海上风电导管架安装专项方案

海上风电导管架安装专项方案
海上风电导管架安装专项方案

珠海桂山海上风电场一期导管架安装专项方案

编制:

复核:

审批:

中铁大桥局股份有限公司

2014年9月

目录

1、工程概况 (1)

1.1工程位置及项目规模 (1)

1.2 导管架设计概况 (1)

2、自然环境 (2)

2.1地质及地貌 (2)

2.2 气象条件 (4)

2.3 特征气象参数 (4)

2.4 潮汐 (4)

2.5 波浪 (5)

2.6 海流 (6)

3、导管架安装方案 (6)

3.1 总体安装方案 (6)

3.2 施工步骤 (6)

3.3 构件进场检查 (6)

3.4 导管架安装 (6)

3.5 牺牲阳极接地电缆安装 (7)

3.6 施工重难点及控制措施 (7)

4、施工设备及劳动力组织 (7)

4.1 施工设备 (7)

4.2 劳动力组织 (8)

5、施工周期分析 (8)

6、HSE保证措施 (8)

6.1 职业健康保证措施 (8)

6.2 特种作业安全保证措施 (10)

6.3 环境保证措施 (12)

6.4 施工安全保证措施 (14)

7、附图 (14)

1、工程概况

1.1工程位置及项目规模

珠海桂山海上风电场场址位于珠江河口的伶仃洋水域,处于珠海市万山区青洲、三角岛、大碌岛、细碌岛、大头洲岛与赤滩岛之间的海域。场区内海底地貌形态简单,水下地形较平坦,海底泥面标高一般为-6.0m~12.0m,属于近海风电场。在三角岛上设置110kV升压站,风机电能通过8条35kV集电海缆汇集到三角岛升压站,再通过2回110kV送出海缆,接入220kV吉大站,实现与珠海电网的联网,并在珠海陆域设一集控中心。同时兴建三角岛-桂山岛、三角岛-东澳岛-大万山岛的35kV海底电缆,实现三个海岛的微网与珠海电网联网。

本工程风电场共安装17个风电机组,主要施工内容为:钢管桩沉桩、导管架安装、防腐、灌浆、钢管桩嵌岩、风机整体运输安装、零星工程。

图1-1 风机总体布置图

1.2 导管架设计概况

导管架下部与4根钢桩对接后,通过灌浆进行连接,顶面通过法兰与风机连接,

总高度27.5m(不包括灌浆连接段高度)。灌浆连接段长度为1#灌浆连接段总长5.2m,2#、3#灌浆连接段总长4.5m,4#灌浆连接段总长5.9m。导管架总重约400T。

图1-2 导管架设计图

2、自然环境

2.1地质及地貌

⑴地形地貌

本工程规划的风电场属于近海风电场,位于珠江河口的伶仃洋水域,伶仃洋是珠江喇叭口形的河口湾,湾顶在虎门一带,宽3km,中部宽27km,在澳门-香港之间宽

约58km。风电场近场区分布有大大小小的8个岛屿,以低丘为主。场区内海底地貌形态简单,水下地形较平坦,海底泥面标高一般为-7m~-11m。

⑵岩土体工程地质分层

根据区域地质资料及邻近工程勘察资料,场区内地层上部主要为全新统~更新统海相、陆相、河流相、海陆交互相沉积层、残积层,其厚度受基岩面标高及海平面侵蚀深度控制,基岩为燕山三期花岗岩。第四系地层可划分为5 大层组,层号为①~⑤。具体分层见表2-1。

表2-1 岩土体工程地质分层表

⑶环境水

根据邻近海域地下水和海水试验资料,海域地下水化学成分与海水相似,为氯镁钙型水(Cl-Mg·Ca)或氯钙镁型水(Cl-Ca·Mg)。海水和地下水对混凝土结构具强腐蚀性;在干湿交替条件下对钢筋混凝土结构中的钢筋具强腐蚀性,在长期浸水条件下对钢筋混凝土结构中的钢筋具弱腐蚀性。

⑷地震

拟建风电场场区位于珠海、澳门和香港之间的海域,根据《中国地震动峰值加速度区划图》(GB18306-2001),珠海、澳门地区地震动峰值加速度为0.10g,香港地区地震动峰值加速度为0.15g,推测风电场场区地震动峰值加速度在0.10g~0.15g之间,

对应的地震基本烈度为Ⅶ度。

2.2 气象条件

桂山场址位于珠江口地区,濒临南海,后汛期常受热带风暴的影响则以台风雨为主,暴雨强度大。夏秋季的4~9月为热带风暴活动季节,尤以7~9月最为活跃,每年受台风影响平均3.1次,其中影响较大的,风力达八级以上即达到热带风暴等级的每年1.6次。

2.3 特征气象参数

根据珠海气象站1961年至2005年历年气象资料进行统计, 得各气象要素的年、月特征值如下表(仅显示与本项目相关联的月份)。

表2-2 珠海气象站多年统计各气象要素特征值表

2.4 潮汐

桂山风电场位于珠江口万山群岛和高栏岛附近,所在海区的潮汐现象主要是太平洋潮波经巴士海峡和巴林塘海峡进入南海后形成的。本海域潮性系数K=1.50,风电场海区潮汐属于不正规半日混合潮型,其特征是一太阴日有两次高潮和两次低潮,一次全潮的周期约为24小时50分钟,随着月球赤纬的增大,半日周期相邻两潮期的高潮或低潮高度和潮历时不相等的现象逐渐显著,至月球赤纬到北或南最大,日不等最大,随后,随着月球赤纬的变小,日不等也变小。

现阶段桂山风电场处潮汐特征选取磨刀门水道出海口西侧的三灶岛下角咀三灶潮水位站作为参证站。该站的潮位特征值如下:

表2-3 潮汐表

2.5 波浪

珠海桂山风电工程海域位于珠江口门外,为隘州列岛、大万山岛、白沥岛、东澳岛桂山岛等众多岛屿包围。本阶段桂山场址无测波资料,暂用工程海域南向20km左右的大万山测波资料作为参证资料,分析风电场海域波浪概况。

根据大万山海洋站1991年10月至1992年9月一周年完整的波浪观测资料和桂山岛海洋站1992年4~6月三个月的短期波浪观测资料的统计分析结果,桂山场址所在海域海浪以涌浪为主。常浪向为SE,出现频率为40.4%,次常浪向为ESE,频率为31.0%,全年出现在ESE~S向范围内的频率之和为88.1%。强浪向为SE。本海区波高(H1/10)大于等于0.5m,小于1.5m的浪为常见浪,出现频率占各级总频为75.8%。波高小于0.5m 及大于3.0m的波浪出现频率较小。

