 当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸湿性使称量不能恒定质量。此时可在水样中加入适量碳酸钠溶液而得到改进。 4分析方法 4.1 测量方法简述 溶解性总固体(在105℃+3℃烘干) 4.1.1将蒸发皿洗净,放在105℃+3℃烘箱内30min。取出,于干燥器内冷却30min。

4.1.2 在分析天平上称量,再次烘烤、称量,直至恒定质量(两次称量相差不超过0.0004 g ) 4.1.3 将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml 于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。 4.1.4 将蒸发皿置于水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105℃+3℃烘箱内,1h 后取出。干燥器内冷却30min ,称量。 4.1.5将称过质量的蒸发皿再放入105℃+3℃烘箱内30min ,干燥器内冷却30min ,称量,直至恒定质量。 4.2 溶解性总固体(在180℃+3℃烘干) 4.2.1按( 5.1)步骤将蒸发皿在180℃+3℃烘干并称重至恒定质量。 4.2.2吸取100mL 水样于蒸发皿中,精确加入2 5.0mL 碳酸钠溶液于蒸发皿内,混匀。同时做一个只加25.0mL 碳酸钠溶液的空白。计算水样结果时应减去碳酸钠空白的质量。 5. 计算 5.1 溶解性总固体的计算公式 V m m TDS 10001000)()(01??-=ρ 公式中: )(TDS ρ—水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L ) ; 0m —蒸发皿的质量,单位为克(g ); 1m —蒸发皿和溶解性总固体的质量,单位为克(g ); V —水样体积,单位为毫升(ml ) 。

溶解度的测定

硝酸钾溶解度得测定(方法1:结晶析出法) 实验原理: 先设计好不同溶质与溶剂得量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时得温度,即所得溶液为该温度下得饱与溶液,计算该温度下得溶解度。实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品就是否齐全、完好。 二、硝酸钾得称取与溶解。 1、用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、2.0g、2.5g,称量过程详见分组实验三得步骤二。将称好得5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取得3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾得结晶。 1.自水浴中取出大试管,插入一支干净得温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计得读数。当刚开始有晶体析出时,立即记下此时得温度t1,并填入下表中。 2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤得操作,分别测定开始析出晶体时得温度t2、t3。将读数填入表格。 四、溶解度曲线得绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤得操作,并将晶体开始析出时得温度读数填人表格。

实验6 电导法测定难溶盐的溶解度

实验10 电导法测定难溶盐的溶解度 一、实验目的 1. 掌握电导法测定难溶盐溶解度的原理和方法。 2. 学会电导率仪的使用方法。 二、基本原理 第二类导体导电能力的大小,常以电阻的倒数表示,即电导: (10.1) 式中G称为电导,单位是西门子S、 导体的电阻与其长度成正比,与其截面积成反比,即: (10.2) 是比例常数,称为电阻率或比电阻。根据电导与电阻的关系,则有: (10.3) k称为电导率或比电导,它相当于两个电极相距1m,截面积为导体的电导,其单位是。 对于电解质溶液,若浓度不同,则其电导亦不同。如取1mol电解质溶液来量度,即可在给定条件下就不同电解质来进行比较。1mol电解质全部置于相距为1m的两个电极之间,溶液的电导称之为摩尔电导,以Λ表示之。如溶液的浓度以C表示,则摩尔电导可以表示为: (10.4) 式中Λm的单位是;C的单位是。Λm的数值常通过溶液的电导率k,经(10.4)式计算得到。而k与电导G有下列关系,由(10.3)式可知: (10.5) 对于确定的电导池来说,是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。

溶液的电导常用惠斯顿电桥来测定,线路如图10.1所示。其中S为信号发生器;R1、R2和R3是三个可变电阻,R x为待测溶液的阻值;H为检流计,C1是与R1并联的一个可 变电容,用于平衡电导电极的电容。测定时,调节R1、R2、R3和C1,使检流计H没有电流通过。此时,说明B、D两点的电位相等,有下面的关系式成立: (10.6) Rx的倒数即为该溶液的电导。 本实验测定硫酸铅的溶解度。直接用电导率仪测定硫酸铅饱和溶液的电导率(K溶液)和配制溶液用水的电导率(K水)。因溶液极稀,必须从溶液的电导率(K溶液)中减去水的电导率(K水),即为: K硫酸铅=K溶液-K水(10.7) 根据10.4式,得到: (10.8) 式中:C是难溶盐的饱和溶液的浓度。由于溶液极稀,Λm可视为Λm∞。因此: (10.9) 硫酸铅的极限摩尔电导可以根据数值求得。因温度对溶液的电导有影响,本实验在恒温下测定。 电导测定不仅可以用来测定硫酸铅、硫酸钡、氯化银、碘酸银等难溶盐的溶解度,还可以测定弱电解质的电离度和电离常数,盐的水解度等。 三、仪器和试剂 仪器:恒温槽,电导率仪,电炉一个,锥形瓶两只,试管三支,电导电极。 试剂:二次蒸馏水配制 四、操作步骤

