主变间隙的作用

主变间隙的作用
主变间隙的作用

主变间隙的作用

一、主变中性点放电间隙的知识

1.放电间隙,主要是为保护避雷器的。当雷击电压超过避雷器所能保护的值时,为防止避雷器被击穿损坏,装设放电间隙.当有很高的雷击电压时,间隙被击穿放电,从而保护了避雷器.至于之间如何配合,要依避雷器的防雷电压而定。

2.防止接地变跳闸后,高压侧故障中性点出现危险过电压。

3.110KV及以上系统中性点的间隙保护主要是:为了防止过电压!因为在这种电压等级的设备由于绝缘投资的问题所以都采用分级绝缘,在靠近中性点的地方绝缘等级比较低。如果发生过电压的话会造成设备损坏,间隙保护可以起到作用,但是又由于中性点接地的选择问题一个系统不要有太多的中性点接地,所以有的变压器的中性点接地刀闸没有合上(保护的配置原因)。在这时候如果由于变压器本身发生过电压的话就会由间隙保护实现对变压器的保护,原理就是电压击穿,在一定电压下他的间隙就会击穿,把电压引向大地。

间隙保护可以起到变压器绕组绝缘的作用,当系统出现过电压(大气过电压、操作过电压、谐振过电压、雷击过电压等)时,间隙被击穿时由零序保护动作、间隙未被击穿时

有过电压保护动作切除变压器。

4.满足保护的灵敏度要求.

5.防止合闸不同期等情况造成的过电压,损害绝缘。

所谓保护间隙定义:

是由两个金属电极构成的一种简单的防雷保护装置。其中一个电极固定在绝缘子上,与带电导线相接,另一个电极通过辅助间隙与接地装置相接,两个电极之间保持规定的间隙距离。在正常情况下,保护间隙对地是绝缘的,并且绝缘强度低于所保护线路的绝缘水平,因此,当线路遭到雷击时,保护间隙首先因过电压而被击穿,将大量雷电流泄入大地,使过电压大幅度下降,从而起到保护线路和电气设备的作用。

二、补充

1、在大电流接地系统中,为满足零序网络的需要,一般接入同一系统的多台主变只有一台的中性点是直接接地的,也就是说,主变的中性点接地刀闸合上或者断开是两种不同的运行方式。

2、第一条的表述有点问题,放电间隙并不是为了保护避雷器,现在的变压器多采用分级绝缘,一般中性点绝缘较低,在小电流接地系统和大电流接地系统的主变中性点不接地是,为保护主变中性点绝缘不被击穿,设置了放电间隙,并配置间隙零序电流保护。它和中性点接地装置及中性点避

雷器三者的作用都是保护变压器中性点绝缘,防止过电压。

1)当中性点刀闸接地时,放电间隙与避雷器均不起作用;

2)当中性点刀闸断开后,放电间隙与避雷器有一个互相配合关系。

也就是当中性点电压逐渐升高到一定电压值时放电间隙先击穿,如此时电压降低,则避雷器就无需动作了,如电压继续升高,则避雷器就要动作。放电间隙的作用就是防止避雷器的频繁动作,以延长避雷器的寿命。

三、某事故案例分析

事故发生在东北某市220kv变电站上边,内部情况是一条220kv进线,带2台主变压器,其中1号主变压器220kv 中性点接地运行,2号主变压器中性点经间隙并联避雷器接地,间隙距离为250mm。

某日,220kv线路因鸟害发生了单相接地故障,线路出口断路器跳闸重合成功,2号主变压器间隙放电击穿放电,零序保护动作跳到了2号主变压器。造成了低压侧5条66kv 线路停电。

经过这次分析,保定奥兰电气中性点间隙成套厂家找到了线路录波器查出,B相发生接地后产生129kv的零序暂态过电压,将间隙击穿,击穿后的零序稳态电压是80kv,经100ms后B相跳闸,线路处于非全相运行,跳主变压器,到

900ms时重合成功,故障线路恢复正常。

事故主要原因:主变压器中性点间隙距离太小,造成间隙击穿,应该调整为290~320m

三、规程规定

DLT620-1997过电压保护和绝缘配合

4.1.1应避免在110kV及220kV有效接地系统中偶然形成局部不接地系统,并产生较高的工频过电压对可能形成这种局部系统、低压侧有电源的110kV及220kV变压器不接地的中性点应装设间隙因接地故障形成局部不接地系统时该间隙应动作;系统以有效接地方式运行发生单相接地故障时问隙不应动作。间隙距离的选择除应满足这两项要求外,还应兼顾雷电过电压下保护变压器中性点标准分级绝缘的要求(参见7.3.5)

DLT5222-2005导体和电器选择设计技术规定

条文说明20.1.9

当采用棒型保护间隙时,可用直径为12mm的半圆头棒间隙水平布置。间隙距离可采取下列数值:

220kV(250~350)mm

110kV(90~110)mm

二十五项反措2014版

14.3.2为防止在有效接地系统中出现孤立不接地系统并产生较高工频过电压的异常运行工况,110~220kV不接地

变压器的中性点过电压保护应采用棒间隙保护方式。对于ll0kV变压器,当中性点绝缘的冲击耐受电压不大于185kV 时,还应在间隙旁并联金属氧化物避雷器,间隙距离及避雷器参数配合应进行校核。间隙动作后,应检查间隙的烧损情况并校核间隙距离。

主变压器中性点零序过流

、间隙过流和零序过压,是保护设备本身引出线上的接地短路故障的,一般是作为变压器高压侧110--220千伏系统接地故障的后备保护.零序电流保护,是变压器中性点接地运行时的零序保护;而零序电压保护是变压器中性点不接地运行时的零序保护;间隙过流则是用于变压器中性点经放电间隙接地的运行方式中. 零序过流保护,一次启动电流很小,一般在100安左右,时间约 0.2秒.零序过压保 护,按经验整定为二倍额定相电压115,为躲过单相接地的暂态过压,时间通常整定为0.1-- 0.2秒.变压器220KV侧中性点放电间隙的长度,一般为325毫米,击穿电压的有效值为 127.3千伏,当中性点的电压超过击穿电压时,间隙被击穿,零序电流通过中性点,保护时间整定为 0.2秒.在发生单相接地故障时,接在电流互感器上的单相接地电流继电器和零序电压继电器动作,启动时间继电器,时间继电器以整定的时限,通过信号继电器,发出信号和断开接地变压器各侧断路器 110kV线路接地故障时,电源侧为直接接地系统,对侧主变中性点不接地,此时,主变中性点会产生多高电压,主变间隙零序与对侧线路保护如何配合?望高人指点!!! 主变间隙零序与对侧线路保护不需配合,因不是同一系统。主变间隙零序电压一般整定180V, 0.5S. 主变间隙零序电压一般整定110KV系统150V, 0.5S.220KV系统180V,

