食品真实性领域稳定同位素技术标准一览

食品真实性领域稳定同位素技术标准一览

食品真实性领域稳定同位素技术标准一览

颁布年份方法产品组分仪器应用同位素1987OIV, recueil des méthodes d'analyse葡萄酒乙醇SNIF-NMR D/H,

1990EC regulation 2676/90, annex 8葡萄酒乙醇SNIF-NMR D/H 1991AOAC method 991.41蜂蜜蜂蜜、蛋白质IRMS13C/12C 1992AOAC 992.09浓缩橙汁水IRMS18O/16O 1993CEN (TC174 N108, ENV 12140)果汁蔗糖IRMS13C/12C 1995AOAC Official method 995.17果汁乙醇SNIF-NMR D/H 1996OIV Resolution OENO 2/96葡萄酒水IRMS18O/16O 1997EC Regulation No. 822/97葡萄酒水IRMS18O/16O 1997CEN (TC174 N109, ENV 12141)果汁水IRMS18O/16O 1997CEN (TC174 N109, ENV 12142)果汁水IRMS D/H 1998AOAC 998.12蜂蜜蜂蜜、蛋白质IRMS13C/12C 1998BS DD ENV 13070-1998果汁果浆IRMS13C/12C 2000AOAC Official method 2000.19枫树蜜乙醇SNIF-NMR D/H 2000AOAC 44.5.17枫树糖浆糖IRMS13C/12C 2001OIV Resolution OENO 17/2001葡萄酒乙醇IRMS13C/12C 2002GBT18932.1蜂蜜蜂蜜、蛋白质IRMS13C/12C 2003EC No 440/2003,annex 2葡萄酒乙醇IRMS13C/12C 2004AOAC method 2004.01果汁、枫树蜜乙醇IRMS13C/12C 2005OIV Resolution OENO 7/2005起泡葡萄酒CO2IRMS13C/12C 2006AOAC method 2006.05香兰素香兰素SNIF-NMR D/H 2009OIV Resolution OENO 353/2009葡萄酒水IRMS18O/16O 2009OIV Resolution OENO 381/2009葡萄酒、烈性酒乙醇IRMS13C/12C 2010OIV Resolution OENO 343/2010葡萄酒甘油IRMS13C/12C

碳稳定性同位素分析食物网中能量流动审批稿

碳稳定性同位素分析食物网中能量流动 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

碳稳定性同位素分析食物网中能量流动 摘要:随着科学技术发展,稳定性同位素已经广泛应用在生态学研究的诸多领域。在研究食物网中能量流动关系时,稳定性同位素能提供更迅速、客观的分析。此次实验利用碳稳定性同位素技术对受到人类破坏或其他因素影响的选定区域分析其食物网中的能量流动,旨在研究该区域生物之间的能量流动关系,从而对该区域采取合理的保护措施。 关键词:碳稳定性同位素;食物网;能量流动;δ13C值 Carbon Stable Isotopeanalyzes Studies Energy Flux in Food Web ABSTRACT: Stable isotopehas been widely used in various fields in ecology studieswith the development of science and isotope can provide rapider and more objective analysis when researching energy flux relationship in the food web. In the process of this experiment, we analyze the energy flux relationship in the food web of the chosen areas that are destroyed by human beings or affected by other factors by means of carbon stable isotope technology, with the aim of researching the energy flux relationship among population in this area, consequently we can adopt reasonable protective measures in this areas. KEY WORDS: Carbon stable isotope;food web;energy flux;δ13C 一.研究背景 随着世界人口的持续增长和人类活动范围与强度的扩展和增加,地球上的生物多样性逐渐降低。例如,持续不断地砍伐树木已经导致世界上大量树木物种面临灭种的危险;环境污染使得动植物的栖息地环境遭到严重的破坏,致使物种数量锐减[1]。在某一区域中,动植物数量的减少还有一个很重要的原因,即某些因素(例如栖息地减少和改变、滥捕乱猎、外来物种的引入、污染等[2])导致该区域部分动植物数量的减少,而这进一步通过该区域的食物网影响到区域中其他动植物的种类和数量,进而对整个区域各种生物体造成影响。 食物网是在生态系统中的生物成分之间通过能量传递关系存在着一种错综复杂的普遍联系,直接反映生态系统的结构和功能[3]。生产者制造有机物,各级消费者消耗这些有机物,生产者和消费者之间相互矛盾,又相互依存。不论是生产者还是消费者,其中某一种群数量突然发生变化,必然牵动整个食物网。食物网是生态系统长期发展的进化过程中形成的。人类活动使生态系统中某一生物体种群数量遭到破坏,将使生态平衡失调,甚至是生态系统崩溃[2]。因此,研究食物网中生物的能量流动关系,对于维持生态系统的稳定、利用动物间的相互制约来减缓人类活动对生态系统的破坏具有重要的意义。