CO2在水中溶解度的测定 实验报告

CO2在水中溶解度的测定 1.取2000ml蒸馏水,加热至沸腾,加盖放置到室温,备用。 2.制备Ca(OH)2饱和溶液:取11.1gCaCl2和8.0gNaOH,将二者放入500ml大烧杯中,加煮沸的蒸馏水500ml,用玻璃棒搅拌,加盖放置过夜,取上层清液备用。 3.将800ml煮沸过的蒸馏水放入1000ml带塞广口瓶中。如图连接实验装置。锥形瓶A中放入适量煮沸过的蒸馏水,取10.6gNa2CO3和10ml 2%的HCl溶液,将NaCO3放入吸滤瓶中,在吸滤瓶上方放置一只长颈漏斗,迅速将HCl溶液倒入漏斗中,待导管另一端有气流流出时,将橡胶管插入盛有800ml水的广口瓶中,插入水中的导管一端有气泡冒出。待碳酸钠和盐酸反应结束,拆除吸滤瓶,保留锥形瓶A,静置10分钟,把导管移动到水面上方,在A中加入4gNaOH,以吸收广口瓶水面上方未被水吸收的二氧化碳气体,再静置10分钟。拆除锥形瓶A,广口瓶塞上胶塞。 4.取下广口瓶上的胶塞,迅速将150ml氢氧化钙饱和溶液倒入广口瓶中,再迅速盖上胶塞。 5.倒入饱和氢氧化钙溶液后,溶液中有颗粒状沉淀产生。静置,过夜。 6.静置过夜后,广口瓶底有薄薄的白色沉淀,上层为澄清液体。小心地迅速地将上层清液倒出,注意不要干扰到底层沉淀。倒至底层液体约有3-4cm时,停止。 7.准备漏斗和滤纸,过滤剩余液体和沉淀。用煮沸过的蒸馏水反复洗涤滤纸,以洗去附着在碳酸钙上的氢氧化钙。 8.取滤纸放入大烧杯中,在烧杯中滴加10ml36%的盐酸,轻轻摇晃烧杯使沉淀溶解。用镊子将滤纸取出。 9.将烧杯中的液体放入100ml容量瓶中,反复洗涤烧杯。用煮沸过的蒸馏水定容。 10.取适量氯化钙放在蒸发皿上,放入炉中,调节炉内温度至200摄氏度,烘干一小时。 11.取出烘干的氯化钙,称取氯化钙试剂2g,放入1L的容量瓶中,加入 100ml36%的盐酸,用煮沸过的蒸馏水定容。 12.配置标准溶液:取30ml36%的盐酸放入烧杯中,再加入270ml煮沸过的蒸馏水,用玻璃棒搅拌均匀,加盖备用,命名该溶液为H。从1L的容量瓶中用移液管分别取0.5ml,1ml,1.5ml,2.0ml,2.5ml的氯化钙-盐酸溶液至50ml容量瓶中,用上述H溶液定容。标准溶液的浓度分别为0.02g/l,0.04g/l,0.06g/l,0.08g/l,0.10g/l。 13.用原子吸收分光光度计测定试样浓度。得到标准曲线方程y=7.40x-0.046, r=0.996。试样的y值为1.672,可求出x=0.232。即试样浓度为0.232g/l。 14.由上述数据求出,CO2在水中的溶解度为(0.232*0.1) /111*44/800=0.0115g/L。 15.理论溶解度为1.96g/L。相差原因为在实验中水中C02没有溶解到饱和。

实训5 药物溶解度测定

实训5 药物溶解度测定 一、目的要求 1.了解药典对药物近似溶解度的规定。 2.理解药物结构特点(极性)与溶解性的关系。 3.了解CTC的形成对药物溶解度的影响及CTC在药剂学中的应用。 二、实验原理 药物的溶解度是指在一定的温度下,在一定体积的溶剂中药物形成饱和溶液时的浓度。溶解度的大小,表明一种药物在某一种溶剂中被分散的难易程度。药物溶解时,药物的分子结构不会改变,是一种物理性质。 溶剂一般分为三类:以水为代表的极性溶剂、以甲醇和乙醇为代表的亲水性有机溶剂和以苯、石油醚为代表的亲脂性有机溶剂。溶解的经验规则:相似相溶。 为了适应某种制剂的要求而将药物制成盐或加入助溶剂形成电子转移复合物(CTC),这是增加药物在水中溶解度的常用方法。 三、实验方法 (一)不同药物在水中的溶解度测定 1.“极易溶”药物的溶解:称取1.50克的药物于合适的试管中,加入纯化水1.0~1.5毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.“易溶”药物的溶解:称取1.0克的药物于合适的试管中,加入纯化水1.0~10毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 3.“溶解”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水1.0~3.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 4.“略溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水3.0~10.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 5.“微溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水10.0~100.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 (注:以上实验是根据药典对药物溶解度定义设计的,药物在所加的溶剂范围内均可溶解,实验时原则上加入最小溶剂量即可,如果出现不溶的现象,则可能是药物的纯度差、药物的称量和溶剂的取量不准确等因素引起。将实验结果折算为标准溶解度。) (二)同一种药物在不同溶剂中的溶解度测定 1.取三支试管,一支加入0.01克的维生素C,加入乙醚10.0毫升,另两支均加入0.1克的维生素C,再分别加入10.0毫升乙醇和1.0毫升纯化水,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.取三支试管,一支加入0.1克的水杨酸,加入纯化水10.0毫升,另两支均加入0.1克的水杨酸,再分别加入1.0毫升乙醇和1.0毫升丙酮,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 思考题: 1.药物的极性与药物在水中的溶解性有什么关系? 2.什么是药物溶解度? 3.简述药典对药物近似溶解度的规定和溶解度的实验方法。 1