0.5S. 中性点不接地的主变单相接地中性点理论上产生100V零序电压 中性点直接接地的主变单相接地中性点理论上产生300V零序电压 主变中性点电压在主变非接地时为300V左右,接地时为173左右,反映中性点非直接接地的间隙零序电压所以设定为180V,考虑到雷击过电压、操作过电压等情况,设定时间为 0.5S。 最近我也研究了变压器的间隙保护: 1.从零序序网图可以分析,尽管你提到的变压器中性点不接地,但它仍然处在一个接地系统中(其上级变压器110kV侧接地),所以当线路系统发生基地故障时,本变压器零序电压(PT开口三角电压)是100V。为了防止系统感应过电压、雷击过电压等的误动作,所以整定为150V(对于220kV变压器为 180V); 2.对于时间定值,我建议你与上一级线路的接地距离II段、零序过流II段等伸入变压器的线路保护段配合,这样可以防止当由于雷击等原因造成线路保护与间隙保护同时动作,即使线路重合成功,由于变压器间隙保护动作将变压器切除,重合闸已经没有意义了。 3.希望小兄弟咱能一起探讨,期待你的信息。 [16楼][继保工人累]于2010-9-22 16:17:07对文章回复如下: 不接地变中性点零序电压一次值应为接地点零序电压,约为110kV // 方向阻抗继电器的最大动作阻抗(幅值)的阻抗角,称为它的最大灵敏角φs 被保护线路发生相间短路时,短路电流与继电器安装处电压间的夹角等于线路的阻抗角ΦL,线路短路时,方向阻抗继电器测量阻抗的阻抗角φm,等于线路

主变零序电流和间隙电流保护

主变零序电流和间隙电流保护 问:主变零序电流和间隙电流保护为什么不能同时投入?同时投入会有什么后果? 答:中性点零序CT接在变压器中性点套管出口,间隙ct接在间隙前面,但是在中性点零序CT的后面,即使中性点断 开,间隙击穿后造成中性点零序TA流过电流,零序过流 保还是会误动。 中性点过流保护是在中性点直接接地时系统发生接地故 障时动作,间隙保护则是在中性点经间隙接地时,系统发 生接地故障时中性点过电压击穿放电间隙时动作,中性点 过流保护定值很高,而间隙保护定值很小。因此在中性点 接地刀闸在合时,要退出间隙保护,防止误动。不过一般 都设有靠中性点接地刀闸辅助接点闭锁的间隙保护,当中 性点接地刀闸在合时,间隙保护自动退出。 二者起的作用不一样,一个是直接接地用,一个是非直接 接地用 楼上说的有道理 1、无论直接接地还是非直接接地,都要躲过不平衡电流 2、现在做的好的,就如楼上所说,通过中性点地刀辅助 触点自动切换,但也有不少的厂采用人工去切换 3、二者起的作用一样,都是在系统发生单相接地故障时, 要切除变压器;当然,可能别的保护会起作用 大家说的挺好,学习了,间隙和零序电流保护的作用从系 统图上看比较容易理解。中性点直接接地时,间隙零序起 不到保护作用,为了防止误动,应该退出;而中性点不接 地时,零序电流没有通路不起作用的,也是为了防止误动, 应该退出的。 中性点接地刀合的时候,不会有间隙零序电流的,不合的 时候才有,而间隙零序整定值比零序小,且没有延时(一

般零序过流都带延时的),所以是可以同时投入的,不影 响保护正确动作。 一个直接接地系统,间隙保护在中性点失去时起作用 间隙零序动作包括有间隙零电流和零序电压达到定值,在 地刀合上时是没有零序电压的,所以不会动作,只是为保险 起见,一般人为将它退出;而零序过流整定值较大,地刀没合 时,即使零序间隙击穿也不回启动,所以,一般零序过流在地 刀合上时很多地方的规程不要求停用. 一个在变压器中性点接地时投入,一个在中性点不接地时 投入,要看变压器的运行方式的 今天去武垣站干活,发现在220KV侧中性点保护间隙后面串有一个CT,以前220KV 站里从没有见到过,问了几个人都不知道是干什么的,估计是零序电流保护。回来上网上搜了搜,原来是间隙电流保护,下面说一下间隙电流保护和零序电流保护: 目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。 中性点零序CT一般在变压器中性点套管内,而间隙CT一般在间隙后面。当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。 中性点直接接地时间隙保护起不到作用,为了防止误动应该退出;而中性点不接地时,零序电流没有通路,零序电流保护不起作用,为了防止误动,应该退出, 间隙零序过压的问题

主变中性点放电间隙的知识

主变中性点放电间隙的知识 1.放电间隙,主要是为保护避雷器的.当雷击电压超过避雷器所能保护的值时,为防止避雷器被击穿损坏,装设放电间隙.当有很高的雷击电压时,间隙被击穿放电,从而保护了避雷器.至于之间如何配合,要依避雷器的防雷电压而定. 2.防止接地变跳闸后,高压侧故障中性点出现危险过电压 及以上系统中性点的间隙保护主要是:为了防止过电压!因为在这种电压等级的设备由于绝缘投资的问题所以都采用分级绝缘,在靠近中性点的地方绝缘等级比较低。如果发生过电压的话会造成设备损坏,间隙保护可以起到作用,但是又由于中性点接地的选择问题一个系统不要有太多的中性点接地,所以有的变压器的中性点接地刀闸没有合上(保护的配置原因)。在这时候如果由于变压器本身发生过电压的话就会由间隙保护实现对变压器的保护,原理就是电压击穿,在一定电压下他的间隙就会击穿,把电压引向大地。间隙保护可以起到变压器绕组绝缘的作用,当系统出现过电压(大气过电压、操作过电压、谐振过电压、雷击过电压等)时,间隙被击穿时由零序保护动作、间隙未被击穿时有过电压保护动作切除变压器。 4.满足保护的灵敏度要求. 5.防止合闸不同期等情况造成的过电压,损害绝缘. 6.所谓保护间隙,是由两个金属电极构成的一种简单的防雷保护装置。其中一个电极固定在绝缘子上,与带电导线相接,另一个电极通过辅助间隙与接地装置相接,两个电极之间保持规定的间隙距离。 在正常情况下,保护间隙对地是绝缘的,并且绝缘强度低于所保护线路的绝缘水平,因此,当线路遭到雷击时,保护间隙首先因过电压而被击穿,将大量雷电流泄入大地,使过电压大幅度下降,从而起到保护线路和电气设备的作用。 补充: 1、在大电流接地系统中,为满足零序网络的需要,一般接入同一系统的多台主变只有一台的中性点是直接接地的,也就是说,主变的中性点接地刀闸合上或者断开是两种不同的运行方式。