第十讲稳定同位素地球化学

第十讲 地质常用主要稳定同位素简介 18O Full atmospheric General Circulation Model (GCM) with water isotope fractionation included.

内容提要 ●基本特征●氢同位素●碳同位素●氧同位素●硫同位素

10.1. 传统稳定同位素基本特征 ?只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40; ?多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集; ?生物系统中的同位素变化常用动力效应来解释。在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen) ?直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成: 1H:99.9844% 2H(D):0.0156% ?在SMOW中D/H=155.8 10-6 ?氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征 ?与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间; ?1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围; ?从大气圈、水圈直至地球深部,氢总是以H O、OH-, 2 H2、CH4等形式存在,即在各种地质过程中起着重要作用; ?氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

稳定同位素应用

高精度稳定同位素技术 同位素指质子数相同而中子数不同的同种化学元素,最常用的稳定同位素有碳-13 (13C)、氮-15(15N)、氢-2 (2H即氘) 和氧(18O)等。因为这些同位素比普通元素重1到2个原子量单位,所以也叫作重元素。稳定同位素(stable isotope) 就是天然同位素或非放射性同位素(non-radioactive isotope),即无辐射衰变,质量保持永恒不变。稳定同位素在自然界无处不在,包括所有化合物、水和大气,所以也就自然地存在于动植物和人体内。其物理化学性质与普通元素相同,所以可用作示踪剂来标记化合物用于科学研究、临床医学和药物生产等几乎所有自然领域。由于没有辐射污染,稳定同位素示踪剂可以用于任何对象,包括孕妇、婴儿和疾病患者,无论是口服还是注射,都绝对安全。 稳定同位素技术的另一特点是其测试定量的高精度和超高精度,达到PPM级(即百万分之一精度),而且同时也测定了化合物的浓度,事半功倍,且降低了测试误差。现在,利用同位素技术人们可以同时测定多个不同的样品,从而提高测定效率。这些高效率、高精度的特点是放射性同位素等技术所不可比拟的。 稳定同位素技术的第三个特点是其示踪能力的微观性和灵活多变性。微观性是指它可以用来标记、追踪化合物分子内部某个或多个特定原子,比如葡萄糖分子中各个原子在人体内的不同代谢途径, 哪些原子进入三羧酸循环产生能量,而哪些原子进入脂肪代谢途径参与脂肪合成。多变性是指通过对同位素标记位点的合理选择和巧妙设计来追踪、定性定量测定化合物的不同代谢途径或者生成过程。 由于以上特性,自上世纪中叶特别是70年代以来稳定同位素技术在科技先行国家被广泛应用于医学、营养、代谢、食品、农业、生态和地质等研究和生产领域。近年来在药物研发生产以及新兴的基因工程、蛋白质组学(proteomics)、代谢组学(metabolomics) 和代谢工程(metabolic engineering) 等前沿领域,稳定同位素技术已成为一种应用广泛、独特高效甚至必须的技术,显著地提高了解决科学问题的能力和生产效率。最新近的例子是德国科学家用碳13氨基酸通过三代喂养成功地标记了动物全身的所有蛋白质而获得了细胞代谢的重要发现。这一崭新的技术堪比当年的聚合酶连锁反应技术(PCR), 必将迅速得到广泛的推广和应用,有力地推动生命科学的发展。稳定同位素在自然界的无所不在意味着该技术应用的普遍性,有大自然显微镜的独特功能,将揭开越来越多的大自然和人体的奥秘。