溶解度的测定

硝酸钾溶解度的测定(方法1:结晶析出法)实验原理: 先设计好不同溶质和溶剂的量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时的温度,即所得溶液为该温度下的饱和溶液,计算该温度下的溶解度。 实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品是否齐全、完好。 二、硝酸钾的称取和溶解。 1. 用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、 2.0g、 2.5g,称量过程详见分组实验三的步骤二。将称好的5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取的3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾的结晶。 1.自水浴中取出大试管,插入一支干净的温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计的读数。当刚开始有晶体析出时,立即记下此时的温度t1,并填入下表中。

2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤的操作,分别测定开始析出晶体时的温度t2、t3。将读数填入表格。 四、溶解度曲线的绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾 5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤的操作,并将晶体开始析出时的温度读数填人表格。 2.根据所得数据,以温度为横坐标,溶解度为纵坐标,绘制溶解度曲线图。 五、整理实验用品。 1.用试管刷清洗玻璃仪器。 2.整理实验用品,恢复实验前的摆放位置。 注意事项: 1.为了使测量结果准确,称取硝酸钾晶体的质量和量取倒入试管的蒸馏水的体积应尽量准确。 2.水浴加热时,烧杯里的水面不能低于试管里的液面。温度计应插在溶液的中部,使所示的温度具有代表性。 3.使试管里的液体升温时应采用水浴加热,而不能用酒精灯直接加热。

溶解度的测定

实验2 溶解度的测定 37 一 目的 藉由不同温度下测定物质的溶解度,以了解温度与溶解度之间的关系,并以图形表达之。 二 实验原理 溶质的溶解度会受到许多因素的影响,如溶质的本性、溶剂的种类、温度…等。即使是在同一种溶剂中,如图E2-1所示,不同的溶质在水中的溶解度也各不相同,硝酸钾在约22℃以下,其溶解度小于氯化钠,但高于此温度时,其溶解度则远大于氯化钠。大部分的固体溶质,其溶解度随着温度的增高而变大,但是如下图所示有些变化较大,有些则变化较小。 图E2-1中的各条曲线是如何画出来的?我们可以在高温下配制数支不同浓度的不饱和溶液,然后依序让试管内溶液的温度徐徐降低,直至溶液中有碎屑开始出现时,记录当时的温度,将其浓度换算即可得知该温度的溶解度,将数点不同温度下的溶解度在图形中相连,即可得相似的曲线。 三 实验器材 每組 器材(规格) 数量 器材(规格) 数量 天平 共享 中型试管(18 mm 口径) 4支 试管夹 1支 烧杯(600 mL ) 1个 量筒(25 mL ) 1个 电热板和磁搅拌子(或其他加热装置) 1组 温度计 1支 末端有环的铁丝(可自制) 1支 试管架 1座 溶解度的测定 如何使更多的固体溶到水中? 2 连结课本P.116 图E2-1 各种固体溶解度与温度关系

36高中化学(全)实验活动手册 四实验试药 每組 药品份量药品份量 水约20 mL 硝酸钾(KNO3)约14 g 五实验步骤 1 取600 mL烧杯,装热水 半满并置于电热板上,开 启电源,把火力调至最 小,加热烧杯内的水。 2 称取质量为2.0 g、3.0 g、 4.0 g和 5.0 g的硝酸钾倒入 四支试管。 3 再各加入5.0 g水于四支 试管。 4 将4支试管放入装水烧 杯中,以水浴法加热。 5 注意观察各试管内固体。 6 依序用试管夹将固体已 溶解的试管取出(其先后 顺序应为加了2.0 g、3.0 g、4.0 g和5.0 g硝酸钾 固体的试管),先进行下 一步骤,直到所有试管均 取出为止,关闭电热板的 电源。