2.6 海流

根据《海港水文规范》的潮流可能最大流速计算公式,本海区的表层潮流可能最大流速为1.01m/s,流向为2°;中层潮流可能最大流速为0.95m/s,流向为359°;底层潮流可能最大流速为0.58m/s,流向为350°;垂向平均潮流可能最大流速为0.86m/s,流向为358°。

50年一遇风速条件下,表层海流可能最大流速为1.82m/s,中层和底层海流最大流速基本等同于潮流可能最大流速,分别为0.95m/s和0.58m/s,垂向平均海流可能最大流速为1.10m/s,流向为179°。

3、导管架安装方案

3.1 总体安装方案

导管架安装主要由700T自航式起重船进行。起重船航行至风机位置后,根据前期插打的3根φ630mm临时定位桩(露出水面)进行初定位及抛锚固定,运输船将导管架运送至起重船正前方抛锚定位(运输船每次运送3个导管架),700T起重船起吊对应机位导管架后,运输船退出施工区域,700T起重船完成导管架的安装,潜水员下潜至水下安装牺牲阳极接地电缆。

3.2 施工步骤

导管架安装具体施工步骤详见“附图1、2:导管架安装施工步骤图一、二”。

3.3 构件进场检查

导管架运至现场后,根据设计文件及相关标准对出厂提供的技术资料和实物进行检查验收,对构件的基本尺寸、偏差、杆件扭曲、焊缝开裂以及由于运输和装卸不当造成的损伤,油漆、喷铝面的缺损等进行详细检查,对验收过程中存在的问题登记造册,经监理工程师及厂家驻地代表签认后,按规定进行处理。重点检查如下项目:

⑴各灌浆连接段平面尺寸及长度;

⑵灌浆管及牺牲阳极块是否按设计要求连接牢固;

⑶各部件的焊接质量,尤其是起吊点位处的焊缝质量检查;

⑷灌浆段密封圈是否按设计要求安装,是否满足现场施工要求;

⑸灌浆段内剪力键钢筋是否按设计要求安装。

3.4 导管架安装

导管架运至现场海域后,通过700T起重船进行起吊,并由起重船上的两台5T卷扬机配合拉缆风,保证导管架起吊后的稳定,并在安装过程中控制导管架的方向。700T 起重船绞船至风机位置后,由缆风绳调整导管架方向,使4#灌浆连接段大致对正相应钢桩位置,通过水下声纳成像监控系统进行精确定位,起重船绞锚及缆风绳配合,使4#灌浆连接段插入对应孔位后,依次将1#、2#、3#灌浆连接段插入对应孔位,下放到位,完成导管架的安装。

3.5 牺牲阳极接地电缆安装

导管架安装到位后,由潜水员下水进行牺牲阳极接地电缆的安装。

3.6 施工重难点及控制措施

⑴大型海上吊装作业

导管架吊装重量大,总重约400T,吊装安全及对位难度大。

控制措施:使用两台5T卷扬机拉缆风绳,保证导管架起吊时的稳定,并调整导管架的方向以满足安装要求。

⑵水下对位难度大

基础钢桩桩顶标高-7m,位于水面以下,导管架安装对位均在水下进行。

控制措施:①使用先进的水下声纳成像探测系统对导管架灌浆段对位情况进行水下精确监控,保证对位准确,减少对位施工时间;②安排潜水员对水下对位情况进行复核。

4、施工设备及劳动力组织

4.1 施工设备

需投入的施工设备如下表:

4.2 劳动力组织

⑴施工管理人员

根据施工需要及经验,除船员及专业设备操作手外,施工现场人员安排如下:

①生产、调度管理人员:2人;

②施工技术及质量管理人员:2人;

③ HSE管理人员:1人;

④测量人员:2人。

⑵作业工人

①装吊工:6人;

②电焊工:2人;

③普工:20人(每班10人);

④潜水员:4人。

5、施工周期分析

根据施工总体进度分析,每次运输船运送3个机位的导管架至施工海域,施工功效分析如下表:

6、HSE保证措施

6.1 职业健康保证措施

6.1.1 工时与体检

⑴严格按《劳动法》执行工时制度,定期监督检查,避免员工疲劳作业。

风电机组吊装施工方案

. . . . 风力发电机组吊装工程施工方案

目录 一、编制依据 (1) 二、工程概况及特点 (2) 2.1 工程概况 (2) 2.2 工程特点 (2) 三、风机各部件主要参数 (3) 3.1 塔架主要技术参数 (3) 3.2 机舱、轮毂等部件主要技术参数 (3) 3.3 风轮部件主要技术参数 (3) 四、吊装前应具备的条件 (4) 4.1 风机基础验收 (4) 4.2 风机设备转运 (4) 4.3 道路维护 (4) 4.4 通讯设备 (4) 4.5 道路及平台要求 (5) 4.6 模拟运输 (5) 4.7 设备装卸 (5) 五、安装前的准备工作 (6) 六.卸车方案 (13) 6.1 塔筒卸车 (13) 6.2 机舱卸车 (13) 6.3 轮毂卸车 (13) 6.4 叶片卸车 (14) 七、风力发电机组吊装程序、方法 (15) 7.1 风力发电机组吊装工艺流程 (15) 7.2 塔架吊装 (16) 7.3 机舱吊装 (25) 7.4 叶轮吊装 (27) 7.5 电气安装 (36) 八、施工进度计划 (51) 九、质量保证措施 (52) 9.1 公司质量方针与质量目标 (52) 9.2 本工程质量目标 (52) 9.3 质量保证的行政管理措施 (52) 9.4 质量保证的技术措施 (53) 9.5 质量保证的资源配备 (53) 9.6 质量控制点 (53) 9.7 质量薄弱环节预测及预防措施 (55) 十、安全保证措施 (57) 10.1 安全管理目标及方针 (57) 10.2 确保施工安全的保证措施 (57) 10.3 安全技术措施 (57) 10.4 危险源辨识 (61) 10.5 应急措施 (65) 十一.环境保护与文明施工 (68) 11.1 环境保护 (68) 11.2 文明施工 (72)