元素的精确质量数及同位素丰度报告

元素的精确质量数及同位素丰度 Aluminum Al(27) 26.981541 100.00 Antimony Sb(121) 120.903824 57.30 Sb(123) 122.904222 42.70 Argon Ar(36) 35.967546 0.34 Ar(38) 37.962732 0.063 Ar(40) 39.962383 99.60 Arsenic As(75) 74.921596 100.00 Barium Ba(130) 129.906277 0.11 Ba(132) 131.905042 0.10 Ba(134) 133.904490 2.42 Ba(135) 134.905668 6.59 Ba(136) 135.904556 7.85 Ba(137) 136.905816 11.23 Ba(138) 137.905236 71.70 Beryllium Be(9) 9.012183 100.00 Bismuth Bi(209) 208.980388 100.00 Boron B(10) 10.012938 19.80 B(11) 11.009305 80.20 Bromine Br(79) 78.918336 50.69 Br(81) 80.916290 49.31

Cadmium Cd(106) 105.906461 1.25 Cd(110) 109.903007 12.49 Cd(111) 110.904182 12.80 Cd(112) 111.902761 24.13 Cd(113) 112.904401 12.22 Cd(114) 113.903361 28.73 Cd(116) 115.904758 7.49 Calcium Ca(40) 39.962591 96.95 Ca(42) 41.958622 0.65 Ca(43) 42.958770 0.14 Ca(44) 43.955485 2.086 Ca(46) 45.953689 0.004 Ca(48) 47.952532 0.19 Carbon C(12) 12.000000 98.90 C(13) 13.003355 1.10 Cerium Ce(136) 135.907140 0.19 Ce(138) 137.905996 0.25 Ce(140) 139.905442 88.48 Ce(142) 141.909249 11.08 Cesium Cs(133) 132.905433 100.00 Chlorine Cl(35) 34.968853 75.77 Cl(37) 36.965903 24.23 Chromium Cr(50) 49.946046 4.35 Cr(52) 51.940510 83.79 Cr(53) 52.940651 9.50 Cr(54) 53.938882 2.36 Cobalt Co(59) 58.933198 100.00 Copper Cu(63) 62.929599 69.17 Cu(65) 64.927792 30.83

岩气稳定同位素连续流分析技术研究样本

页岩气取样及其烃类、二氧化碳、硫化氢等C、H、O、S 同位素连续流 分析技术研究 1、国外现状 烃类碳氢同位素组成的分析技术一直是困扰同位素地球化学研究和应用的关键问题之一。20世纪90年代之前, 对天然气等有机质碳氢同位素的测试是首先将天然气制备成CO及H2,然后送质谱分析。步骤为:将天然气在气相色谱仪(GC)中分离出CH、CH CsH、CM。等;将甲烷及其同系物逐个在高温下的过量氧气中燃烧为CO和H2O;将产生的水在高温下用锌、铀或者镉还原法制备成H2;最后将CO及H2样品管分别与同位素质谱计(IRMS)联接,进行碳氢同位素测试。此方法的工序繁多, 重复性差, 在控制严格的条件下, 碳氢同位素标准偏差可控制在1%o及5%0以内。 大气中CO碳氧同位素的分析始于上个世纪中后期,国外专家利用传统的双路方法分析, 使用超过400ml 的空气来提取CO2。1990 年, 科罗拉多大学稳定同位素实验室采取了大量的空气样品, 进行CO2 的碳稳定素研究, 用VG SIRA Series II 双路质谱仪能够得到 C O同位素的精度分别为0.3 %。、0.5 %°。 对于硫化氢而言, 硫同位素是研究其成因的最有效手段。由于硫化氢极强的腐蚀性, 需要在现场将其转化为稳定的硫化物, 方可送入实验室分析。在天然气的试气现场, 在各项安全保护措施到位的情况下, 可将高含硫化氢页岩气经过导管输入到饱和的乙酸锌(Zn(CH3COO2)?2HO)溶液中,反应后形成大量白色ZnS 沉淀物,带回实验室烘干,将样品中的硫转化为SO,采用Finnigan MAT公司的MAT251同位素质谱仪,进行质谱分析,最后测量获得硫化物的S 34S值,分析精度为±0.2%。 随着质谱技术的发展, 国外于上世纪末出现了在线连续流技术, 对页岩气烃类、二氧化碳、硫化氢等C、H、O、S 同位素的测定更为高效, 便捷。 20世纪90年代后期, 随着对碳氢同位素研究的需要, 高精度专用质谱仪器得