二氧化碳的溶解性

二氧化碳的溶解性探究 【探究目的】 1.、通过探究认识二氧化碳在水中的溶解性 2、初步学会运用多种途径进行探究的方法 【探究活动】 1、问题的提出 汽水、可乐开启后会有大量气泡冒出,它们通常被称为碳酸饮料。二氧化碳能溶解在水中吗? 2、实验探究 结合已有经验和所学知识,根据二氧化碳在水中溶解前后和溶解过程中发生的一系列变化,设计方案探究二氧化碳在水中的溶解性。请你认真研究方案,从中选择方案探究。也可以自己设计方案探究。 方案Ⅰ: 根据“二氧化碳溶解在水中,可与水反应生成碳酸,碳酸遇紫色石蕊试液变红”探究二氧化碳在水中的溶解性。 1.取两支同样大小的试管,加入1/3体积的水,滴加几滴紫色石蕊。分别通 入二氧化碳和空气。观察实验现象。 2.把上述两支试管分别在酒精灯上加热。观察实验现象。 3.问题思考: 碳酸能使紫色石蕊试液变红,为什么在水中通入二氧化碳也能使紫色石蕊变红? 加热后的现象表明温度对于二氧化碳在水中的溶解度有何影响? 方案Ⅱ 根据“二氧化碳被水吸收而引起的气体压强变化”探究二氧化碳的在水中的溶取两只干燥的大小相等的矿泉水瓶,其中一只收集满二氧化碳气体,另一只收集满空气,分别向其中倒入等体积的水。拧紧瓶塞,观察矿泉水瓶的变化。1.问题思考: 两只矿泉水瓶中,哪只矿泉水瓶发生干瘪现象? 导致瓶内外气体压强差异的原因是什么? 方案Ⅲ 定量探究常温下二氧化碳在水中溶解的量。 1.取两支一次性注射器(25ml),分别吸入10ml水,其中一支吸入5ml二氧化 碳气体,另一支吸入5ml空气。 2.用小橡皮封住注射器针孔,慢慢推进注射器活塞,轻轻振荡注射器,放开注 射器活塞,记录气体被水溶解的量。 3.在两支注射器中分别吸入10ml水,重复上述实验。 4.问题思考: 如何表示常温下二氧化碳在水中溶解的量? 为什么在表示二氧化碳在水中溶解的量时要注明温度?

二氧化碳的物理化学性质

二氧化碳的物理和化学特性

二氧化碳的物理化学性质 二氧化碳在油田上应用于采油,是基于它的临界温度和临界压力低,有类似于丙烷的物理性质,易于压缩,可以超临界态或液态输送,较其它气体如氮气、甲烷易于膨胀、降粘、萃取石油,从而获得较高的石油采收率,因而得到油田上的广泛应用。 1、二氧化碳的一般性质 在常温常压下,二氧化碳为无色无嗅的气体,分子量为44.01,其比重约为空气的1.53倍,偏心因子为0.225。二氧化碳的临界温度为31.06℃,临界压力为7.35MPa,临界点密度为0.4678g/mL,临界点粘度为0.03335mPa.s,临界压缩因子为0.275,临界比容为2.135L/kg。在压力为1atm、温度为0℃时,二氧化碳的密度为1.98kg/m3;导热系数为0.0126千卡/米·时·度;动力粘度系数为138×10-6泊。在不同条件下,二氧化碳也可以气、液、固三种状态存在,固态二氧化碳也叫干冰。二氧化碳化学性质不活泼,既不可燃,也不助燃,无毒,但具有腐蚀性。它与强碱有强烈的作用,能生成碳酸盐,在一定条件及催化剂作用下,二氧化碳还能参加很多化学反应,表现出良好的化学活性。 2、二氧化碳与驱油有关的特性 (1)二氧化碳的密度随压力的升高而增加,随温度的升高而降低。在许多油藏条件下,二氧化碳的密度与油藏原油相似,视特定的温度、压力或石油组成的不同,二氧化碳的密度可高于或低于油藏原油,但通常高于气顶气。 (2)二氧化碳的粘度随压力的升高而增加,随温度的升高而降低。二氧化碳的粘度比油藏原油的粘度要低。 (3)二氧化碳的压缩因子随温度的升高而增加,当压力较低时,随压力的升高而降低,而当压力较高时,则随压力的升高而增加。 (4)从二氧化碳的P-T相图得到:二氧化碳的蒸汽压曲线始于气-液-固三相点,终于临界点。三相点上,温度为-56.42℃,压力为0.519MPa,气-液-固三相呈平衡状态。临界点对应的温度为31.16℃,压力为7.16MPa;在临界点附近,气液两相形成连续的流体相区,它既不同于一般的液相,也不同于一般的气相。 (5)二氧化碳可溶于水,它在水中的溶解度随压力升高而增加,随温度

溶解度的测定

硝酸钾溶解度的测定(方法1:结晶析出法) 实验原理: 先设计好不同溶质和溶剂的量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时的温度,即所得溶液为该温度下的饱和溶液,计算该温度下的溶解度。 实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品是否齐全、完好。 二、硝酸钾的称取和溶解。 1. 用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、 2.0g、2.5g,称量过程详见分组实验三的步骤二。将称好的5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取的3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾的结晶。 1.自水浴中取出大试管,插入一支干净的温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计的读数。当刚开始有晶体析出时,立即记下此时的温度t1,并填入下表中。 2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤的操作,分别测定开始析出晶体时的温度t2、t3。将读数填入表格。 四、溶解度曲线的绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤的操作,并将晶体开始析出时的温度读数填人表格。