海上风电施工控制重点

海上风电施工控制重点 (一)自然条件是影响海上风电施工的重要因素 1、分析 海上风电场都是离岸施工,工作场地远离陆地,受海洋环境影响较大,可施工作业时间偏短,因此施工承包商要根据工程区域海洋环境特点,选择施工设备、确定施工窗口期、制定施工工艺和对策,才能更好地完成本工程。 2、控制措施 (1)要求施工承包商必须充分收集现场自然条件资料,包括风、浪、流、潮汐、气温、降雨、雾等的历年统计资料和实测资料; (2)根据统计和实测资料,分析影响施工的自然条件因素; (3)分析统计影响施工作业的时间和可施工的窗口期; (4)根据统计资料和现场施工计划,有针对性的布置现场自然条件观测仪器,以便对自然条件的现场变化进行预测和指导施工安排。 (5)施工承包商必须根据自然条件的可能变化,做出有针对的现场施工应变措施。 (二)质量方面 1、海上测量定位是本工程的重点、难点 (1)分析 在茫茫大海是进行工程建设,测量定位是决定项目成败的关键。海上风电对质量要求很高,例如风机基础施工中单桩结构对桩的垂直度要求很高;导管架结构对桩台位置、桩的垂直度与间距要求很高,不是一般的测量与控制措施能够实现。另外,导管架安装定位精度高,如何通过测量定位手段指导安装导管架难度大,因此海上测量定位是本工程的重点、难点。 (2)控制措施 ①要求施工承包商制定测量施工专项方案;使用高精度测量仪器设备在投入工程使用前,必须进行精测试比对; ②借鉴其他海上风电场的成功施工经验,特制专用的打桩的定位及限制垂直度的定位及限定垂直度的辅助“定位架”,保证桩的垂直度及间距高精度要求; ③施工承包商必须有专用的打桩船,减少风浪对打桩的影响;

海上风电导管架制造步骤及检验注意点概述

龙源如东海上风电导管架基础制造流程及检验 注意点简介 BV I&F CHINA WIND POWER Nicky Cheng 12th Jun, 2013

目录 1.项目背景简介 2.导管架概况 3.导管架制造流程介绍 4.检验计划介绍及检验过程中的注意点

1.项目背景简介 江苏如东150MW海上风电场示范工程一期由21台西门子2.38MW风电机组及15台华锐3MW风电机组组成,其中西门子2.38MW风电机组采用五管桩导管架基础,华锐3MW风电机组采用单管桩基础。 BV风电部门负责该36套海上风电机组基础钢结构的制造过程监造任务,其中单管桩在振华大南通基地生产,导管架由南通海洋水建总包,四家制作单位分包生产。整个项目历时月6个月,截止2011年12月10日南通中洲最后一台导管架装船结束。 本次介绍即为在南通中洲监造的11台导管架的一些情况。

2. 导管架概况 本项目导管架总高11550mm,桩腿轴线直径Φ19000mm。导管架由不同厚度的热轧低合金高强度结构钢板(标准:GB/T1591-2008、GB5313-85)经下料、卷制、拼装、焊接、防腐、舾装件安装、检测等多道工序而成,材质为:Q345D及Q345D-Z15(T=50mm及T=35mm),且要求所有钢板必须为正火一级探伤板。 该导管架由主筒体、上斜撑、下斜撑、水平撑和桩套管组成,舾装件有平台、爬梯、电缆管、牺牲阳极及防撞装置。主筒体由4段筒节(上直段Φ4200X50mm、锥体Φ4200XΦ2500X40mm和下直段Φ2500X50mm)和桩顶法兰组成,主筒体内部有加强结构及内平台。桩套管由2节T=35mm钢板组成,内部焊有螺纹钢剪力键。上斜撑由T=28mm、T=24mm及T=18mm钢板组成,其中T=28mm筒节位于上斜撑与主筒体合拢节点,T=24mm筒节位于上斜撑与桩套管合拢节点。下斜撑由T=24mm及T=18mm钢板组成,其中T=24mm筒节位于下斜撑与主筒体及下斜撑与桩套管合拢节点。水平撑为T=10mm直缝钢管。

风电机组吊装施工方案

风力发电机组吊装工程施工方案

目录

一、编制依据 1、本工程投标及合同文件; 2、本工程《施工组织设计》; 3、《电业安全工作规程》DL048-; 4、《起重机设计规范》GB3811-2008; 5、《起重设备安装工程施工及验收规范》GB50278-; 6、《起重机械安全规程》GB6067-; 7、《工业安装工程质量检验评定统一标准》GB50252-; 8、《钢结构工程质量检验评定标准》GB50221-; 9、《钢结构工程施工验收规范》 GB50205-2001; 10、《钢结构高强度螺栓连接的设计、施工及验收规范》JGJ82-; 11、《污水综合排放标准》 GB8978-1996; 12、《生活饮用水卫生标准》GB5749-2006; 13、《风电场工程技术手册》; 14、《电气装置安装工程电气设备交接试验标准》GB50150-2006; 15、《电气装置安装工程电缆线路施工及验收规范》GB50168-2006; 16、《电气装置安装工程接地装置施工及验收规范》GB50169-2006; 17、《电气装置安装工程旋转电机施工及验收规范》GB 50170-2006; 18、《风力发电机组验收规范》GB-T_20319-2006;

19、《风力发电场项目建设工程验收规程》DL/T5191-2004; 20、《电气装置安装工程质量检验及评定规程》DLT 5161-2002; 21、《风电施工组织设计规范》DL/T 5384-2007; 22、《风力发电机组塔架》GB/T19072-200X; 23、《风力发电机组齿轮箱》GB/T19073-2008; 24、《风力发电机组 2通用实验方法》GB-T ; 25、国家和行业其它相关规范和标准; 26、《W2000型风力发电机组安装手册》2011(上海电气风电设备有限公司); 27、执行中电投宁夏能源铝业中卫新能源有限公司的有关标准及规定; 28、公司《质量、环境与职业健康安全管理体系文件》以及我公司多个风电场工程吊装 施工的有关经验资料。 二、工程概况及特点 工程概况 XXX风电场位于XX市东南约65km。场址区海拔高度在2000m~2100m 之间,为低山丘陵地貌,梁沟发育,山顶场地较为开阔,地形起伏不大。场区通过场内道路与西侧202省道相通,对外交通较为便利。XXX风电场无破坏性风速,风的品质较好,盛行风向稳定,风能资源较好,具有一定规模的开发的前景,是一个较理想的风力发电场。 XXX风电场工程包括25台×风电机组及附属设施(风机、塔筒、基础环、接地网、基桩、箱变及高低压侧电缆敷设和电缆头制作、照明等)的土建、安装、系统调试(风机本体调试除外);风场道路、风机吊装平台、水土保持施工;厂内35KV集电线路材料的购置、土建和整体安装;设备接卸、保管;上述范围项目的地基处理,各系统的单体调试、分系统调试、整套启动调试的辅助配合工作。 本风电场内拟安装25台W2000C-99-80型风力发电机组(ⅢB),风机轮毂高为80米。单台风机机组主要由塔筒、机舱、轮毂和叶片等组成。

(完整版)海上风电导管架安装专项方案.