稳定碳同位素示踪农林生态转换系统中土壤有机质的含量变化

稳定碳同位素示踪农林生态转换系统中土壤有机质的含量变化 刘启明1,2,王世杰1,朴河春1,欧阳自远1(1.中国科学院地球化学研究所环境地球化学国家重点实验 室,贵阳 550002;2.中国科学院研究生院,北京 100039) 摘要:为了观察生态系统的转变对土壤有机质的影响,在贵州茂兰喀斯特原始森林保护区内农林生态系统发生转变的地域,分析了土壤有机质含量和土壤有机质的δ13C 值.森林点土壤有机碳含量普遍较高(1181%~ 16100%),而农田点土壤有机碳含量在0143%~2122%之间,表明毁林造田加速了土壤有机质的降解,使土壤有 机质总量减少;利用C 3植物与C 4植物δ13C 值的显著差异,对比森林点与农田点的δ13C 值(森林点:-23186‰ ~-27112‰;农田点:-19166‰~-23126‰ ),计算表明,毁林造田同时也降低了土壤有机质中活性大的组分的比例,使土壤肥力下降. 关键词:生态系统;土壤有机质;δ13C 值 中图分类号:S15316 文献标识码:A 文章编号:025023301(2002)0320420075 基金项目:国家自然科学基金项目(49833002,49772175);中 科院知识创新工程项目(KZCX22105);环境地球化学国家重点实验室创新领域项目 作者简介:刘启明(1973~),男,江西瑞金人,博士生,主要研 究方向为环境地球化学. 收稿日期:2001203216;修订日期:2001206211 Soil Organic Matter Changes of Turnover Ecosystems T raced by Stable C arbon Isotopes Liu Qiming 1,2,Wang Shijie 1,Piao Hechun 1,Ouyang Ziyuan 1(1.State K ey Laboratory of Environmental G eochemistry ,Institute of G eochemistry ,Chinese Academy of Sciences ,Guiyang 550002,China ;2.Graduate School ,Chinese Academy of Sciences ,Beijing 100039,China ) Abstract :On the basis of different photosynthetic pathway ,there ’s obvious difference in δ13C values between C 3plants and C 4plants .Use this characteristic ,the organic carbon content (forest lands :1181%~16100%;farms :0143%~ 2122%)and δ13C values (forest lands :-23186‰~-27112‰;farms :-19166‰~-23126‰ )of three profile soil samples either in farms and forest lands near Maolan K arst virgin forest was analyzed ,there plant C 3plants previous 2ly and plant C 4plants now.Results show that clearing forest have accelerated the decompose rate of soil organic matter and decreased the proportion of active 2component in soil organic matter ,reducing of soil fertility.K eyw ords :ecosystem ;soil organic matter ;δ13C values 生态转换系统中土壤有机质的变化,与土壤的初级生产力和温室气体的释放有着紧密的关系.同时,它们也是目前持续农业的发展和全球环境变化的研究内容之一[1,2].过去,在毁林(草)造田等生态系统发生转变的地域,相关的研究工作仅侧重于从土壤有机质的总量上考虑,这存在一定的片面性,因为耕作影响了土壤有机质输入与输出的量[3].自Balesdent (1987)等[4]在法国西南部Auzeville 和Doazit 两地在长期观测积累的数据基础上开展工作后,应用δ13C 值来研究土壤有机质的实验研究工作才逐渐开展.不同的地理背景、不同的土地利用方 式,导致生态系统转变时土壤的肥力减少方式不同,有的几十年后土壤的有机质还可以为庄稼提供所需的营养物,如北美草地系统转变为农田系统[5]与法国西北部温带林地系统转变为 农田系统[6];有的经过农业开垦利用几年后,土壤有机质几乎被利用完,如巴西热带生态系统中的氧化土[7].在我国西部地区,过去为了解决 第23卷第3期2002年5月 环 境 科 学ENV IRONM EN TAL SCIENCE Vol.23,No.3May ,2002