主变零序保护的原则

主变零序保护的配置原则 110kV直接接地电力网中低压侧有电源的变压器,中性点可能直接接地运行,也可能不接地运行。对这类变压器,应当装设反应单相接地的零序电流保护,用以在中性点接地运行时切除故障;还应当装设专门的零序电流电压保护,用以在中性点不接地运行时切除故障。(高压侧为单电源,低压侧无电源的降压变压器,不宜装设专门的零序保护)保护方式对不同类型的变压器又有所不同,下面分别予以说明。 一、全绝缘的变压器。 当变压器低压侧有电源且中性点可能不接地运行时,还应增设零序过电压保护。 全绝缘变压器为什么还要装设零序过电压保护?根据《电力设备过电压保护设计技术规程》SDJ 7-79,对于直接接地系统的全绝缘变压器,内过电压计算一般为3(——最高运行相电压)。当电力网中失去接地中性点并且发生弧光接地时,过电压值可达到3.0,因此一般不会使变压器中性点绝缘受到损害;但在个别情况下,弧光接地过电压值可达到3.5,如持续时间过长,仍有损坏变压器的危险。由于一分钟工频耐压大于等于3.0,所以在3.5电压下仍允许一定时间,装设零序过电压保护经0.5s延时切除变压器,可以防止变压器遭受弧光接地过电压的损害。其次,在非直接接地电力网中,切除单相接地空载线路产生的操作过电压,可能达到4.0及以上。电力网中失去接地中性点且单相接地时,以0.5s延时迅速切除低压侧有电源的变压器,还可以在某些情况下避免电力设备遭受上述操作过电压的袭击。此外,当电力网中电容电流较大时,如不及时切除单相接地故障,有发展成相间短路的可能,因此,装设零序过电压保护也是需要的。 在电力网存在接地中性点且发生单相接地时,零序过电压保护不应动作。动作值应按这一条件整定。当接地系数≤3时,故障点零电压小于等于0.6,因此,一般可取动作电压为180V。当实际系统中<3时,也可取与实际值相对应的低于180V的整定值。 二、分级绝缘的变压器。对于中性点可能接地或不接地运行的变压器,中性点有两种接地方式:装设放电间隙和不装设放电间隙。这两种接地方式的变压器,其零序保护也有所不同。 1. 中性点装设放电间隙。放电间隙的选择条件是:在一定的值下,躲过单相接地暂态电压。一般≤3,此时,按躲过单相接地暂态电压整定的间隙值,能够保护变压器中性点绝缘免遭内过电压的损害,当电力网中失去接地中性点且单相接地时,间隙放电。 对于中性点装设放电间隙的变压器,要按本规范4.0.9条的规定装设零序电流保护,用于在中性点接地运行时切除故障。 此外,还应当装置零序电流电压保护,用于在间隙放电时及时切除变压器,并作为间隙的后备,当间隙拒动时用以切除变压器。 零序电流电压保护由电压和电流元件组成,当间隙放电时,电流元件动作;拒动放电时,电压元件动作。电流或电压元件动作后,经0.5s时限切除变压器。 零序电压元件的动作值的整定与本条第一款零序过电压保护相同。 零序电流元件按间隙放电最小电流整定,一般取一次动作电流为100A。 采用上述零序电流保护和零序电流电压保护时,首先切除中性点接地变压器,当电力网中失去接地中性点时,靠间隙放电保护变压器中性点绝缘,经0.5s延时再由零电流电压保护切除中性点不接地的变压器。采用这种保护方式,好处是比较简单,但当间隙拒动时,则靠零序电流电压保护变压器,在0.5s期间内,变压器要随内过电压,如系间歇电弧接地,一般过电压值可达3.0,个别情况下可达3.5,变压器有遭受损害的可能性。 2. 中性点不装设放电间隙。对于中性点不装设放电间隙的变压器,零序保护应首先切除中性点不接地变压器。此时,可能有两种不同的运行方式:一是任一组母线上至少有一台中性点接地变压器,二是一组母线上只有中性点不接地变压器。对这两种运行方式,保护方