二氧化碳在水中的溶解性解读

探究活动 溶解度曲线二氧化碳在水中的溶解性 二氧化碳在水中的溶解性 一、探究目的 1.通过探究认识二氧化碳在水中的溶解性 2.学会运用多种途径进行探究的方法 3.初步学习设计实验探宪方案 二、探究活动 1.问题情景和问题的提出 通常汽水瓶开启后,我们都会看到有大量的气泡冒出,有时甚至夹带着大量的汽水往外冲。汽水瓶和啤酒瓶受热或受到猛烈碰撞时都可能发生爆炸,所以,装有汽水和啤酒的箱子都标有“轻拿轻放、避光保存”的安全标志。 汽水和啤酒通常被称为碳酸饮料。为什么汽水和啤酒中含有二氧化碳呢?二氧化碳能溶解在水中吗?如果二氧化碳能溶于水,那它在水中的溶解程度如何? 2.实验探究 二氧化碳是无色、无味的气体,这给我们的探究带来了一定的困难。但我们可以结合所学知识和已有经验,根据二氧化碳在水中溶解前后和溶解过程中发生的一系列变化,设计方案探究二氧化碳在水中的溶解情况。下面给出了探究二氧化碳在水中溶解情况的实验方案,请你认真研究此方案,从中选择一些方案进行探究。你也可以自己设计方案探究二氧化碳在水中的溶解情况。 探究方案(Ⅰ) 根据“二氧化碳溶解在水中,可与水反应生成碳酸,碳酸遇紫色石蕊试液会变红”探究二氧化碳在水中的溶解情况 二氧化碳+水=碳酸 ()()() 1.下图,取两支试管,加入约1/3体积的滴有紫色石蕊试液的水,分别通入足量的二氧化碳(可用嘴吹)和空气,观察实验现象。 探究方案(Ⅰ)实验示意图 2.把上述两支试管分别放在酒精灯火焰上加热。观察实验现象。

3.回答下列问题: (1)分别通入二氧化碳和空气后,A试管呈________色;B试管呈________色。 (2)加热后,A试管呈________色;B试管呈________色。 (3)碳酸能使紫色石蕊试液变红,为什么在水中通入二氧化碳也能使紫色石蕊试液变红? (4)加热后的现象表明温度对于二氧化碳在水中的溶解度有何影响? 探究方案(Ⅱ) 根据“二氧化碳和空气在不同温度下在水中溶解量的不同”探究二氧化碳在水中的溶解情况。 1.如下图,取两支容积相同、加入水的量相同的大试管,分别在试管中加入约2/3体积的水,然后再分别向试管中通入足量的二氧化碳和空气 探究方案(Ⅱ)实验示意图 2.在试管口上塞上带有干瘪气球的单孔橡皮塞,将两只试管一起放在水浴里加热。观察气球胀大的情况。 3.回答下列问题: (1)两支试管上的气球膨胀程度相同吗? (2)两只气球膨胀程度不同,你能解释其原因吗? 探究方案(Ⅲ) 根据“二氧化碳被水吸收而引起的气体压强变化”探究二氧化碳的在水中的溶解情况。 1.如下图,取两只干燥的质地轻柔软的矿泉水瓶,其中一只收集满二氧化碳气体,另一只盛满空气,分别塞上带有吸满水的胶头滴管的橡皮塞,并塞紧。 探究方案(Ⅲ)实验示意图 2.将胶头滴管里的水挤入矿泉水瓶中,振荡矿泉水瓶,观察矿泉水瓶的变化。 3.回答下列问题:

水质溶解性总固体的测定生活饮用水标准检验方法GBT称量法方法确认

水质溶解性总固体的测定生活饮用水标准检验方法 (GB/T 5750.4-20068.1)称量法方法确认1 目的 通过精密度测试来验证水样中的溶解性总固体GB/T 5750.4-2006 8.1,判断本实验室的检测方法是否合格。 2适用范围 本标准试用于饮用水及水源水中溶解性总固体。 3 方法原理 3.1水样经过过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶性微粒等。3.2 烘干温度一般采用105℃+3℃。但105℃的烘干温度不能彻底除去高矿化水样中盐类所含的结晶水。采用180℃+3℃的烘干温度,可得到较为准确的结果。 3.3 当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸湿性使称量不能恒定质量。此时可在水样中加入适量碳酸钠溶液而得到改进。 4分析方法 4.1 测量方法简述 溶解性总固体(在105℃+3℃烘干) ℃+3℃烘箱内30min。取出,于干燥器内冷却30min。 4.1.2 在分析天平上称量,再次烘烤、称量,直至恒定质量(两次称量相差不超过0.0004 g)

4.1.3 将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。 4.1.4 将蒸发皿置于水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105℃+3℃烘箱内,1h后取出。干燥器内冷却30min,称量。 ℃+3℃烘箱内30min,干燥器内冷却30min,称量,直至恒定质量。 4.2 溶解性总固体(在180℃+3℃烘干) ℃+3℃烘干并称重至恒定质量。 5. 计算 5.1 溶解性总固体的计算公式 公式中: —水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L); ) (TDS m—蒸发皿的质量,单位为克(g); m—蒸发皿和溶解性总固体的质量,单位为克(g); 1 V—水样体积,单位为毫升(ml)。 6实验结果 选取10份样品加标,使溶解性总固体值为170.5mg/L,按4进行测试。由附表可知,精密度RSD<4.9%,满足GB/T 5750.4-2006 8.1要求。