稳定同位素样品处理技术

稳定同位素样品处理技术 1、固体样品 固体样品在进行同位素质谱分析之前必须进行干燥、粉碎、称量等处理步骤。 1.1干燥 样品可以放在透气性好,而且耐一定高温的器具或取样袋中,然后在60~70℃的干燥箱进行干燥24~48小时。 注意:烘干的样品要及时研磨或者保持干燥,否则有返潮现象,给磨样造成困难,而且影响同位素数据。 1.2酸处理 将土壤样品适当粉碎(为了更好的反应),放在小烧杯中,倒入适量浓度的盐酸(浓度一般用0.5mol/L),这时会发现有小气泡冒出,这是盐酸与土壤中的无机碳反应产生的CO2,用玻璃棒搅拌使反应更完全,可以间隔1小时搅拌一次使之充分反应。反应至少6小时,除去土壤中的无机碳,沉淀,倒掉上层清夜;再用去离子水搅拌洗涤,沉淀,倾倒上层清夜,重复3~4次,充分洗净过量盐酸;然后烘干土壤样品(条件同上)。 注意:测定碱性土壤中的有机C同位素,在干燥之前需要进行酸处理。因为采集的土壤样品中含有无机碳,会影响到我们需要的数据。 1.3粉碎 经过烘干的样品需要粉碎才能进行分析,为了保证样品的均匀,粉碎程度至少要过60目的筛子。粉碎可以用研钵、球磨机或混合磨碎机来等来处理。 1.4样品整理 磨好的样品放在合适的包装里,如小瓶子、小信封或自封袋里,最好密封保存。以数字和英文字母做标记区别样品。 1.5称量 经过干燥和粉碎处理的样品在分析之前还得放在锡箔帽中称量。用微量分析天平(同位素实验室专用),样品量可以精确到0.001mg (百万分之一天平)。称样前,先将所需工具及样品排放好,所需工具包括样品垫、样品盘、镊子、勺子。先调天平平衡,看水泡是否在圆圈内,在圆圈内则表示天平平衡。在称量过程中尽量不要碰桌子,减少对天平的影响。称量时,先将锡帽放进天平内,等天平显示的数字稳定时调零,然后将锡帽取出放在样品垫上,放适量样品至锡帽中,样品的量根据测定的同位素以及样品中的含量而定。称量最终质量并作记录。然后将锡帽团用镊子或拇指和食指轻轻用力团成小球。已经称量并用锡箔包好的样品放在专门的样品盘里,并附带一份质量表格,保存。 注意:任何时候不能由裸露的双手触摸样品或锡帽。若用手操作,须带上无尘橡胶手套。并确保包好的样品没有泄漏。样品盘中样品的标记对应记录本上的标记。(只要同位素比率值的不需要记录质量数,而需要全N或全C量的则需要记录质量数)。

单体烃稳定碳同位素

单体烃稳定碳同位素在沉积和油气地质中的应用 摘要随着科学技术的进步,人们已不满足测定原油总体的δ13C值及原油族组分碳同位素值,而是着眼于研究原油中单体烃分子的碳同位素特征,以便获得更多、更详细烃分子系列碳同位素信息。因此,单体烃碳同位素分析技术应用而生,原油单体烃碳同位素分析技术主要用于油源对比。由于碳同位素仪比较复杂,包括的设备多,操作繁琐,国内同行业有这样大型仪器的单位不多,因而对此项技术的开发有很重要的意义。原油单体烃碳同位素分析技术在油源对比等地质应用方面具有可行性,同时体现出有效的实际应用价值。 关键词单体烃碳同位素油气地质原油分类油源对比 单体烃碳同位素能从分子级别反映单个化合物的来源,较之于全油和族组成分同位素,具有更明显的优越性,已广泛应用于油气成因类型、油源识别、混源定量等油气勘探实践中。其数据的精度在相当程度上取决于单体化合物分离的纯度、仪器检测的稳定性及标样的界定。原油单体烃碳同位素的分布形式主要取决于样品的性质,特别是母源岩原始沉积环境与生源输人,受成熟度等其他因素的影响相对较小。我国西部叠合盆地由于存在多套有效烃源岩,不同成因类型原油混源现象普遍,如塔里木盆地可能包含海相与陆相各自不同层位烃源岩,甚至海相与陆相成因原油的混源,因此单体烃碳同位素在油源识别中至关重要。为了更好地应用单体烃碳同位素技术,需要建立不同地质模式下不同成因类型原油的单体烃碳同位素模型,并对可能的影响因素进行评价。 1单体正构烷烃碳同位素的古植被与古气候意义 近年来,由于气相色谱-燃烧-同位素比质谱联用仪(GC/C/IRMS)新技术的成功运用,使得单体分子标志化合物碳同位素的研究已在生物源识别、C3与C4植被类型确定、全球碳循环等方面得到了应用。单体分子标志物碳同位素的研究使稳定同位素在古气候学中的应用达到分子级水平,不但为局部或全球古气候研究而且为控制全球碳循环的机制探讨提供了新的更加准确的证据。因而,分子标志物的分布与单体碳同位素组成特征的联合应用,可以大大增强追踪古环境中有机质来源和重建古生物地球化学过程及古环境的能力。 1.1 溯源 正构烷烃分子标志化合物在古气候研究中得到了广泛应用,但是它们本身存在一些不可避免的缺陷:一是不同类型生物体中可能存在相同或相似的正构烷烃组成,使来自众多生物源的正构烷烃混合输入难以区分;二是正构烷烃分子标志物在埋藏中可能会或多或少地受到降解演化的破坏,使得其相应的生物源辨认模糊。然而,单体正构烷烃的碳同位素