珠海桂山海上风电场一期导管架安装专项方案 编制: 复核: 审批: 中铁大桥局股份有限公司 2014年9月

目录 1、工程概况 (1) 1.1工程位置及项目规模 (1) 1.2 导管架设计概况 (1) 2、自然环境 (2) 2.1地质及地貌 (2) 2.2 气象条件 (4) 2.3 特征气象参数 (4) 2.4 潮汐 (4) 2.5 波浪 (5) 2.6 海流 (6) 3、导管架安装方案 (6) 3.1 总体安装方案 (6) 3.2 施工步骤 (6) 3.3 构件进场检查 (6) 3.4 导管架安装 (6) 3.5 牺牲阳极接地电缆安装 (7) 3.6 施工重难点及控制措施 (7) 4、施工设备及劳动力组织 (7) 4.1 施工设备 (7) 4.2 劳动力组织 (8) 5、施工周期分析 (8) 6、HSE保证措施 (8) 6.1 职业健康保证措施 (8) 6.2 特种作业安全保证措施 (10) 6.3 环境保证措施 (12) 6.4 施工安全保证措施 (14) 7、附图 (14)

1、工程概况 1.1工程位置及项目规模 珠海桂山海上风电场场址位于珠江河口的伶仃洋水域,处于珠海市万山区青洲、三角岛、大碌岛、细碌岛、大头洲岛与赤滩岛之间的海域。场区内海底地貌形态简单,水下地形较平坦,海底泥面标高一般为-6.0m~12.0m,属于近海风电场。在三角岛上设置110kV升压站,风机电能通过8条35kV集电海缆汇集到三角岛升压站,再通过2回110kV送出海缆,接入220kV吉大站,实现与珠海电网的联网,并在珠海陆域设一集控中心。同时兴建三角岛-桂山岛、三角岛-东澳岛-大万山岛的35kV海底电缆,实现三个海岛的微网与珠海电网联网。 本工程风电场共安装17个风电机组,主要施工内容为:钢管桩沉桩、导管架安装、防腐、灌浆、钢管桩嵌岩、风机整体运输安装、零星工程。 图1-1 风机总体布置图 1.2 导管架设计概况 导管架下部与4根钢桩对接后,通过灌浆进行连接,顶面通过法兰与风机连接,

风电吊装专项方案

国电**********B区201MW工程风机吊装专项方案 批准: 核定: 审查: 校核: 编写: 项目部 二○一四年三月

目录 1 工程概况 (1) 1.1工程概况 (1) 1.2工程建设规模 (1) 1.3工程量 (1) 1.2工期 (2) 2 编制依据 (2) 3 施工准备 (3) 3.1技术准备 (3) 3.2施工人员 (3) 4 施工方案 (5) 4.1吊装机械选用 (5) 4.2主要设备参数 (6) 4.3吊装工序 (6) 4.4设备卸车 (7) 4.5设备的接收及检验 (7) 4.6控制柜、变流器柜及其支架的安装 (7) 4.7塔筒吊装 (7) 4.8机舱吊装 (10) 4.9轮毂、叶片等的吊装 (12) 4.10电气安装 (13) 5 质量通病及预防措施 (16) 6 施工安全保证措施 (16) 6.1施工安全目标 (16) 6.2职业健康安全管理体系 (17) 6.3组织保证 (17) 6.4制度保证 (17) 6.5安全组织技术措施 (21) 6.6应注意的事项 (22) 6.7危险因素的识别与控制 (26) 6.8应急救援措施 (28) 6.9事故后处理工作 (31) 7环境保护及文明施工 (32) 7.1文明施工管理目的和总体目标 (32) 7.2组织管理机构 (33) 7.3职责 (33) 7.4文明施工的实施 (34) 7.5安全文明施工教育与培训 (34) 7.6制定相应文明施工措施 (34) 7.7环境保护目标 (37) 7.8环境保护措施计划 (37) 7.9政策法规及主要依据 (38) 7.10水土保持措施 (38) 7.11噪音环境保护措施 (39) 7.12环境空气保护措施 (39) 7.13人群健康保护措施 (40) 7.14重大环境污染事故预案 (41)

风电吊装安全文明生产施工方案

安全文明施工实施细则 一、工程概况: 龙源西藏新能源有限公司投资建设的西藏那曲高海拔试验风电场(49.5MW)项目风机安装工程。本期工程共安装5台国电联合动力风机。 1.1 施工范围 我公司负责5台风机的吊装,安装塔内主电缆、控制电缆等附件安装,控制柜、塔筒、机舱、轮毂及叶片等设备的卸车及设备保管等工作。 1.2施工部署 针对该工程安装设备实际情况,我公司将组建一支精干、技术资质高和经验丰富的项目管理班子,挑选施工经验丰富、吃苦耐劳的优秀专业施工队伍,特别是选定参加过类似工程建设的施工队伍参加本工程施工。 采用一台750吨汽车吊主吊,一台130汽车起重机、一台70吨汽车起重机、一台65吨汽车吊为副吊。对于塔筒、机舱、轮毂、叶片利用750吨履带吊和70吨汽车吊进行吊装,两吊机配合慢慢将塔筒吊到垂直状态,拆除70吨吊机的吊装连接索具和连接板,750吨汽车吊单机吊装就位。 二、安全目标、安全保证体系及技术组织措施 2.1安全管理目标 遵守有关环境保护的法律、法规和规章、龙源电力集团股份有限公司关于《工程建设文明施工管理办法》、《工程建设质量管理办法》、《工程建设安全管理办法》及本合同的有关规定,并对其违反上述法律、法规和规章以及本合同规定所造成的环境破坏以及人员伤害和财产损失负责。 我方将始终贯彻“安全第一,预防为主”的方针和“安全为天”的管理思想,提高工程建设过程安全质量管理水平,保障职工在劳动过程中的安全与健康,努力创建安全文明施工样板工程。

2.2安全管理组织机构及安全管理制度和办法 2.2.1安全管理组织机构图 2.2.2安全管理组织体系 1、建立健全安全生产管理机构,成立以项目经理为组长、项目技术负责人为副组长的安全生产领导小组,全面负责并领导本项目的安全生产工作。主管安全生产的项目安全员为安全生产的直接责任人。成立施工安全组,全面负责施工全过程的安全检查、安全远见卓识置、安全监督和安全奖惩。 2、所有施工人员进入施工现场必须纳入项目的安全管理网,并签订安全生产协议书。对所有施工人员进行安全施工“三级教育”形成制度前有记录和签字,坚持未经安全教育、不得上岗的原则。 3、项目将根据施工不同阶段制定有关遵守安全生产的若干规定,施工人员除了熟悉并认真执行国家和省建委颁发的有关安全生产规章制度,还应遵守项目制定的各工种工序技术方案。 4、根据工程实际情况,制定防火、防盗、防冻及动用明火、临时用电等方面的管理办法,按计划定期检查执行情况,发现问题,责成其在规定时间内进行整改。 5、施工现场平面布置按施组要求布设,认真做好材料堆放、设备和机具存放、宿舍管理等文明施工方面工作。

海上风电施工简介(经典)

海上风电施工简介 目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19)

1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年后,随风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