主变压器中性点过电压保护配置原则

主变压器中性点过电压保护配置原则 由于电力系统运行的需要,110~220 k V有效接地系统的变压器中性点大部分采用不接地运行方式,变压器一般采用分级绝缘结构,绝缘水平相对较低,所以不接地运行的变压器中性点需要考虑对雷电过电压、操作过电压和暂时过电压的保护。 根据DL/T620—1997《交流电气装置的过电压保护和绝缘配合》的有关规定,提出以下保护配置意见: a)对110 kV和220 k V有效接地系统中可能偶然形成的局部不接地系统(如接地变压器误跳开关等原因引起)、低压侧有电源的变压器不接地中性点应装设间隙保护。 b)经验算,如断路器因操作机构故障出现非全相和严重不同期产生的铁磁谐振过电压可能危及中性点为标准分级绝缘、运行时中性点不接地的110 kV和220 k V变压器的中性点绝缘,宜在中性点装设间隙。 c)变压器中性点间隙值的确定应综合考虑 ———间隙的标准雷电波动作值小于主变压器中性点的标准雷电波耐受值; ———因接地故障形成局部不接地系统时间隙应动作; ———系统以有效接地方式运行、发生单相接地故障时,间隙不应动作。 2变压器中性点保护配置方式的分析 根据以上配置原则,参照广东省电力试验研究所的试验数据,直径16 mm、水平布置、半球头圆钢的棒-棒间隙放电电压与间隙距离的关系见图1,在Ucp(1±σ)和U50%(1±σ)区间内放电的概率为99.7%[1]。 2.1变压器中性点绝缘水平的选取 根据GB 311.7-1998《高压输变电设备的绝缘配合使用导则》,对3~220 k V油纸绝缘设备,耐受操作冲击电压的能力为耐受雷电冲击的0.83倍,其值远超过预期操作过电压水平,所以绝缘水平主要由雷电过电压决定,不需考虑操作过电压的影响。 取中性点绝缘老化累计安全系数为0.85,参考GB311.1—1997《高压输变电设备的绝缘配合》,取雷电冲击安全系数为0.714,工频电压安全系数为1.0,则中性点综合耐受雷电冲击裕度系数为0.6,综合耐受工频裕度系数为0.85。 主变压器中性点可能出现的最大暂时过电压见表1。 2.2中性点保护的配置方式 我国变压器中性点保护方式一般有:单独间隙、单独避雷器、间隙与避雷器并联。下面结合常用中性点避雷器型号,对各种绝缘等级的变压器中性点保护方式(见表2)进行讨论。 2.2.135 kV绝缘等级 35 kV中性点绝缘水平为雷电冲击耐受电压185 k V,工频耐受电压85 k V;考虑安全系数后,绝缘水平为雷电冲击耐受电压111 kV,1 min工频耐受电压73 k V。 单独采用110 mm间隙时,间隙雷电冲击放电电压为93~112 k V,工频放电电压为47~57 k V。雷电冲击放电电压和工频放电电压均小于中性点绝缘水平,中性点有效接地系统最大暂时工频过电压下间隙不动作,中性点不接地系统最大暂时工频过电压下间隙动作,满足保护中性点的要求。推荐采用此保护配置方式。 单独采用Y1.5 W-48/109型避雷器时,避雷器可以耐受中性点有效接地系统最大暂时工频过电压,但裕度较小。在中性点不接地系统最大暂时工频过电压下,避雷器可能损坏。 110 mm间隙与Y1.5 W-48/109型避雷器并联时,满足保护中性点要求。但Y1.5 W -48/109型避雷器非标准型号,在避雷器残压作用下,间隙可能同时动作;在中性点工频

间隙保护国家有关规定

间隙保护国家有关规定 根据国家电力公司制定的《防止电力生产重大事故的二十五项重点要求》〔国电发[2000]589号〕和有关网局《110-220KV变压器中性点过电压保护方式规定》,现摘录如下: 1、当220KV变电站有两台及以上主变运行时,应将其中一台主变高压绕组中性点直接接地。 2、110KV、220KV变压器不接地的中性点应装设间隙或采用避雷器与间隙并联保护方式。因接地故障形成局部不接地系统时间隙应动作;系统以有效接地方式运行、发生单向接地故障时,间隙不应动作;避雷器应能承受单向接地时中性点的稳态电压升高。间隙的标准雷电波放电电压和避雷器雷电冲击残压应低于变压器中性点雷电冲击耐受水平。 3、220KV变压器〔自耦变除外〕的220KV绕组中性点为110KV绝缘水平〔LI400AC200〕,110KV绕组中性点为60KV绝缘水平〔LI325AC140〕,均应采用钢棒间隙与避雷器并联保护方式。220KV绕组中性点宜选用Y1.5W-144/320型氧化锌,间隙距离宜选用300mm; 110KV绕组中性点宜选用Y1.5W-60/144型氧化锌,间隙距离宜选用140mm。 4、110KV变压器中性点采用以下保护方式 110KV绕组中性点为60KV绝缘水平(LI325AC140),宜选用Y1.5W-60/144型氧化锌避雷器与140mm距离的间隙相并联。 110KV绕组中性点为44KV绝缘水平(LI250AC95),宜选用Y1.5W-60/144型氧化锌避雷器与120mm距离的间隙相并联。 110KV绕组中性点为35KV绝缘水平(LI185AC85),可以采用单独间隙保护,间隙距离宜选用115mm。 有关各方可以根据当地海拔高度和空气湿度放电间隙距离作适当调整。 5、棒间隙采用φ16mm镀锌圆钢,端部形状接近半圆无棱角〔不允许焊接铜球〕,尾端应有螺纹以便调节,间隙应水平布置以防止雨水短接。避雷器应加装放电记数器,以便于巡视人员监视。 6、变压器不接地的中性点应增设间隙〔过流、过压〕保护,当系统单向接地且失去接地中性点时,间隙过电压保护经0.3~0.5秒时限动作并跳开变压器各侧断路器;低压侧有发电电源的应在变电站装设解列装置,其中3U O取自于高压母线,动作时限应与间隙保护动作时间相配合。