同位素丰度

Table I. Isotopic Data Z El A Abundance(%)σγ(total) b g(293?K)N γ E γ(σγ) for most intense capture gamma rays 1H 199.9885(70)0.3326(7) 0.99912223.24835(0.3326) H 20.0115(70)0.000519(7) 1.00012He 30.000137(3)0.000031(9) 1.000 120520.46(4.2×10-11) σp (3He)=5333(7) b He 499.999863(3)0.0 1.00003Li 67.59(4)0.039(4) 1.000 3σα(6Li)=940(4) b Li 792.41(4)0.045(3) 1.00032032.30(0.0381), 980.53(0.00415), 1051.90(0.00414) 4Be 91000.0088(4) 1.000136809.61(0.0058), 3367.448(0.00285), 853.630(0.00208) 5 B 1019.9(7)0.5(1) 1.000 10477.595(716) σα(10B)=3837(9) b B 1180.1(7)0.005(3) 1.00006 C 1298.93(8)0.00353(5) 1.00064945.301(0.00261), 1261.765(0.00124), 3683.920(0.00122) C 13 1.07(8)0.00137(4) 0.99877N 1499.632(7)0.0798(14) 1.000 605269.159(0.0236), 5297.821(0.01680), 5533.395(0.0155) σp (14N)=1.83(3) b N 150.368(7)0.000024(8) 1.003128O 1699.757(16)0.000190(19) 1.0004870.68(1.77×10-4), 2184.42(1.64×10-4), 1087.75(1.58×10-4) O 170.038(1)0.00054(7) 0.99920 O 180.205(14)0.00016(1) 1.000139 F 191000.0096(5) 1.0001681633.53(0.0096)d, 583.561(0.00356), 656.006(0.00197) 10Ne 2090.48(3)0.037(4) 1.000272035.67(0.0245), 350.72(0.0198), 4374.13(0.01910) Ne 210.27(1)0.67(11) 1.00011 Ne 229.25(3)0.045(6) 1.000151979.89(0.00306), 1017.00(0.0030) 11Na 231000.530(5) 1.0002401368.66(0.530)d, 2754.13(0.530)d, 472.202(0.478)d 12Mg 2478.99(4)0.0536(15) 1.001353916.84(0.0320), 585.00(0.0314), 2828.172(0.0240) Mg 2510.00(1)0.200(5) 1.0012061808.668(0.0180), 1129.575(0.00891), 3831.480(0.00418) Mg 2611.01(3)0.0386(6) 1.0014413Al 271000.231(3) 1.0002161778.92(0.232)d, 30.6380(0.0798), 7724.027(0.0493) 14Si 2892.2297(7)0.177(5) 1.001463538.966(0.1190), 4933.889(0.1120), 2092.902(0.0331) Si 29 4.6832(5)0.119(3) 1.00399 Si 30 3.0872(5)0.107(2) 1.0073915P 311000.172(6) 1.001158512.646(0.079), 78.083(0.059), 636.663(0.0311) 16S 3294.93(31)0.548(10) 1.000101840.993(0.347), 5420.574(0.308), 2379.661(0.208) S 330.76(2)0.454(25) 1.001249 S 34 4.29(28)0.235(5) 1.00155 