风电吊装方案

目录 一工程概况 二施工组织管理 三主要施工方法及技术措施 四主要施工机具配制计划 五质量保证措施 六安全文明施工保证措施及HSE

1.工程概况 1.1项目简介 华电徐闻黄塘风电场位于徐闻县城区东偏北约49.5km 的下洋镇及前山镇,地理坐标为东经110o29′~110o33′,北纬20o46′~20o30′之间。湛江市徐闻县地处中国大陆最南端,地处东经109°52′~110°35′,北纬20°13′~20°43′。三面环海,距离湛江市区149.5 多公里,距离海口市只有18 海里,是大陆通往海南的咽喉之地。徐闻交通四通八达,207国道和粤海铁路贯穿南北,南部有中国最大的汽车轮渡港口(海安港)和亚洲第二大火车轮渡码头(粤海铁路轮渡码头)。 本期工程建设方案拟安装24台2000kW风电机组和1台1500kW 风电机组,总装机容量为49.5MW,110kV升压站已在一期工程中建设完成,升压站内已建设完成综合楼、设备楼以及泵房、仓库、车库、事故油池,总占地面积6396m2。升压变电站工程使用类别在建筑设计中属于工程的等级3等,主要建筑物等级为2等。 1.2设备结构与交货状态 1)设备结构主体由四大件组成:2MW风力发电机组,①塔架②机舱③发电机④叶轮 2)设备交货状态①控制柜②塔架分三段,现场组装③机舱分机舱与发电机,现场组装④叶轮分轮毂与叶片,现场组装

1.3风电机组主要设备部件实物量参数 2MW风电机组主要设备部件实物量参。 1.4风力发电机组安装(吊装)采用的主要施工方法 1)设备进场运输,大型吊机进场移动转移,设置临时施工道路。 2)风电机组的周围各设置一个施工平台,进行吊机设备的转场放置。机组与吊机定位吊装的场所,施工平台与施工临时道路相接。 3)小件设备卸车与吊装选用TR-250M(25t)液压汽车式起重机。(包括配合其他吊机)。 4)大件设备吊装选用QAY800(800t)液压汽车式起重机。 5)大件设备吊装抬吊选用QAY260(260t)液压汽车式起重机(包括其他吊装)。 1.5重要工期节点要求 风电机组安装于2014年9月16日开始施工,2014年11月30日前全部吊装完毕。 1.6方案编制依据 1)《安装手册(适用于XE96-2000风力发电机组)》。 2)SH/T3515-2003《大型设备吊装工程施工工艺标准》。

海上风电场的建设安装方法和设备

海上风电场的建设、安装方法 和设备 Garrad Hassan & Partners Ltd. Jan., 2009, Beijing

综述 1.运输和物流 2.支撑结构 3.风电机组 4.海底电缆 5.变电站 6.船只和设备 Offshore wind farm construction, installation methods and plant

风电场间的比较 Source: GH 05101520253035 4045500 20 40 60 80 100 120 140 Distance to Shore M a x D e p t h 20082010BE DE DK ES FR IE NL SE UK 中国将处在什么位置?

根据海床和水深的条件而定的基础的选择水深增加 重力式单桩多桩 浮动的吸力桶式 绗架到目前为止,这 些基础是最常用 的形式

已建海上风场的基础 Steel monopile 8Siemens 3.6 25 6 2007 Burbo Quadropod 45REpower 5M 2252007Beatrice Steel monopile 22Vestas V903610-182006OWEZ Steel monopile 20Vestas 3MW 3082006Barrow Steel monopile 5Vestas 3MW 30122005Kentish Flats Concrete gravity 10Bonus 2.3MW 72122004Nysted, DK Steel monopile 4 > 12Vestas 2MW 302.52004Scroby Sands, UK Steel monopile 5 > 8.5GE 3.6 MW 7142004Arklow Bank, Ireland Steel monopile 10 > 15Vestas 2000kW 307 > 8 2003North Hoyle, UK Steel monopile 6.5 > 13.5 Vestas 2000kW 80172001Horns Rev, Denmark Steel monopile 9Neg Micon 2000kW 562001Yttre Stengrund Sweden Concrete gravity 2 > 5Bonus 2000kW 2022000Middlegrunden, Sweden Steel monopile 7.5Vestas 1800 & 2000kW 20.52000Blyth, UK Steel monopile 7.2 > 10Enron Wind 1500kW 78 > 12.52000Utgrunden, Sweden Steel monopile 6Wind World 500kW 541998Bockstigen, Sweden Steel monopile 5Nordtank 600kW 280.41997Dronten, Netherlands Concrete gravity 3 > 5Vestas 500kW 1061995Tuno Knob Steel monopile Nedwind 500kW 411994Lely, Netherlands Concrete gravity 2.5 > 5 Bonus 450 kW 111.5 > 3.0 1991Vindeby, Denmark Foundation type Water depth (m)Turbine type & rating No of turbines Distance from Shore (km)Date of Commissioning Location

风电安装手册

风力发电机安全手册编号:FT000320-IT R00

目录 1.责任与义务 2.安全和防护设备 2.1 必备设备 2.2 用于特殊操作的设备2.2.1 用于紧急下降的设备2.2.2 其它特殊操作 3.基本安装注意事项 3.1 概述 3.2 对风力发电机的操作 3.3 在风力发电机附近逗留及活动3.4 访问控制单元和面板 3.5 访问变压器平台 4.安全设备 4.1 紧急停止 4.2 与电网断开 4.3 过速保护设备(VOG) 4.4 机械安全设备 4.4.1 啮合锁 4.4.2 活动元件的保护罩4.4.3 机舱顶的栏杆 4.4.4 机舱后门的栏杆 5.在风力发电机内部检查或工作6.对风力发电机的设备的操作6.1 使用绞盘 6.2 使用紧急下降器 7.风力发电机的固定 8.急救 9.应急计划 10.发生火灾时的应急措施11.发生事故时的措施

1.责任与义务 Gamesa Eólica将安全与健康方向的考虑放在首位并一以贯之,因此在我们生产的风力发电机的设计中体现了防护的需要。 设计是在决不损害人、动物或者财产的前提下进行的。因此,只要风力发电机的安装、维护和使用遵照Gamesa Eólica的设计,就不会出现这方向的问题。 经批准接触或使用风力发电机的人员在《工作场所安全与健康》方面有权得到有效保护。 同样,经批准在风力发电机中进行有关工作的人员必须遵守《工作场所的安全与健康以防工作场所事故》的有关法律及法规,在执行任务时必须正确地使用工作设备和所有防护性设备,在可能遇到的危险情况的出现必须及时报告。 经批准执行安装任务的人员必须已经接收了足够且合适的理论与实践方面的训练以正 确执行任务。 本文档介绍基本的预防,在接触风力发电机时在安全方面必须遵守的义务及程序。不同维护工作的具体安全措施将在有关这些操作的具体文档中介绍。 2.安全及防护设备 2.1必备设备 在对风力发电机进行任何检查或者维护工作之前,每个人至少应该理解如下设备的使用说明: ●安全设备 ●可调的系索 ●系索(1m和2m) ●安全头盔 ●安全手套 ●防护服 除了上面指出的设备外,每个维护或者检查小组必须具有如下物件: ●紧急下降设备 ●灭火器(在运输工具中有) ●移动电话 在任何时候,不管是在风力发电机内部还是在其外部,都应该使用安全头盔。 建议在上升设备中准备手电筒、安全眼镜和保护性耳塞,这取决于要完成的工作(是对正在运行的风力发电机的检查还是维护)。 操作者必须正确使用安全设备并在使用之前和之后都对安全设备进行检查。对安全设备