变压器间隙保护

2.1介绍常规变压器间隙保护的原理及整定原则 按照变压器中性点过电压保护设计原则,对110kv、220kv有效接地系统中可能形成的局部不接地(如中性点接地变压器误跳闸)或低压侧有电源或电动机的不接地变压器的中性点,应装设放电间隙和间隙零序保护,在间隙放电时,应由主变压器高压侧中性点间隙接地零序保护动作切除短路点。主变压器高压侧中性点间隙接地零序保护应分别整定计算中性点间隙零序过流保护和中性点间隙零序过电压保护。 (1)中性点间隙接地零序过流保护动作电流计算 动作量取自间隙接地回路零序电流互感器T A.的二次电流3I0,其值当考虑间隙电弧放电因素时,根据运行经验取一次动作电流为100A,时间取O.3s,保护动作跳变压器三侧开关。 (2)中性点间隙接地零序过电压保护动作电压计算 当系统失去直接接地中性点,而又发生单相接地时,此时Tv开口三角形绕组出现的电压(Tv不饱和时)3u0为300v,但实际上当3u0为200v时,Tv已开始饱和(电磁型TV测量回路的伏安特性,根据实测为:Tv二次绕组加电压70v时,绕组励磁电流为20A,即饱和电压约为70v)。所以系统失去直接接地的中性点,而又发生单相接地时,Tv开口三角形绕组饱和电压3u0约为210v,所以当系统失去中性点直接接地,而又发生单相接地时,规程上规定零序过电压保护动作电压整定3u0为180v,动作时间应躲过暂态过电压时间,可整定T为O.3—0.5s,保护动作跳变压器三侧开关。 2.2 A变电站的间隙零流保护的误动分析 具体系统如图1所示。该站为有两台110kV不接地变压器,通过35kv负荷侧联络线连接一并网小由源F1有110kv两路丰电源A和B 线。当 动作,也经O.3s跳两台主变三侧开关。虽然电源线A故障跳闸后,经1s重合成功,但此时变电站已全所失压。从这次事故过程分析,可以看出:由于常规按整定设计规程,间隙电流一次动作值取100A、O,3s,与上一级线路零序电流二段整定时间相同,因此在有效接地方式下发生单相接地短路时,变压器间隙电流保护动作时间躲不过上一级线路后备保护动作时间,而造成误动,结果延长了停电时间,极大地影响了供电可靠性。 2.3变电站变压器的现场运行方式的几种情况 110kv变压器均为不接地运行方式,上级电源线装设的能切除接地故障保护有零序电流保护、高频或纵差的全线速动保护,零序电流保护II段时间大部分为O.3s。当变压器的上级电源线发生接地故障时,系统会出现过电压,考虑当变压器的间隙击穿时,会引起系统零序电流变化。对于只装设零序电流保护没有装设高频纵差等快速保护的电源线来说,零序电流I段定值时间一般为0s,个别线路由于特殊运行方式带150ms延时,如果此时流过电源线的零序电流能达到本线零序电流I段定值,则本线的零序电流I段动作,此时由于变压器间隙零流时间为0.3s,还来不及动作,然后电源线可以靠重合闸恢复供电,这种情况下不用考虑变压器间隙零流保护同上级电源线零序电流保护配合;如果流过电源线的故障电流只能达到本线零序II段电流定值,则在电源线的零序电流II段保护和变压器的间隙零序保护的时间均为O.3s的情况下,电源线和变压器的保护将会一起动作,造成误动。这时需考虑变压器间隙零流保护同上级电源线零序电流保护相配合整定;如果上级电源线装设了高频或纵差的全线快速保护,当本线任意处发生接地故障时,不管变压器间隙击穿与否,电源线的快速保护会无时限地切除故障,而下级变压器的间隙保护为O3s,这种情况下变压器的间隙电流保护将不会误动。各站变压器间隙保护原理各不相同,分为两种情况:一种是间隙零压和零流的时间是共用的;一种是间隙零压和零流的时间是各自独立的。鉴于变压器的绝缘安全,间隙保护的时间不宜给太长,而且有些变压器保护装置的间隙零压和零流的时间是共用出口的,可考虑将间隙零流的时间抬高到O.5s,来同上级电源线零序II段时间配合。 3继电保护整定配合改进 通过上述分析和研究可知,按照目前常规的变压器的间隙电流整定,在小电源上网条件下,很有可能出现保护失配误动,造成停电事故。近年随着变压器制造工艺和质量的提高,变压器中性点绝缘水平得到加强,为改进间隙电流保护整定配合,防止保护误动创造了有利条件。针对上述问题,现提出如下解决措施。 通过对如上变电站的运行情况及故障分析,校核了所有变压器电源线的保护配置情况,现将变压器间隙电流保护作如下整定配合改进:上级电源线装设高频或纵差的全线速动保护的变压器,其间隙电流保护不会误动,定值按规程整定,不作变动;上级电源线没有装

110kV 变压器间隙保护的改进对策

110kV 变压器间隙保护的改进对策 发表时间:2020-01-16T14:50:54.093Z 来源:《当代电力文化》2019年 18期作者:马子鹏 [导读] 110kV终端变电站主变压器间隙保护误动造成大面积停电的故障具有一般性 摘要:110kV终端变电站主变压器间隙保护误动造成大面积停电的故障具有一般性,防止倒送电的电气或机械闭锁装置,可以起到一定效果。完善间隙保护配合和低频低压解列装置是合法小电源在终端主变压器故障时可靠解列的技术保障。针对违规小电源,利用潮流的变化为间隙保护提供辅助判据,可以大大提高保护的可靠性。 关键词:110kV变压器;间隙保护;改进对策 1 主变压器间隙保护和系统零序保护失配的原因 1.1发生接地事故 由于当变压器所连接的供电电路接地线发生故障时,供电的电源电路断路器便会发挥作用,一旦断路器断开,就会导致系统的零序保护与主变压器的间隙保护失去原先维持的平衡,从而便会出现主变压器和相关线路失电的情况,进一步还会造成变压器损坏。当这种情况发生时其间隙保护便会发挥作用,虽然接下来重新合闸可以排除变压器故障,但是间隙保护装置不能自主进行通电,无法自主恢复工作。 1.2电流过高 大多数变电站的主变压器的保护系统都是由系统零序保护系统和间隙保护装置组合而成的,当然该系统发挥作用也需要零序保护系统与间隙保护装置来协调共同完成,但是当变压器受到外界环境因素影响时,例如,当被雷电击中时,此时经过变压器的电流马上就会变得异常的高,一旦电流强度高出变压器所能经受的最大值时,变压器在系统零序保护系统与间隙保护装置的双重保护下便会自动跳闸,这样就会使整个变压线路失压并且造成大规模的断电。 1.3单项接地故障 当单项接地故障时,此时没有接地的变压器就很容易出现一些不符合规范的运行问题,首先最容易发生的便是中性点电压偏移的问题,然后由于电压超出变压器所能承受的范围从而使得中性点被击穿,最后断路器跳开来断开电路,从而变压器的接地线路便会自己进行相应的调整,这就容易使得主变压器间隙保护与系统零序保护失配。 2 主变压器间隙保护与系统零序保护失配问题的解决措施 要想彻底解决这一问题,需要增加主变压器系统的局部接地点的数量,从而使得相对应的k值减小到一定值,用以减小变压器出现事故时所产生的的零序电压值,从而将主变压器中的中性点的暂态和稳态电压分别控制在变压器所能承受的范围以内,最终目的是在变压器故障时防止中性点的电压高于于其绝缘频电压,同时还应该加强变压器的零序保护措施,这样便间接加强了间隙保护。一旦探讨出具体的实施方案,接下来便是要确保在实施时的严谨性,从而对主变压器的零序保护装置和间隙保护进行必要的改进,并通过科学合理的计算方法,计算出主变压器系统的零序保护定值。一旦被雷击导致变压器发生事故时,可以尽可能保持主变压器的零序电流维持在最小状态。 3 变压器间隙保护整定存在的问题分析 3.1变压器间隙电流保护整定简介 根据有关规定,中性点的间隙值大小应符合以下几个方面的要求:①在系统仍然处于接地状态时,需要避开单相接地暂态电压值。②要能够有效的保护中性点不会被电压所损伤。③当系统的接地中性点和单相接地都不能正常工作的情况下,此时间隙要能够进行动作放电。因此,综合以上三个方面所述,进行合理的运算可以得知,110kV中性点间隙距离应取110—135mm这一范围内,根据此数据,当系统还处于接地状态时,一旦单相接地暂态电压较高情况出现,此时的间隙距离将不足以满足第一方面的要求,这就会导致中性点间隙电流保护误动,最终造成变压器停止运转的状况发生。而且在大多数的110kV变电站中,变压器的中性点一般都是不接地运作的,所以很容易便会导致主变间隙保护误动的情况发生。 3.2线路接地而主变间隙保护跳主变各侧开关问题 假设在一段110kV线路的两端中一端发生接地事故,即使另一端的零序保护2或3段会及时进行相应的正确处理。但是另一端零序保护也需要大于0.45秒的时间采取措施才能将问题完全消除掉,这是因为另一端的接地距离和零序1段这两个部分不会动作所导致的。而变压站的主变压器间隙保护相关规定时长是小于O.45秒的,从而导致11OkV该线路侧开关在跳闸之前,变压站经过间隙接地的主变压器其间隙保护就会先跳主变各侧开关。为了解决这一问题,以前主要采取将线路末端的主变间隙保护时间延长的办法。但是这种方法存在重大的安全隐患,甚至可能烧损主变压器。 4 110kV线路接地而跳主变各侧开关问题的解决方案 第一步就是改变l10kV电网系统原保护时限级差,从原来的0.45秒压缩变为0.25秒。接下来便是采取110kV线路中接地距离2段保护措施。对于大多数l10kV线路来说,接地距离2段按照灵敏度来进行设定,当该线路的尾部发生事故时应符合以下几点灵敏系数的要求: 当遇到长线路和短线路所组成的上下级线路时,此时设定就不单单片面的参照灵敏系数,为了更加保险,还应该使得接地距离2段和下一级电路的1段进行相应的协调。通常情况下把接地距离2段保护动作的时限设定为0.25秒,这样正好与零序保护动作时限级差相吻合,如果将间隙保护的时限都统一设定在0.5秒。那么这种设定方案也是可以满足实际的需要的。根据前文所提出的方法来构建解决方案,那么如果该线路下次再出现同样的问题时,此时科学合理的利用这个方案便可以遏制间隙保护误动情况的发生。 那么下面总结2种间隙保护动作逻辑思路。 (1)变压器间隙零序过电压元件单独经较短延时T1出口;变压器间隙零序过流和零序过电压元件组成“或门”逻辑,经较长延时T2出口。 (2)间隙保护动作逻辑二。变压器间隙零序过电压和零序过流元件经各自独立延时T1、T2出口。 5 110KV主变压器间隙保护误动作处理方案要点分析 针对终端变电站中的低压现状,需对并网小电源进行整体规划与处理,有效借助间隙动作保护机制进行并网线切除,旨在防止小电源局域网模式产生,与此同时,运用此种方法还可剔除非同期并列电网震荡问题,其次则是进行并网线路低频低压减载保护定值的科学合理调整,首要一点为小电源并网线路切除,目标在于保障失压符合通过上级重合闸媒介加以调整,以至最终实现自投供电的完美恢复。 自备小电源定位技术是当前较为常用的专项技术之一,终端变电站中,低压状况时有发生,没有在允许状态下即投入使用的并网小电