S 360.02(1)0.23(2) 1.0142217Cl 3575.78(4)43.5(4) 1.0003841164.8650(8.91), 517.0730(7.58), 6110.842(6.59) Cl 3724.22(4)0.430(6) 1.0007118Ar 360.3365(30) 5.2(5) 1.01610 Ar 380.0632(5)0.8(2) 1.0400 Ar 4099.6003(30)0.66(1) 1.00240167.30(0.53), 4745.3(0.36), 1186.8(0.34) 19K 3993.2581(44) 2.1(2) 1.00130829.8300(1.380), 770.3050(0.903), 1158.887(0.1600) K 400.0117(1)30(4) 1.000490 K 41 6.7302(44) 1.45(3) 1.00163820Ca 4096.94(16)0.41(2) 1.001491942.67(0.352), 6419.59(0.176), 4418.52(0.0708) Ca 420.647(23)0.68(7) 1.00144 Ca 430.135(10) 6.2(6) 1.001129 Ca 44 2.09(11)0.88(5) 1.00141 Ca 460.004(3)0.72(3) 1.00010 Ca 480.187(21) 1.09(14) 1.0011521Sc 4510027.2(2) 1.002440227.773(7.13), 147.011(6.08), 142.528(4.88)d 22Ti 468.25(3)0.59(18) 1.00123 Ti 477.44(2) 1.52(11) 1.001175 Ti 4873.72(3)7.88(25) 1.002921381.745(5.18), 6760.084(2.97), 6418.426(1.96) Ti 49 5.41(2) 1.79(12) 1.00188 Ti 50 5.18(2)0.179(3) 1.0011923V 500.250(4)21(4) 0.999328 V 5199.750(4) 4.92(4) 1.0013091434.10(4.81)d, 125.082(1.61), 6517.282(0.78) 24Cr 50 4.345(13)15.9(2) 1.00064749.09(0.569), 8510.77(0.233), 8482.80(0.169) Cr 5283.789(18)0.76(6) 1.000167938.46(0.424) Cr 539.501(17)18.2(15) 1.00090834.849(1.38), 8884.36(0.78), 9719.06(0.260) Cr 54 2.365(7)0.36(4) 1.0003825Mn 5510013.36(5) 1.000126846.754(13.10)d, 1810.72(3.62)d, 26.560(3.42) 26Fe 54 5.845(35) 2.25(18) 1.001339297.68(0.0747) Fe 5691.754(36) 2.59(14) 1.0001937631.136(0.653), 7645.5450(0.549), 352.347(0.273) Fe 57 2.119(10) 2.5(3) 1.00135 Fe 580.282(4) 1.30(3) 1.0026727Co 5910037.18(6) 1.000340229.879(7.18), 277.161(6.77), 555.972(5.76) 28Ni 5868.0769(89) 4.5(2) 1.0002368998.414(1.49), 464.978(0.843), 8533.509(0.721) Ni 6026.2231(77) 2.9(2) 1.0001377819.517(0.336), 282.917(0.211), 7536.637(0.190) Ni 61 1.1399(6) 2.5(8) 1.00064 Ni 62 3.6345(17)14.5(3) 1.000536837.50(0.458) Ni 640.9256(9) 1.63(7) 1.000 35 * Decay gamma: 20F(11.163 s), 24Na(20.20 ms), 28Al(2.2414 m), 46Sc(18.75 s), 52V(3.75 m), 56Mn(2.5789 h)