海上风电场吊装方法

海上风电场吊装方法 离岸风机的安装相对于岸上安装难度颇高,可通过千斤顶驳船或者浮吊船完成。其中的选择取决于海水深度、起吊机的能力和驳船的载重量。起吊机应具备提升风机主要部件(塔架、机舱、叶轮等)的能力,其吊钩提升高度应大于机舱的尺寸,确保塔架和风机装配件的安装。现有的浮吊船大多不是特意为海上风电场的风机安装而设计制造的。对于大型海上风电场(机组超过50台),通过使用安装驳船来控制建设周期(即控制成本),完成建设任务。 千斤顶安装(Jack-up Installation) 以千斤顶吊装塔架、机舱和叶轮是最先出现的海上风电场吊装方法。千斤顶可为安装工作提供一个稳定的基座,因此它也是打桩工程的首选。然而,其缺乏内在稳定性和机动性使塔架的安装较为困难。 半沉式安装(Semi –Submersible Installation) 对于执行海上建设工作,半沉式起吊船是漂浮平台中最稳定的一种。现有的驳船设计仅适用于较远的海上作业,而在浅滩地区较难发挥作用。 载运船,平底驳船,地面起吊机(Ship Shaped Vessel, Flat Bottom Barges a nd Land Based Cranes) 载运船和平底驳船在建设作业中的稳定性不够理想,较易受天气状况的影响。而地面起吊机,只要天气良好,便可显示出其旋转起吊机和费用低廉这来两项优势。 漂浮式安装(Float-Over Installation) 所谓漂浮式安装,就是先将塔架在码头上垂直吊起,再将其下放至待安装的模拟桩基上,用钉子固定,然后垂直安置于驳船上准备运送。等到涨潮时,排放压舱水使塔架与模拟桩基分开,一旦达到安全水深,驳船即引入压舱水作牵引之用,到达安装现场后,驳船再次排放压舱水,安全固定于海上风电场的桩基上。然后再次引入压舱水使驳船下沉,在桩基上调转塔架的支撑件,最后撤出驳船完成海上安装工作。 现在常见的吊装船有早期的改装船如图9所示的A2SEA改装船,以及目前所建造的几艘近海风电专用吊装船只如图10所示的五月花“决意”号和图11所示的“跳爆竹”号。

海上风电施工简介(经典)

海上风电施工简介 二○一三年十月

目录 1 海上风电场主要单项工程施工方案 (1) 1.1 风机基础施工方案 (1) 1.2 风机安装施工方案 (13) 1.3 海底电缆施工方案 (19) 1.4海上升压站施工方案 (23) 2 国内主要海上施工企业以及施工能力调研 (35) 2.1 中铁大桥局 (35) 2.2 中交系统下企业 (41) 2.3 中石(海)油工程公司 (46) 2.4 龙源振华工程公司 (48) 3 国内海洋开发建设领域施工业绩 (52) 3.1 跨海大桥工程 (52) 3.2 港口设施工程 (55) 3.3 海洋石油工程 (55) 3.4 海上风电场工程 (58) 4 结语 (59)

1 海上风电场主要单项工程施工方案 1.1 风机基础施工方案 国外海上风电起步较早,上世纪九十年代起就开始研究和建设海上试验风电场,2000年以后,随着风力发电机组技术的发展,单机容量逐步加大,机组可靠性进一步提高,大型海上风电场开始逐步出现。国外海上风机基础一般有单桩、重力式、导管架、吸力式、漂浮式等基础型式,其中单桩、重力式和导管架基础这三种基础型式已经有了较成熟的应用经验,而吸力式和漂浮式基础尚处于试验阶段。舟山风电发展迅速。 目前国内海上风机基础尚处于探索阶段,已建成的四个海上风电项目,除渤海绥中一台机利用了原石油平台外,上海东海大桥海上风电场和响水近海试验风电场均采用混凝土高桩承台基础,江苏如东潮间带风电场则采用了混凝土低桩承台、导管架及单桩三种基础型式。 图1.1-1 重力式基础型式 图1.1-2 多桩导管架基础型式

图1.1-3 四桩桁架式导管架基础型式图1.1-4单桩基础型式 图1.1-5 高桩混凝土承台基础型式图1.1-6低桩承台基础型式基于国内外海上、滩涂区域风电场的建设经验,结合普陀6号海上风电场2区工程的特点及国内海洋工程、港口工程施工设备、施工能力,可研阶段重点考察桩式基础,并针对5.0MW风电机组拟定五桩导管架基础、高桩混凝土承台基础和四桩桁架式导管架基础作为代表方案进行设计、分析比较。 1.1.1 多桩导管架基础施工 图1.1-7 五桩导管架基础型式图1.1-8 四桩桁架式基础型式

风电基础施工方案(完整版)

风电基础施工方案 一、项目基本情况 河北省唐山乐亭菩提岛海上风电场300MW工程示范项目位于《河北省海上风电场工程规划》中的一号场址,地处唐山市京唐港与曹妃甸港之间的乐亭县海域,东经118°45.1′-118°51.3′,北纬38°55.2′-39°3.9′之间。风电场不规则形状,南北长在5.7-11.2km之间,东西宽约7.8km,场址范围面积约为68.2km2。场址水深约7-28m,场址中心距离岸线约18km,西侧距离曹妃甸港区东侧锚地最近约4.8km,南侧距离京唐港至天津新港习惯航路中心线最近约3.6km,东侧距离海上油气田约4.5km,场址距离曹妃甸港约20km,距离京唐港约26km,交通运输方便。 海上试验风场的试桩工作已于2016年5月4日开工,随着项目的推进海上升压站、陆上220kv送出线路、220kv海缆/35kv海缆的敷设工程将依据工程建设进度陆续开工。预计于2017年实现首回路共计6台风机并网发电,2018年底前实现整体项目建成投产。 二、水文、地质条件 1、地质情况 本工程地质由上至下依次为: 海床面:-17.5m~-21.9m, 淤泥:海床面~-27m, 粉砂:-27m~-28.1m, 粘土:-28.1m~-30.8m,