一起主变间隙保护动作事故的探究与分析

龙源期刊网 https://www.360docs.net/doc/8415405601.html, 一起主变间隙保护动作事故的探究与分析 作者:周健 来源:《中国高新技术企业》2014年第19期 摘要:为了限制短路电流并保证系统中零序电流的大小和分布不受系统运行方式变化的影响,当电网发生单相接地故障且失去中性点时,中性点不接地的变压器中性点将出现零序电压或零序电流。文章通过一起线路接地故障造成的主变间隙保护动作跳闸事故,分析了这起间隙保护动作的原因,并对间隙保护相关整定与配合的问题进行了探究。 关键词:主变间隙;间隙保护;零序电流;中性点 中图分类号:TM77 文献标识码:A 文章编号:1009-2374(2014)28-0088-02 对于中性点装设接地刀闸和放电间隙的变压器,根据电网运行方式,变压器中性点可直接通过接地刀闸接地运行,也可经间隙接地运行,即通常所说的不接地运行。在中性点不接地运行时,配置间隙零序过流、零序过压保护作为接地故障的后备保护。近年来电力系统发生了多起主变中性点放电间隙保护误动事件,不仅造成了主变停运,也给电网安全稳定运行和可靠供电造成了严重影响。因此,应充分考虑系统中各种因素对间隙保护的影响,使其发挥正常的功能和作用。 1 事故经过与分析 由图1可知,事故前运行方式为110kV线路单供变电站110kV 1M、2M母线,本站相当于终端负荷站,#1、#2主变中性点均不接地运行。#1主变供35kV 1M、10kV 1M母线及其相关10kV线路运行;#2主变供35kV 2M母线、10kV 2M母线及相关10kV线路运行;10kV母联开关在分位位置,分段备自投投入。 图1 变电站一次接线图 图2 变电站二次电压录波图 事故发生时,110kV线路发生C相接地故障,线路对侧开关保护距离I段、零序过流I段保护动作跳闸,对侧开关检线路无压重合成功。本侧开关未跳开。故障同时,本站#1主变零 序过压保护动作,#1主变三侧开关跳闸,零序电压二次值为230V;#2主变零序过压保护动作,#2主变三侧开关跳闸,零序电压二次值为260V(主变保护中性点零序过压保护定值为180V)。由本站出线开关及主变保护动作报告及录波图可知,对侧开关跳闸后,本站侧开关 仍有明显短路电流流向故障点,其中,#1、#2主变10kV侧均有提供短路电流;#1、#2主变同跳后,10kV 1M、2M母线电压未即时消失,其中10kV 2M母线电压支撑了6275ms后才完全消失。

220kV和110kV主变压器中性点过电压保护配置与使用意见(试行)

220kV和110kV主变压器中性点过电压保护配置与使用意见(试行)