氧气二氧化碳溶解度练习

1、实验室制取氧气并用排水法收集,下列操作中有错误的是 ( ) A.当加热反应刚有气泡产生,立即收集 B.加热试管,试管口要略向下倾斜 C.盛放药品前要检查装置的气密性 D.实验结束时要先把导管移出水面,再熄灭酒精灯 2、下列说法错误的是( ) A. 二氧化碳没有颜色 B .二氧化碳不能燃烧 C .二氧化碳难溶于水 D .二氧化碳不能支持燃烧 3、实验室制取二氧化碳常用的方法是( ) A. 木炭在氧气中燃烧 B .煅烧石灰石 C. 大理石跟稀盐酸反应 D .石灰石跟稀硫酸反应 4、检验集气瓶中是否收集满二氧化碳的方法是( ) A. 将燃着的木条放在集气瓶口 B .将燃着的木条伸人集气瓶内 C .将石灰水倒入集气瓶中 D .将紫色石蕊试液倒人集气瓶中 5、检验某气体是否为二氧化碳,常用的方法是( ) A .测量气体的密度 B .将燃烧的木条伸到气体中 C .将气体通入紫色的石蕊试液中 D .将气体通入石灰水中 6、6月5日是世界环境日,环境保护是我国的一项基本国策,空气的净化越来越受到人们的关注,下列气体组中,三种气体都属于空气污染物的是 ( ) A .二氧化硫、氮气、二氧化氮 B .二氧化碳、一氧化碳、氮气 C .一氧化碳、甲烷、氢气 D .二氧化硫、一氧化碳、二氧化氮 7、下列对用排水法收集满氧气的集气瓶的处理方法中,正确的是( ) A .将集气瓶从水中提起后,用玻璃片盖住瓶口,然后使瓶口向上正立放在桌面上 B .在水下用玻璃片盖住集气瓶口后一起拿出水面,然后正立放置在桌面上 C .将集气瓶从水中提出后倒立放置在桌面上 D .将集气瓶仍然留在水槽中,用时再取出来 8、下列叙述正确的是 ( ) A .用带火星的木条插入到集气瓶中检验氧气是否已 B .食盐水蒸发得到固体食盐和水蒸气是分解反应 C .因为氧气比水轻,所以可以用排水法收集 D .氧气是一种不易溶于水的气体。 9、下列对氧气性质的叙述,错误的:( ) A 、氧气可以燃烧 B 、氧气是一种无色无味的气体 C 、氧气在低温高压下能变成液体或固体 D 、氧气是一种化学性质比较活泼的气体 10、实验室里制取氧气时大致可分为以下步骤:①点燃酒精灯;②检查装置气密性;③将高锰酸钾装入试管,在试管口塞一团棉花,用带导管的塞子塞紧试管,并把它固定在铁架台上;④用排水法收集氧气;⑤熄灭酒精灯;⑥将导管从水槽中取出。正确的操作顺序是( ) A .②③①④⑤⑥ B .③②①④⑤⑥ C .②③①④⑥⑤ D .③②①④⑥⑤ 11、用高锰酸钾制氧气,水槽中的水变红。这是因为:________________________________。 收集满氧气后,应用______盖住集气瓶口,并_____(选填“正放”或“倒放”)在桌上。 12、做铁丝在氧气中燃烧的实验里,集气瓶底炸裂,这是因为:___________________________。 13、通常条件下,二氧化碳是一种_________颜色的气体,密度比空气的_________,_________溶于水。通常1L 水可以溶解_________的二氧化碳气体。 14.用文字表达式解释下列现象的原因。 (1)向盛有紫色石蕊试液的试管中通入适量的CO 2,溶液变为红色; _______________________________________________________________; (2)通入CO 2变红的石蕊试液,加热后又变成紫色; _______________________________________________________________。 15、意大利有一“死狗洞”,游客牵着小狗进入洞内,小狗会晕倒在地,而人却能安全出入,后来,科学家波曼尔发现洞内湿漉漉的泥土中冒着气泡(二氧化碳)。据此能说明的二氧化碳的性质有: ⑴ ;(2) 。 16、某学生为验证空气中氧气的体积分数, 进行实验(如右图所示)。燃烧匙里盛燃着的足量的碳, 反应结束,冷却后,打开C 夹,水不沿导管进入A 瓶。 请回答: (1)B 容器的名称是 。碳在A 瓶中燃烧的文字表达式是 ; (2)该实验失败的主要原因是 ; (3)若不改变原装置,要使实验成功,你的改进意见是 ; (4)若实验成功,进入A 瓶里的水约可达到A 瓶容积的 ,由此可证明空气中氧气的体积分数约为 。 碳 B 水 A