粉砂:-30.8m~-35.5m, 粉质粘土:-35.5m~-38.0m, 粉砂:-38.0m~-46.3m, 粉质粘土:-46.3m~-54.0m, 粉土:-54.0m~-57.5m, 粉质粘土:-57.5m~-60.0m, 粉砂:-60.0m~-66.0m, 粉质粘土:-66.0m~-68.0m, 粉土:-68.0m~-74.0m, 粉砂:-74.0m~桩尖标高 2、潮位 工程场区设计水位值 单位:m 要素平均高潮位平均低潮位设计高潮位设计低潮位50年一遇高 潮位 50年一遇低 潮位 1985国家高程基准0.324 -0.386 1.016 -1.077 2.589 -2.877 三、施工准备 沉桩施工前根据设计图纸要求和现场条件,绘制沉桩平面顺序图,校核各桩在允许偏差范围内是否有相碰情况存在,合理布置沉桩顺序。 1、施工现场调查 为充分做好前期准备工作,首先开展施工现场的地形地貌、地质条件、水文、气象等自然条件的调查研究,为制定合理的施工工艺、计算施工效率、编制施工进度计划提供科学的依据。

风力发电机组吊装方案

风力发电机组吊装方案公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

大唐广元凉水泉风电场 场内道路及风力发电机组工程 吊 装 施 工 方 案 四川电力建设三公司 大唐广元凉水泉风电场施工项目部 二零一六年十二月

编制:审核:批准:

目录

一工程概况 大唐广元凉水泉风电场位于广元市利州区河西街道办事处的白山村、郑家沟村、杨家岩街道办事处的杨柳村以及工农镇联盟村境内,距离广元市区约10km,其中心地理坐标约为东经105°48'42",北纬32°29'59",场地主要沿山脊分布,分布高程800~1050m,场地长约6km,宽约4km,面积约24km2。工程所在的广元市交通便利,公路交通较发达,有G5京昆高速、国道G108和G212从广元经过。大唐广元凉水泉风电场工程包括18台×风电机组及附属设施(风机、塔筒、基础环、接地网、基桩、箱变等)的土建、安装。 工程特点 1、风电场海拔地势高,起伏大。 2、风机位集中位于山头上,机群分别集中在多个地点,风电场内为自然风景保护区,场内施工道路多陡弯,增加吊装机械拆装和行走的难度。 3、吊装平台大多是山体降基或临近山体,吊装场地有限,使风机各部件的堆放、地面组装和吊装更加困难。 4、风机机舱重量约85t,吊装高度大于80m,吊装过程中对吊装设备和天气的要求较高。 主要工作内容 负责18台风机、塔筒、轮毂、桨叶及其附属设备的现场卸车、起吊就位和安装、密封处理工作,安装完成后并配合进行风机的调试工作。 主要安装设备简介

工程难点 结合大唐广元凉水泉风电场工程的工期、现场勘查的实际情况来看,影响本工程风机安装的主要因素有: 1、进场道路的规划和修整:设备运输通道将是制约本工程风机安装作业连续性的关键。 2、工程建设对当地风景自然保护区的影响:及工程施工建设对当地环境、居民等带来的影响的协调。 3、施工机具的正确选择:本工程机位布置虽然远但是比较集中,采用移动灵活性能更强的机具将加大风机作业进度。 4、当地作业环境的气候条件:当地作业环境海拔在1000米左右,气候变化大,山上的低温等将对工程建设带来更大的困难。 总体思路 结合工程实际情况我们将配备二套吊装作业人员,四套吊装作业机具进行吊装作业。将整个风机分成两个系统进行吊装作业:即以中断塔筒为界,下段和中下段及附属设备为一个部分进行吊装作业,中、上段、机仓和轮毂等作为一个部分进行吊装作业。原则上为2天一个循环流程即保证两天吊装一台风机的进度进行吊装。其中设备供货的连续性和建筑专业基础施工养护等有力的支撑。 二人员机械配备 主要作业人员配备及职责 本次安装作业电气接线、机电安装和吊装同步进行。主要设置吊装作业组两个、电气安装组三个,每个作业小组施工相互间互补影响,相互协作,有序安排每道工序,严格控制各个环节的作业时间。单个吊装团队内的具体分工和人员配置如下: 1、吊装作业一组:配置8人,利用一台260t汽车吊和一台75t汽车吊进行电气控制柜、塔筒下两段的吊装作业。作业时间控制在一天一台,其余时间负责卸货、设备倒运等工作。

海上风电场基础形式及配套施工技术

[收稿日期] 2010-07-28 [作者简介] 秦顺全(1963—),男,四川绵竹市人,中国工程院院士,长期从事大型桥梁的设计、施工工作;E-mail:qsq@ztmbec.com 海上风电场基础形式及配套施工技术 秦顺全,张瑞霞,李军堂 (中铁大桥局集团有限公司,武汉430050) [摘要] 根据不同的水深及地质条件,结合已建成的海上风电场基础形式及施工方法,介绍和研究了重力 式、单桩、群桩、设置沉箱、沉井及吸力式筒形基础等几种形式。对不同的基础形式,分别提出了自升式平台、浅吃水半潜驳、打桩船及整体浮运吊装等相应的基础施工方法。根据风机机组类型,对塔筒和风机的安装也做了介绍。 [关键词] 海上风电场;基础形式;桩基础;导管架基础;吸力式筒形基础;设置沉箱;风机安装 [中图分类号] TU476;TU745.7 [文献标识码] A [文章编号] 1009-1742(2010)11-0035-05 1 前言 利用清洁的风能资源是全球能源开发的战略方针 [1] 。2010年,欧洲海上风电场的开发已步入快速 发展期,丹麦、英国、瑞典、德国等主要的海上风电场国家都制定了相应的海上风能发展战略规划,世界海上风电装机容量已经达到了100万kW,其中大约40%在丹麦。我国首个100MW东海海上风电场也已在7月份建成并正式并网发电。由于海上风能具有风速高、风速稳定、不占用土地等优点,已成为目前风能发展的趋势和重点,而在海上建立风电场除了其明显的优势外也带来一些不可避免的问题,其中之一就是其基础工程的建设成本远远高于陆地风机。因此,寻找各个途径来降低海上风电场建设的成本是海上风机发展的关键所在。 2 海上风电场的特点及基础形式 海上风机基础与陆地风机基础相比有以下特点: 1)荷载:有强风、海浪、冰载和腐蚀的作用。 2)地质条件:覆盖层多为淤泥质土、沙土或无 覆盖层的裸岩,差异性大,施工条件差。 3)运输条件:只能水运,在滩涂或潮间带运输 必须采用特制设备。 4)安装方式:受海浪、强风影响,结构的运输与安装需投入大型水上设备,设备调遣使用费高。 就受力而言,海上风电场的基础与桥梁基础是 大同小异的,因而可以借鉴桥梁基础的形式,同时海上石油平台的设计施工理念也值得借鉴。 海上风电场基础除满足自身结构的强度、刚度及稳定性外,还要进行动力模态及疲劳分析,以满足基础结构在海洋环境中安全可靠的要求。根据海上风机的布局特点和海上施工的具体条件,设计出针对海上风电场的基础形式,主要有重力式基础、单桩基础、群桩基础、导管架基础、设置沉箱基础、沉井基础及吸力式筒形基础。 1)单桩基础:又分钢桩和钢筋混凝土管桩两种 基础形式。钢桩为矱3~矱7m的钢管,板厚30~ 60mm,打入深度在15~50m,单桩承载力达500~2600t,适应于覆盖层地质及水深在30m以下区域。其优点:不要求对海床做预先的准备,制造简单,施工快速,但相对海水较深时柔性大,如图1所 示。钢筋混凝土管桩直径5~6m,壁厚50~ 100cm,钻孔深度20~50m,单桩承载力达1500~ 3000t,优点:不需要海床的预处理,工厂预制,现场安装,缺点:需大直径钻孔设备,大吨位浮吊吊装,如 5 32010年第12卷第11期