220kV和110kV主变压器 中性点过电压保护配置与使用意见(试行) 近年来,由于云南电网线路发生单相接地故障引起部分220kV 和110kV主变压器中性点间隙击穿,导致变压器中性点间隙零序电流保护动作,造成变压器跳闸停电的事故多次发生。为了遏制类似事故的重复发生,提高电网供电可靠性和安全稳定运行水平,在试研院公司提交的技术报告《云南电网110、220kV分级绝缘变压器中性点保护方案研究》和对公司系统主变压器中性点过电压保护进行全面调查的基础上,结合国家和电力行业相关标准并吸取其他网省公司经验,对云南电网220kV和110kV主变压器中性点过电压保护的配置与使用提出以下试行意见: 一、主变压器中性点接地方式要求 500kV-110kV主变压器中性点接地方式应遵循DL/T 559-94《220-500kV电网继电保护装置运行整定规程》和DL/T 584-95 《3-110kV电网继电保护装置运行整定规程》的有关规定,并兼顾各电压等级主变压器中性点绝缘水平。 1. 自耦变压器中性点必须直接接地运行。 2. 220kV分级绝缘变压器中性点接地运行方式的安排,应按照DL/T 559-94《220-500kV电网继电保护装置运行整定规程》第4.1.4条执行,并应考虑变压器中性点绝缘水平:当主变压器220kV侧中

性点绝缘等级为110kV时,220kV侧中性点可不接地运行;当220kV 主变压器的110kV侧中性点绝缘等级为66kV时,110kV侧中性点可不接地运行;当主变压器110kV侧中性点绝缘等级为44kV时,中性点一般应直接接地运行;当主变压器110kV侧中性点绝缘等级为35kV时,110kV侧中性点必须直接接地运行;当220kV主变压器中压侧或低压侧有并网小电源时,220kV侧和110kV侧中性点均宜直接接地运行,220kV进线侧宜配置线路保护。 3. 110kV分级绝缘变压器中性点接地运行方式的安排,应按照DL/T 584-95《3-110kV电网继电保护装置运行整定规程》第 4.1.3.4条执行,并应考虑变压器中性点绝缘水平:当主变压器中性点绝缘等级为66kV时,中性点可不接地运行;当主变压器中性点绝缘等级为44kV时,中性点一般应直接接地运行,当主变压器中性点绝缘等级为35kV时,中性点必须直接接地运行。 4.电网变压器中性点接地方式应尽量保持变电所零序阻抗基本不变。云南电网主变压器中性点接地运行数目均由省调统一分配及管理,各运行单位不得随意更改,需要改变变压器中性点运行方式时,应事先得到省调同意。在操作过程中允许某一厂站中性点接地数短时超过规定。当110kV变压器中压侧或低压侧有并网小电源时,地调应计算确定该变压器是否需要接地运行,并报省调批准后执行。 二、主变压器中性点过电压保护(一次部分)配置和使用要求 1.分级绝缘变压器运行时中性点可能不接地的,应 采用棒间隙并联金属氧化物避雷器保护。

线路单相接地故障导致主变间隙保护动作分析与探讨

线路单相接地故障导致主变间隙保护动作分析与探讨 摘要:有电源并网的110kV变电站,其进线发生单相接地故障时,线路跳闸后,并网电源向故障点倒供故障电流,110kV主变间隙保护动作跳开主变各侧开关, 瞬时性故障时线路重合成功、永久性故障故障时线路重合不成进线备自投动作成 功后仍不能恢复对用户供电。本文给出了解决方案,以提高用户供电可靠性。 引言 中性点装设接地刀闸和放电间隙的变压器,其中性点可直接通过接地刀闸接地,也可经间隙接地。地区电网110kV变压器中性点多采用间隙接地方式,配置 间隙零序过流和零序过压保护作为接地故障的后备保护。而电力系统近年发生多 起110kV变电站进线发生单相接地故障时,线路跳闸后,变压器间隙保护动作跳 开主变三侧,线路重合成功、进线备自投动作后均无法恢复供电,无法保证供电 可靠性。 本文以110kV A变电站为例,分析一起线路单相接地故障导致主变间隙保护 动作,保护与重合闸、自动装置无法正确配合,导致全站失电的案例,并提出改 进方案。 1 事件经过 厂站系统图如图1所示,110kV A变电站通过110kV甲AⅠ线、110kV甲AⅡ 线由220kV甲站双电源供电,110kV甲AⅠ线为主供电源,220kV甲站110kV甲 AⅠ线111开关重合闸为投入状态,且为检无压重合闸,重合闸动作时间为2S,110kV甲AⅡ线为备用电源,重合闸未投入,一条线路主供,一条线路备用情况下,投入110kV进线备自投装置,检主供进线无压无流、备用线路有压延时3.5S 跳开主供进线开关,延时0.3S合备用进线开关。110kV A站两台主变均为内桥接线,#1主变运行,#2主变冷备用,中性点为间隙接地方式,配置间隙零序过流 和零序过压保护作为接地故障的后备保护,开口△接线方式的主变间隙零压值 160V,时限0.5S,一电源通过A站内35kV线路并入电网。 110kV甲AⅠ线发生永久性A相接地故障,220kV甲站110kV甲AⅠ线111开 关跳闸,0.5S后主变间隙保护动作,跳开A站110kV甲AⅠ线111开关、110kV 分段100开关、#1主变301开关、#1主变001开关,2S时重合闸动作,重合不成;3.5时110kV进线备自投检主供线路110kV甲AⅠ线无压、无流,备用线路110kV甲AⅡ线有压,110kV进线备自投装置动作,合上A站110kV甲AⅡ线112 开关,但主变间隙保护已跳开三侧开关,无法恢复站内设备送电。 2 事故分析 110kV甲AⅠ线发生永久性A相接地故障后,接地距离Ⅰ段、零序Ⅰ段0S保 护动作跳闸,将故障点与220kV甲站隔离,但由于并网电源仍向站内提供短路电流,而变压器中性点接线方式采用间隙接地,假设A相直接接地,电压向量图如 图2所示,其中UA、UB、UC和3U0分别为故障前主变高压侧三相电压和开口△ 电压,UA’、UB’、UC’和3U0’为故障后主变高压侧三相电压和开口△电压。故障前:UA=100 ,UB=100 ,UC=100 ,3U0=UA+UB+UC=0;故障后:UA’=0,UB’=100,UC’=100,3U0’=UA+UB+UC=300 , >160,满足主变间隙保护动作条件。 主变间隙保护时限0.5S<重合闸时限2S<进线备自投时限3.5S,故满足条件情 况下,动作顺序为:主变间隙保护、重合闸和进线备自投。主变间隙保护逻辑框