实验五硝酸钾溶解度的测定

实验五硝酸钾溶解度的测定和溶解度的测定 第一部分: 常用的测量工具: 水银温度计: 温度计是膨胀式温度计的一种,水银的凝固点是℃,沸点是℃,用来测量0--150℃或500℃以内范围的温度,它只能作为就地监督的。用它来测量温度,不仅比较简单直观,而且还可以避免外部远传温度计的误差。 温度计的工作原理: 根据使用目的的不同,已设计制造出多种温度计。其设计的依据有:利用固体、液体、受温度的影响而的现象;在定容条件下,气体(或蒸汽)的压强因不同温度而变化;热电效应的作用;电阻随温度的变化而变化;热辐射的影响等。一般说来,一切物质的任一物理属性,只要它随的改变而发生单调的、显著的变化,都可用来标志温度而制成温度计。 第二部分: 实践反思 1、搅拌时不要紧贴试管底。 2、如何界定为结晶,操作人员要是同一个人。 第三部分: 教学指导: 硝酸钾溶液的测定 【目的和要求】 1.掌握测定硝酸钾溶解度的规律。 2.了解硝酸钾溶解度与随温度变化的规律。 【仪器和器材】 水浴锅,烧杯,温度计,玻璃棒,蒸馏水,试管,硝酸钾。 【实验原理】 一定温度下,溶质中一定量溶剂中的溶解量是有限度的,科学上我们既可以用物质溶解性的大小对物质的溶解能力做粗略的定性表述,也可以用溶解度来定量表述物质的溶解能力。在一定温度下,某固态物质在100g溶剂中达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂中的溶解度。如果没有特别指明溶剂,通常所说的溶剂就是物质在水中的溶解度。

实验室中测定固体溶解度的方法主要有两种,一种是温度变化法,另一种是蒸发溶剂法。 1.温度变化法(结晶析出法) 温度变化法是固定溶质和溶剂二者的质量,测定制成的溶液处于饱和状态——开始析出结晶时的温度,从而计算出所测温度下的溶质的溶解度。 100g ?=溶剂的质量溶质的质量 )溶解度( 利用此式求得的数值就是2T T 2 1+温度下该溶质的溶解度。 2.蒸发法 蒸发法是在一定温度下,取一定量的饱和溶液,测定蒸发掉水分后析出晶体质量的方法。根据饱和溶液的质量和所析出的晶体质量,就可以算出在一定温度下溶质的溶解度。 【动手实践】 1.温度变化法(结晶析出法) (1)分别准确称取3.5g 、1.5g 、1.5g 、2.0g 、2.5g 硝酸钾,将称好的5份硝酸钾放在实验台上,并做好标记。(为什么要称5份,每份的质量如何确定的?为什么要做好标记?) (2)在一支大试管中加入3.5g 硝酸钾,并加入蒸馏水; (3)在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长);(装置如何设计?如何进行搅拌操作?) (4)自水浴中取出大试管,插入一支干净的温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计的读数。当刚开始有晶体析出时,立即记下此时的温度T 1; (5)把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤的操作,分别测定开始析出晶体时的温度T 2、T 3;(在搅拌过程中,如何保证溶质不减少?) (6)依次向试管中再加入1.5g 、1.5g 、2.0g 、2.5g 硝酸钾(使试管中依次共有硝酸钾5.0g 、 6.5g 、8.5g 和11.0g ),每次加入硝酸钾后都重复溶解、结晶实验步骤的操作,并将晶体开始析出时的温度记录下来;(加入不同份的药品时,是否需要添加水?) (7)根据所得数据,以温度为横坐标,溶剂度为纵坐标,绘制溶解度曲线图。(如何选择坐标?绘制图线是什么形状?若是直线,斜率表示的含义?如果是曲线,变化趋势如何?) 2.蒸发法(溶质质量法) (1)准确称量洁净干燥的蒸发皿,记下蒸发皿的质量(1m ),放在干燥器(干燥箱)中备用;(用何种称量器,准确称量蒸发皿?为何要干燥?)

教材-溶解度的测定解读

《食品检验技术职业技能训练》 教材 课程名称:食品检验技术职业 技能训练 课程代码: 课程性质:专业核心课程 课程学时:60学时 课程学分:2学分 江苏食品药品职业技术学院食品加工技术专业 2014年07月制定