海上风电机组导管架基础水下灌浆施工技术 卓豪海

海上风电机组导管架基础水下灌浆施工技术卓豪海 发表时间:2019-06-13T10:15:33.617Z 来源:《电力设备》2019年第3期作者:卓豪海 [导读] 摘要:文章以海上风电导管结构及桩基灌浆连接施工技术为研究对象,首先对海上风电导管架结构进行了阐述分析,随后分析探讨导管架基础灌浆连接段与导管架施工难点,最后结合实际案例对海上风电导管桩基灌浆连接施工技术进行了探讨,以供参考。 (中国能源建设集团广东火电工程有限公司广东广州 510000) 摘要:文章以海上风电导管结构及桩基灌浆连接施工技术为研究对象,首先对海上风电导管架结构进行了阐述分析,随后分析探讨导管架基础灌浆连接段与导管架施工难点,最后结合实际案例对海上风电导管桩基灌浆连接施工技术进行了探讨,以供参考。 关键词:海上风电;导管架构;桩基灌浆连接施工技术 前言 我国沿海风能资源丰富,有着非常高的有效利用小时数,并且用电负荷中心也比较近,因此在海上风电发展上有着得天独厚的地利优势。随着国家越来越重视绿色可持续能源开发利用,为海上风电发展带来了空前的机遇。风机导管架基础是海上风电建设的重要组成部分,做好海上风电导管结构及桩基灌浆连接施工技术分析,对于促进我国海上风电产业发展具有重要的意义。 一、海上风电导管架结构分析 导管架结构形式一般包括两种,一种是先桩法导管架,另一种是后桩法导管架。两种导管架有着相同的主体结构,即都是框架对称结构,结构材料均为钢制材料。但在结构细节部分有着明显的差异。对于先打桩导管架而言,在自身支撑腿末端不需要进行桩靴设置,而后打桩导管架则需要设置桩靴。导管架结构一般分为两部分,一部分是导管架结构基础,一部分是过渡段,过渡段主要包括平台甲板、主斜撑、主筒体等。 在实际开展灌浆施工作业时,一般地点会选择专业灌浆船上,并在完成打桩、下部导管架施工等工序后,正式开始进行桩基灌浆作业。在具体进行灌浆施工时,需要遵循如下施工流程,首先稳步停靠灌浆船,保证船体在有灌浆终端面板的导管架一侧,方便灌浆管连接,然后连接好灌浆管,并向环形空间内进行淡水压注;接着在正式灌浆前,需要做好环形空间气密性检查,并向灌浆管进行润管料压注,使得灌浆管道处于湿润状态,随后将拌制好的灌浆料由灌浆泵灌入灌浆区域,一般完成单桩灌浆的标志是在溢浆口处有浓浆溢出,然后将灌浆管拔出,连接导管架同侧的另一根导管线,继续进行灌浆,在完成导管架同侧灌浆后,移动灌浆管到导管架另一侧,重复上述步骤,对另外两个单桩进行灌浆,全面完成灌浆工作。 二、导管架基础灌浆连接段分析 (一)先桩法导管架基础灌浆连接阶段 对于先桩法导管架基础的灌浆连接而言,一般是钢管桩在外,导管架腿柱在内,在导管架腿柱之上,会设置有灌浆管线与灌浆孔,从而在内外管之间形成一个环形空间,在实施灌浆作业时即是通过灌浆孔向该环形空间进行浆料灌注,具体如图一所示。在导管架基础的灌浆连接阶段设计上,需要注意防止灌浆过程产生的循环往复荷载引发的裂缝问题。对于先桩法导管架基础连接阶段来说,从灌浆连接段底部朝上,一直到连接段一半范围内,不会受到较强的弯矩影响,而自灌浆连接段顶部朝下,一直到连接段一半范围内,则会受到较大的弯矩影响,因此为防止在该区域内出现裂纹,应尽量避免设置剪力键。 三、导管架施工难点分析 (一)布置导管架管线 导管架管线布置对灌浆施工质量有着非常大的影响,在实际进行管线布置时,一般会选择双管线系统,即一个管线用于灌浆,另一个管线用于备用,当出现管线堵塞突发问题时,能够及时替换导管,避免影响正常施工。在灌浆管线材质选择上,一般会选择橡胶软管或钢管,直径应大于50mm。灌浆管设置在灌浆空间的底部,通过焊接的方式固定在导管架套筒外壁上,管口为圆形外包管形式,内部沿圆周方向,设置有6或8只灌浆嘴。在这种设计方式下,能够有效提升灌浆的均匀、平稳性,为灌浆质量提供有力的保障。通过上文叙述可知,一般会在灌浆船上开展灌浆作业,但在实际作业过程中,受船自身体积影响,作业钢管桩很难贴近船机,并且导管架桩腿之间的距离比较大,因此需要灌浆管长度够长,并且需要一定的弯曲度,才能够成功与预制灌浆管线对接。 (二)灌浆材料选择 灌浆材料选择是海上风电桩基灌浆连接施工的关键所在,在实际选择时,会以灌浆连接段分析结果与设计要求为依据,选择普通水泥灌浆料或高强水泥灌浆料。对于普通水泥灌浆料而言,自身价格低、取材方便,广泛应用于海洋石油工程中,但缺点也很明显,容易浆结收缩,抗压强度与粘结强度较低。高强水泥灌浆料相对于普通水泥灌浆料来说,主要采用了收缩补偿技术,因此灌浆料比较均匀,流动性强,更容易进行泵送灌浆,因此更加适合海上风电基础灌浆要求,除此之外,在海上风电桩基灌浆连接施工方面,高强水泥灌浆料还具备

相关文档
最新文档