主变间隙的作用

主变间隙的作用 一、主变中性点放电间隙的知识 1.放电间隙,主要是为保护避雷器的。当雷击电压超过避雷器所能保护的值时,为防止避雷器被击穿损坏,装设放电间隙.当有很高的雷击电压时,间隙被击穿放电,从而保护了避雷器.至于之间如何配合,要依避雷器的防雷电压而定。 2.防止接地变跳闸后,高压侧故障中性点出现危险过电压。 3.110KV及以上系统中性点的间隙保护主要是:为了防止过电压!因为在这种电压等级的设备由于绝缘投资的问题所以都采用分级绝缘,在靠近中性点的地方绝缘等级比较低。如果发生过电压的话会造成设备损坏,间隙保护可以起到作用,但是又由于中性点接地的选择问题一个系统不要有太多的中性点接地,所以有的变压器的中性点接地刀闸没有合上(保护的配置原因)。在这时候如果由于变压器本身发生过电压的话就会由间隙保护实现对变压器的保护,原理就是电压击穿,在一定电压下他的间隙就会击穿,把电压引向大地。 间隙保护可以起到变压器绕组绝缘的作用,当系统出现过电压(大气过电压、操作过电压、谐振过电压、雷击过电压等)时,间隙被击穿时由零序保护动作、间隙未被击穿时

有过电压保护动作切除变压器。 4.满足保护的灵敏度要求. 5.防止合闸不同期等情况造成的过电压,损害绝缘。 所谓保护间隙定义: 是由两个金属电极构成的一种简单的防雷保护装置。其中一个电极固定在绝缘子上,与带电导线相接,另一个电极通过辅助间隙与接地装置相接,两个电极之间保持规定的间隙距离。在正常情况下,保护间隙对地是绝缘的,并且绝缘强度低于所保护线路的绝缘水平,因此,当线路遭到雷击时,保护间隙首先因过电压而被击穿,将大量雷电流泄入大地,使过电压大幅度下降,从而起到保护线路和电气设备的作用。 二、补充 1、在大电流接地系统中,为满足零序网络的需要,一般接入同一系统的多台主变只有一台的中性点是直接接地的,也就是说,主变的中性点接地刀闸合上或者断开是两种不同的运行方式。 2、第一条的表述有点问题,放电间隙并不是为了保护避雷器,现在的变压器多采用分级绝缘,一般中性点绝缘较低,在小电流接地系统和大电流接地系统的主变中性点不接地是,为保护主变中性点绝缘不被击穿,设置了放电间隙,并配置间隙零序电流保护。它和中性点接地装置及中性点避

主变压器中性点间隙保护问题分析与建议

彭向阳,钟定珠,李谦,朱根良 (广东省电力试验研究所,广州) 摘要:分析近期四起多台主变压器跳闸故障,指出故障期间主变压器变高中性点并没有出现危险地工频稳态电压升高,中性点间隙在系统暂态电压和雷电波作用下击穿,间隙零序过流保护动作造成在线路重合前主变压器不必要地跳闸是故障地原因.建议突破规程,将间隙零序保护动作时限延长至,配合线路重合闸动作时限,以避免这种故障.并分析了这种措施对主变压器安全运行地影响. 个人收集整理勿做商业用途 关键词:主变压器;中性点间隙保护;故障分析 年以来东莞电网相继发生四起主变压器跳闸故障: () 年月日沙立线(沙角—立新)相故障导致立新站号主变压器中性点间隙动作主变压器跳闸;个人收集整理勿做商业用途 () 年月日东跃(东莞—跃立)甲、乙线相同时故障导致立新站号主变压器中性点间隙动作主变压器跳闸;个人收集整理勿做商业用途 () 年月日东葵(东莞—葵湖)乙线相故障导致葵湖站号主变压器中性点间隙动作主变压器跳闸;个人收集整理勿做商业用途 () 年月日东跃线、东新线(东莞—立新)相同时故障导致立新站号、号主变压器中性点、跃立站号主变压器中性点间隙动作三台主变压器跳闸. 个人收集整理勿做商业用途 以上主变压器跳闸时,好在有备自投正确动作,均没有造成停电损失. 故障分析 四起故障地特点 上述四起主变压器跳闸故障均为有效接地系统线路雷击单相接地故障引起(故障站母线均并列运行、且一台主变压器中性点接地运行,雷电定位查询线路故障点附近大多有较强雷击发生). 个人收集整理勿做商业用途 南方电网技术研究年第卷 此外,第一、四起故障系由线路同杆共架段雷击引起,第一、二、四起故障系由单电源供电线路引起(系统、侧没有电源). 个人收集整理勿做商业用途 四起故障地不同点:故障录波显示,第一、二起主变压器中性点间隙击穿发生在线路单相跳闸地同时,在线路单相重合闸前地系统为有效接地系统单电源非全相运行(两相运行).第三、四起主变压器中性点间隙击穿发生在线路单相接地故障产生地同时,在线路单相跳闸切除故障前地系统为有效接地系统带单相接地故障运行;第三起变高及变高中性点避雷器均有动作记录,第一、二、四起变高、变高中性点及母线避雷器未有动作记录;第一、二、三起均系变高中性点间隙击穿,第四起有两台主变压器变高中性点间隙击穿、一台主变压器变中中性点间隙击穿. 个人收集整理勿做商业用途 间隙击穿地原因 对于第一、二起故障,有效接地系统单电源非全相(两相)运行时,主变压器变高中性点对地最大工频稳态电压升高为一半相电压即,立新站号主变压器变高中性点间隙距离为,考虑正负倍标准偏移工频放电压区间为[ ,].可见,非全相运行造成地中性点稳态电压升高远不致间隙击穿,由于间隙放电发生在线路单相跳闸瞬间,系统非全相操作(故障线路单相跳闸)产生内部操作过电压才是间隙击穿地原因. 个人收集整理勿做商业用途 事实上,对间隙操作冲放电压(±)-σ核算表明,当非全相操作造成中性点过电压负极性超过约倍、正极性约超过倍中性点稳态电压(峰值)时,中性点间隙就会放电击穿. 个人收集整理勿做商业用途 对于第三、四起故障,线路故障切除前为有效接地系统带单相接地故障运行,主变压器中性点工频电压偏移由系统零序、正序阻抗参数决定,按有效接地系统不大于计算(取),主变变高中性点最大稳态电压为,而四台跳闸主变变高中性点间隙距离分别为、、、,按最小间隙核算,考虑正负倍标准偏移工频放电压区间为[ ,].因此,有效接地系统带单相故障运行引起中性点稳态电压升高也不会导致间隙击穿,而是由于间隙放电发生在线路单相接地故障瞬间,

相关文档
最新文档