模块三食品的物理检验 项目3-2 溶解度的测定 【学习目标】 知道离心设备的工作原理;理解溶解度与食品质量的关系;能熟练正确操作使用离心设备并进行维护;能按照最新国家标准完成溶解度的测定、数据处理及结果报告、评价;能在学习过程中培养严谨求实、团结协作,勇于发现问题、解决问题的职业素质。 【导言】 乳粉无论产品品种还是产值在我国的乳制品中一直都占据着及其重要的地位,保证乳粉的质量安全对乳粉生产和我国乳品企业的健康发展有着重要意义。溶解度是指每百克样品经规定的溶解过程后,全部溶解的质量。溶解度的测定是评价乳品质量的重要项目之一。 【知识学习】 1、婴幼儿食品和乳品溶解性的测定原理(GB 5413.29-2010 -第二法溶解度的测定) 样品溶于水后,称取不溶物质量,再计算溶解度。我国食品安全标准规定全脂牛乳粉溶解度不得低于97%。 【实践操作】 任务一:仪器设备和试剂的准备 离心管:50 mL,厚壁、硬质。 烧杯:50 mL。 离心机。 称量皿:直径50 mm~70 mm的铝皿或玻璃皿。 任务二:样品预处理 称取样品5 g(准确至0.01 g)于50 mL烧杯中,用38 mL25℃~30℃的水分数次将乳粉溶解于50 mL离心管中,加塞。 任务三:样品溶解度测定 1、将离心管置于30℃水中保温5 min,取出,振摇3 min。 2、置离心机中,以适当的转速离心10 min,使不溶物沉淀。倾去上清液,并用棉栓擦净管壁。 3、加入25℃~30℃的水38 mL,加塞,上下振荡,使沉淀悬浮。 4、再置离心机中离心10 min,倾去上清液,用棉栓仔细擦净管壁。 5、用少量水将沉淀冲洗入已知质量的称量皿中,先在沸水浴上将皿中水分蒸干,再移入100℃烘箱中干燥至恒重(最后两次质量差不超过2 mg)。 任务四:结果记录并分析处理

气体在水中的溶解度

表中的符号意义如下。 ——吸收系数,指在气体分压等于101.325 kPa时,被一体积水所吸收的该气体体积(已折合成标准状况); l——是指气体在总压力(气体及水气)等于101.325 kPa时溶解于1体积水中的该气体体积;q——是指气体在总压力(气体及水气)等于101.325 kPa时溶解于100 g水中的气体质量(单位:g)。 气体在水中的溶解度 The Aquatic Solubilities of Gases 气体 (Gas) H 2 He Ar Kr Xe Rn O 2 N 2 Cl

Br 2 (蒸气) 空气 NH 3 H 2S HCl CO CO 2溶解度符 号 (Solubility symbol)温度(Temperature)/℃010203040506080100×102 q×1042.171.981.821.721.661.631.621.601.60 1.921.741.601.471.391.291.180.79 0.970.9910.9941.0031.0211.07 -1.751.741.721.701.69

- - - 5.284.133.372.882.51 0.1110.0810.0630.0510.043 0.2420.1740.1230.0980.082 0.5100.3260.2220.1620.126- - 0.036 - 0.085-----0 ------0000 ---×102 q×104 ×102 ×102 q×1032.091.84

4.893.803.102.612.312.091.951.761.70 6.955.374.343.593.082.662.271.38 2.942.311.891.621.391.211.050.660 4.613.152.301.801.441.231.020.683 1.460.9970.7290.5720.4590.3930.3290.223 60.535.121.313.8 42.924.814.99.5 2.9182.2841.8681.564- - -- - -- - ---- 2.351.861.551.341.181.091.020.9580.947×102 q×103 l q q l×102

二氧化碳的溶解度

溶解度 表1 CO2在水中的溶解度对照表 温度℃ a×102 mL/mL q×102 g/100g 温度℃ a×102 mL/mL q×102 g/100g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 171.3 164.6 158.4 152.7 147.3 142.4 137.7 133.1 128.2 123.7 119.4 115.4 111.7 108.3 105.0 33.46 32.13 30.91 29.78 28.71 27.74 26.81 25.89 24.92 24.03 23.18 22.39 21.65 20.98 20.32 18 19 20 21 22 23 24 25 26 27 28 29 30 35 40 92.8 90.2 87.8 85.4 82.9 80.4 78.1 75.9 73.8 71.8 69.9 68.2 66.5 59.2 53.0 17.89 17.37 16.88 16.40 15.90 15.40 14.93 14.49 14.06 13.66 13.27 12.92 12.57 11.05 9.73

15 16 17 101.9 98.5 95.6 19.70 19.03 18.45 45 50 60 47.9 43.6 35.9 8.60 7.61 5.76 说明 a:为实验测量溶解于1mL水中的气体标准状态(0℃,0.101MPa)体积(mL) q:为当气体压强于水蒸气压强之和为0.101MPa时,溶解于100g水中的气体质量(g) 表2 CO2在某些溶剂中的溶解度,ml/g(STP) 溶剂温度,℃ -80 -60 -40 -20 0 10 20 30 40 甲醇 乙醇 苯 甲苯 二甲苯乙醚 醋酸甲酯丙酮220 100 21 300 350 460 66 40.4 8.7 7.8 90 101 127 24.5 28 4.4 4.9 36 41 50 11.4 3.0 2.6 17.5 20.5 24 6.3 5.3 3.5 1.9 9.6 11.5 13 5.0 4.3 2.9 3.4 7.8 9.2 10.5 4.1 3.6 2.71 3.0 2.31 6.3 7.4 8.2 3.6 3.2 2.59 2.8 6.0 6.6 3.2 5.4

相关文档
最新文档