稳定同位素技术的发展及其应用

核技术与核安全课程作业 稳 定 同 位 素 技 术 的 发 展 及 其 应 用

原子核内质子数相同而中子数不同的一类原子称为同位素,它们处在周期表上的同一位置,可分为稳定性同位素和放射性同位素。放射性同位素的原子核是不稳定的,它通过自发的放出粒子而衰变成另一种同位素。而不具有放射性的同位素称为稳定同位素,其中一部分是由放射性同位素通过衰变后形成的稳定产物,称为放射成因同位素;另一部分是天然的稳定同位素,是核合成以来就保持稳定,迄今为止还未发现它们能够自发衰变形成其他同位素。自然界中共有1700余种同位素,其中稳定同位素有270余种。有的元素由很多的稳定同位素组成,如第50号元素锡含有10个稳定同位素;而有的稳定同位素却仅仅只有一个稳定同位素,如元素氟、钠等。 稳定同位素较放射性同位素具有安全、无污染、易控制的优点,在地质、生态、医药、农业等领域研究中得到广泛应用。 1.稳定同位素技术的发展过程 稳定同位素的发现比放射性同位素要晚一些,1912年汤姆孙用电磁分析器(近代质谱计的雏形)才第一次确定了氖-20和氖-22的存在;1927年发现了氧的稳定同位素O 17和O 18 ;1932年发现了重氢(D )。1936年尤里等用精馏法从水中富集了O 18,随后又用化学交换法富集了Li 8,C 13,N 15和S 34,不但证实了早年发表过的有关分离的计算理论,同时也发现了化学交换法对大量分离轻同位素很合适的。与此同时也采取了几种物理方法分离了若干种同位素。 在1930-1941年期间稳定同位素分离还处于探索阶段,此时尚无工业规模的生产,少量分离物只是提供研究同位素本身的核性质以及作为示踪原子用。到20世纪50年代后期,由于科学技术的进步及稳定同位素特殊性质的逐步显示,才使之得以迅速发展。我国稳定同位素的研制工作起步于50年代中,60年代首先在农业上获得应用。之后,在医药学中的应用也取得初步成果。目前,我国已有一支稳定同位素的研究、生产机应用的技术队伍,个别产品进入了国际市场。 2.稳定同位素分析技术 稳定同位素分析是分离研究、生产和应用的前提,它是稳定同位素科学技术中不可缺少的组成部分。其中最重要的方法是质谱分析,它用于同位素分析已有70年历史,是经典、常用,准确的方法,适用于各种元素同位素质量和浓度测定以及物质成分和结构分析。近来在样品引入、离子源、分析器以及检出系统等四个主要方面都有重大的改进。在样品引入部分加上气相色谱,构成色质联用仪器,可以分析复杂混合物样品而不必转化为简单气体。此外,现在又出现高压液相色谱与质谱联用的更新技术。在离子化方面出现了许多新型离子化型式,如化学离子化,在离子源中产生的离子基本上是分子离子,谱线要比普通的电子轰击离子化单纯得多,大大提高了检测灵敏度。又如场致离子化和场解吸离子化,它们都是不直接轰击样品分子,是一种软离子化技术,不出现离子碎片,基本上没有同位素效应的干扰问题,可以直接分析多成分的混合物样品,而且不必像GC-MS 那样需要引入适合于气相色谱的诱导体,所以操作更为简单。这对多重标记物的分析十分有利,能测定稀释了一百万倍的样品,最小检测量可低到fs(1510 g)。此外,还有激光离子化、大气压离子化和多点场离子化等。在分析器方面,除了磁场偏转形式外,还有一种简便的四重极质量过滤器,它是用四根圆棒电极(最好是双曲线断面型式)代替了笨重的磁铁。对角线上两根电极互成一对,分别加上高

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.360docs.net/doc/8413960186.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

稳定同位素比例质谱仪(IRMS)的原理和应用

稳定同位素比例质谱仪(IRMS)的原理和应用 祁彪,崔杰华 (中国科学院沈阳应用生态研究所农产品安全与环境质量检测中心,沈阳,110016)同位素质谱最初是伴随着核科学与核工业的发展而发展起来的,同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。稳定同位素技术的出现加深了生态学家对生态系统过程的进一步了解,使生态学家可以探讨一些其它方法无法研究的问题。与其它技术相比,稳定同位素技术的优点在于使得这些生态和环境科学问题的研究能够定量化并且是在没有干扰(如没有放射性同位素的环境危害)的情况下进行。有些问题还只能通过利用稳定同位素技术来解决。现在,有许多农业研究机构和大学,已经开始使用高精度同位素质谱计从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响以及食品质量控制等多方面的研究工作。与原子能和地质研究工作相比较,在农业和食品方面应用同位素方法从事科研和检测工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产、改善果实质量以及进行食品质量控制检测的工作前途无限广阔。 一、有关同位素的基本概念 1、同位素(Isotope) 由于原子核所含有的中子数不同,具有相同质子数的原子具有不同的质量,这些原子被称为同位素。例如,碳的3个主要同位素分别为12C、13C和14C,它们都有6个质子和6个电子,但中子数则分别为6、7和8。 2、稳定同位素(Stable isotope) 同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。 凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素。 无可测放射性的同位素是稳定同位素。其中一部分是放射性同位素衰变的最终稳定产物。例如206Pb 和87Sr等。另一大部分是天然的稳定同位素,即自核合成以来就保持稳定的同位素,例如12C和13C、18O 和16O等。与质子相比,含有太多或太少中子均会导致同位素的不稳定性,如14C。这些不稳定的“放射性同位素”将会衰变成稳定同位素。 3、同位素丰度(Isotope abundance)

相关文档
最新文档